
Research Article
An MDADT-Based Approach for 𝐿

2
-Gain Analysis of

Discrete-Time Switched Delay Systems

Honglei Xu,1 Xiang Xie,1 and Lilian Shi2

1School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
2School of Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China

Correspondence should be addressed to Xiang Xie; xiang xie@outlook.com and Lilian Shi; sllian@sina.com

Received 8 October 2015; Accepted 14 February 2016

Academic Editor: Herve G. E. Kadji

Copyright © 2016 Honglei Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the 𝐿
2
-gain analysis problem for a class of discrete-time switched systems with time-varying delays. A mode-dependent

average dwell time (MDADT) approach is applied to analyze the 𝐿
2
-gain performance for these discrete-time switched delay

systems. Combining a multiple Lyapunov functional method with the MDADT approach, sufficient conditions expressed in form
of a set of feasible linear matrix inequalities (LMIs) are established to guarantee the 𝐿

2
-gain performance. Finally, a numerical

example will be provided to demonstrate the validity and usefulness of the obtained results.

1. Introduction

Switched systems consist of a finite number of subsystems
and a logical law which orchestrates the switching behaviors
between these subsystems. These dynamical systems can
mathematically model many practical engineering applica-
tions with switching characteristics in a variety of disciplines;
see, for example, [1–7].

A constrained switching signal can be regarded as a
powerful tool to stabilize and control these switched systems
[8–10]. Among them, the average dwell time (ADT) switching
is the most common and typical one. It guarantees that the
number of types of switching in a finite interval be bounded
and the average time between any two types of consecutive
switching not be less than a positive constant [11, 12]. In recent
years, it has been recognised that ADT is flexible and efficient
for dynamics analysis of many switched systems [8, 13–16].
However, the ADT switching’s property that the average time
interval between any two types of consecutive switching
should be greater than a positive number 𝜏

𝑎
makes the

dwell time independent of the systemmodes. Hence whether

the dwelling at some classes of subsystems will deteriorate the
disturbance attenuation cannot be predicted.

As shown in [17], the minimum of admissible ADT
is computed by two mode-independent parameters: the
increase coefficient of the Lyapunov-like function and the
decay rate of the Lyapunov function, which will cause certain
conservativeness. To solve the problem, more recently, a new
mode-dependent ADT concept has been introduced in [18].
Two mode-independent parameters can be set in a mode-
dependent manner, which will reduce the conservativeness.

Even though stability analysis for the switched systems
with MDADT has been investigated extensively (see, e.g.,
[17, 18]), how to solve the 𝐿

2
-gain problem of the switched

systems withMDADT is interesting and worthwhile to study.
This has motivated our study in this paper.

The rest of the paper is as follows. In Section 2, we intro-
duce the class of discrete-time switched system, some nec-
essary definitions, and lemmas. In Section 3, sufficient con-
ditions for ensuring 𝐿

2
-gain for the discrete-time switched

delay system are constructed. In Section 4, a numerical exam-
ple is presented to illustrate the obtained results. Conclusion
remarks are given in Section 5.
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2. Preliminaries and Problem Statement

Consider a discrete-time switched system with a time-
varying delay:

𝐿
𝑖
:
{{{{

{{{{

{

𝑥 (𝑡 + 1) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐶

𝑖
𝑤 (𝑡) ,

𝑥
𝑡0
(𝑙) = 𝑥 (𝑡

0
+ 𝑙) = 𝜙 (𝑙) , 𝑙 = −𝑑

𝑀
, −𝑑
𝑀
+ 1, −𝑑

𝑀
+ 2, . . . , 0,

𝑧 (𝑡) = 𝐷
𝑖
𝑥 (𝑡) + 𝐸

𝑖
𝑤 (𝑡) ,

(1)

where𝑥(𝑡) ∈ 𝑅𝑛 is the system state, 𝑧(𝑡) ∈ 𝑅𝑚 is the controlled
output, 𝜙(𝑙) is a vector-valued initial function, 𝑡

0
is the initial

time, and 𝑤(𝑡) is the disturbance input which belongs to
𝐿
2
[0, +∞). 𝑑(𝑡) is the time-varying delay and satisfies 0 <

𝑑
𝑚
< 𝑑(𝑡) ≤ 𝑑

𝑀
, where 𝑑

𝑚
and 𝑑

𝑀
denote the upper and the

lower bounds of the delays. 𝑖 is the switching signal, which
takes its values in the finite set 𝑆 = {1, . . . ,𝑀}, where 𝑀
is the number of subsystems. When 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
), 𝑖 ∈ N,

we call the 𝑖th subsystem active. 𝐴
𝑝
, 𝐵
𝑝
, 𝐶
𝑝
, 𝐷
𝑝
, and 𝐸

𝑝
are

constantmatrices with appropriate dimension.When 𝑖 = 𝑝 =
1, . . . , 𝑚, it represents the𝑝th subsystem or 𝑝th mode of (1).

To proceed, we need the following definitions and lem-
mas.

Definition 1 (see [11]). For any 𝑇
2
> 𝑇
1
≥ 0 and any switching

signal 𝑖,𝑇
1
≤ 𝑡 < 𝑇

2
, let𝑁

𝑖
(𝑇
1
, 𝑇
2
) denote the number of types

of switching of 𝑖 over (𝑇
1
, 𝑇
2
). If𝑁

𝑖
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+𝑇
2
−𝑇
1
/𝑇
𝑎

holds for 𝑁
0
≥ 0 and 𝑇

𝑎
> 0, then 𝑇

𝑎
is the average dwell

time and𝑁
0
is the chatter bound. Without loss of generality,

we choose𝑁
0
= 0.

Definition 2 (see [18]). For a switching signal 𝑖 and any 𝑇 ≥

𝑡 ≥ 0, let 𝑁
𝑖𝑝
(𝑇, 𝑡) be the switching numbers in which the

𝑝th subsystem is activated over the interval [𝑡, 𝑇] and let
𝑇
𝑝
(𝑇, 𝑡) denote the total running time of the 𝑝th subsystem

over the interval [𝑡, 𝑇], 𝑝 ∈ 𝑆. We say that 𝑖 has a mode-
dependent average dwell time (MDADT) 𝜏

𝑎𝑝
if there exist

positive numbers𝑁
𝑜𝑝
and 𝜏
𝑎𝑝

such that

𝑁
𝑖𝑝
(𝑇, 𝑡) ≤ 𝑁

𝑜𝑝
+

𝑇
𝑝
(𝑇, 𝑡)

𝜏
𝑎𝑝

, ∀𝑇 ≥ 𝑡 ≥ 0 (2)

and we call 𝑁
𝑜𝑝

the mode-dependent chatter bounds. Here,
we choose𝑁

𝑜𝑝
= 0 as well.

Definition 3. For 𝛾 > 0, the switched delay system (1) is said to
have 𝐿

2
-gain property, if, under zero initial condition 𝜙(𝑙) =

0, 𝑙 ∈ [𝑡
0
− 𝑑
𝑀
, 𝑡
0
], it holds that

∫

∞

0

𝑧
𝑇
(𝑠) 𝑧 (𝑠) 𝑑𝑠 ≤ 𝛾

2
∫

∞

0

𝑤
𝑇
(𝑠) 𝑤 (𝑠) 𝑑𝑠. (3)

Lemma 4. For any given matrices𝑋,𝑌 ∈ 𝑅
𝑛×𝑛, it holds that

𝑋
𝑇
𝑌 + 𝑌

𝑇
𝑋 ≤ 𝛿𝑋

𝑇
𝑋 + 𝛿

−1
𝑌
𝑇
𝑌, (4)

where 𝛿 is any given positive constant.

Lemma 5 (see [6]). Let 𝐴, 𝐷, 𝐸, 𝐹, and 𝑃 be real matrices of
appropriate dimensions with 𝑃 > 0 and 𝐹 satisfying 𝐹𝑇𝐹 ≤ 𝐼.
Then for any scalar 𝜀 > 0 satisfying 𝑃−1 −𝜀−1𝐷𝐷𝑇 > 0, one has

(𝐴 + 𝐷𝐹𝐸)
𝑇
𝑃 (𝐴 + 𝐷𝐹𝐸)

≤ 𝐴
𝑇
(𝑃
−1
− 𝜀
−1
𝐷𝐷
𝑇
)
−1

𝐴 + 𝜀𝐸
𝑇
𝐸.

(5)

Lemma 6 (Schur complement). Let 𝑀, 𝑃, and 𝑄 be given
matrices such that 𝑄 > 0. Then

[

𝑃 𝑀

∗ −𝑄

] < 0 ⇐⇒

𝑃 +𝑀𝑄
−1
𝑀
𝑇
< 0.

(6)

Lemma 7 (see [13]). Let 𝜙(𝑘) ∈ 𝑅
𝑛 be a vector-valued

function. If there exist any matrices 𝑅 > 0,𝐺
1
,𝐺
2
, and a scalar

𝑑 ≥ 0, then the following inequality

−

𝑘−1

∑

𝑠=𝑘−𝑑

𝑁
𝑇
(𝑠) 𝑅𝑁 (𝑠)

≤ 𝜂
𝑇
(𝑘) [

𝐺
1
+ 𝐺
𝑇

1
−𝐺
𝑇

1
+ 𝐺
2

∗ −𝐺
2
− 𝐺
𝑇

2

] 𝜂 (𝑘)

+ 𝜂
𝑇
(𝑘) [

𝐺
𝑇

1

𝐺
𝑇

2

]𝑑𝑅
−1
[𝐺1 𝐺2] 𝜂 (𝑘)

(7)

holds, where𝑁(𝑠) = 𝜙(𝑠 + 1) − 𝜙(𝑠) and 𝜂(𝑡) = [ 𝜙(𝑡)
𝜙(𝑡−𝑑)

].

3. 𝐿
2
-Gain Analysis

Firstly, we will introduce two important lemmas for the 𝐿
2
-

gain analysis of the switched delay system (1).The first lemma
will provide the decay estimation of the Lyapunov functional
𝑉
𝑖
(𝑡) along the trajectory of the switched delay systemwithout

disturbances.

Lemma 8. Consider the switched delay system (1) with𝑤(𝑡) =
0. For given positive integers 𝑑

𝑀
, 𝑑
𝑚
, and 𝜆

𝑖
, suppose that there

exist matrices 𝐺
1
, 𝐺
2
, Ω
1
, Ω
2
, and Ω

3
such that

(i)

Ω
3
≤ 0. (8)
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(ii)

Ω
1
− Ω
2
Ω
−1

3
Ω
𝑇

2
≤ 0, (9)

where

Ω
1
= 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝜆
−2

𝑖
𝑄
𝑖
+ (𝑑
𝑀
− 𝑑
𝑚
) 𝜆
−2

𝑖
𝑄
𝑖

+ 𝜆
−2

𝑖
𝑑
𝑀
[𝜆
2

𝑖
𝐴
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
𝑖
𝐴
𝑇

𝑖
𝑅
𝑖
+ 𝑅
𝑖
]

+ 𝜆
−2

𝑖
(𝐺
1
+ 𝐺
𝑇

1
+ 𝑑
𝑀
𝐺
𝑇

1
𝑅
−1

𝑖
𝐺
1
) ,

Ω
2
= 𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
(𝐴
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
− 𝜆
−1

𝑖
𝑅
𝑖
𝐵
𝑖
)

+ 𝜆
−2

𝑖
(−𝐺
𝑇

1
+ 𝐺
2
+ 𝑑
𝑀
𝐺
𝑇

1
𝑅
−1

𝑖
𝐺
2
) ,

Ω
3
= 𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
− 𝜆
−2(1+𝑑𝑀)

𝑖
𝑄
𝑖
+ 𝑑
𝑀
𝐵
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖

+ 𝜆
−2

𝑖
(−𝐺
2
− 𝐺
𝑇

2
+ 𝑑
𝑀
𝐺
𝑇

2
𝑅
−1

𝑖
𝐺
2
)

(10)

with 𝑃
𝑖
, 𝑄
𝑖
, and 𝑅

𝑖
being symmetric positive definite matrices;

then the Lyapunov functional 𝑉
𝑖
(𝑡) along the trajectory of the

switched delay system (1) will satisfy

𝑉
𝑖
(𝑡) ≤ 𝜆

−2(𝑡−𝑡0)

𝑖
𝑉
𝑖
(𝑡
0
) . (11)

Proof. Choose the following Lyapunov functional candidate:

𝑉
𝑖
(𝑡) = 𝑉

𝑖1
(𝑡) + 𝑉

𝑖2
(𝑡) + 𝑉

𝑖3
(𝑡) + 𝑉

𝑖4
(𝑡) . (12)

Here,

𝑉
𝑖1
(𝑡) = 𝑥

𝑇
(𝑡) 𝑃
𝑖
𝑥 (𝑡) ,

𝑉
𝑖2
(𝑡) =

𝑡−1

∑

𝑠=𝑡−𝑑(𝑡)

𝜆
2(𝑠−𝑡)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) ,

𝑉
𝑖3
(𝑡) =

−𝑑𝑚+1

∑

𝜃=−𝑑𝑀+2

𝑡−1

∑

𝑠=𝑡−1+𝜃

𝜆
2(𝑠−𝑡)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) ,

𝑉
𝑖4
(𝑡) =

0

∑

𝜃=−𝑑𝑀+1

𝑡−1

∑

𝑠=𝑡−1+𝜃

𝜆
2(𝑠−𝑡)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) ,

(13)

where 𝑃
𝑖
,𝑄
𝑖
, and 𝑅

𝑖
are symmetric positive definite matrices,

𝜆
𝑖
> 1 is a given constant, and 𝑦(𝑠) = 𝜆

𝑖
𝑥(𝑠 + 1) − 𝑥(𝑠). Next,

we will estimate the difference of 𝑉
𝑖
(𝑡) along the trajectory of

the switched delay system (1):

Δ𝑉
𝑖1
(𝑡) = 𝑉

𝑖1
(𝑡 + 1) − 𝑉

𝑖1
(𝑡)

= 𝑥
𝑇
(𝑡 + 1) 𝑃

𝑖
𝑥 (𝑡 + 1) − 𝑥

𝑇
(𝑡) 𝑃
𝑖
𝑥 (𝑡)

= 𝑥
𝑇
(𝑡) 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝐵

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝐵

𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑥 (𝑡 − 𝑑 (𝑡))

− 𝑥
𝑇
(𝑡) 𝑃
𝑖
𝑥 (𝑡) .

(14)

Then, we have

Δ𝑉
𝑖1
(𝑡) = [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

] ,

(15)

Δ𝑉
𝑖2
(𝑡) = 𝑉

𝑖2
(𝑡 + 1) − 𝑉

𝑖2
(𝑡) ≤ 𝑉

𝑖2
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖2
(𝑡)

=

𝑡

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

−

𝑡−1

∑

𝑠=𝑡−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) = 𝜆

−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

+

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

−

𝑡−1

∑

𝑠=𝑡−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) .

(16)

Since the delay 𝑑(𝑡) satisfies 0 < 𝑑
𝑚
< 𝑑(𝑡) ≤ 𝑑

𝑀
, we can

consider the following two cases.
When 𝑑

𝑚
> 1, it holds that

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

≤

𝑡−1

∑

𝑠=𝑡+1−𝑑𝑚

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

≤

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) .

(17)
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When 𝑑
𝑚
= 1,

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

≤

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

(18)

is satisfied as well.
So from (16) and (17) we can obtain

Δ𝑉
𝑖2
(𝑡) ≤ 𝜆

−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

+

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

−

𝑡−1

∑

𝑠=𝑡−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

= 𝜆
−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

− 𝜆
2(−1−𝑑(𝑡))

𝑖
𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝑄

𝑖
𝑥 (𝑡 − 𝑑 (𝑡))

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) .

(19)

Since −𝜆2(−1−𝑑(𝑡))
𝑖

≤ −𝜆
2(−1−𝑑𝑀)

𝑖
, we get

Δ𝑉
𝑖2
(𝑡) ≤ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

𝜆
−2

𝑖
𝑄
𝑖

0

0 −𝜆
2(−1−𝑑𝑀)

𝑖
𝑄
𝑖

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) .

(20)

The derivation process of Δ𝑉
𝑖3
(𝑡) is similar to Δ𝑉

𝑖2
(𝑡), and

then we have

Δ𝑉
𝑖3
(𝑡) = 𝑉

𝑖3
(𝑡 + 1) − 𝑉

𝑖3
(𝑡) ≤ 𝑉

𝑖3
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖3
(𝑡)

=

−𝑑𝑚+1

∑

𝜃=−𝑑𝑀+2

𝑡−1

∑

𝑠=𝑡+𝜃

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

−𝑑𝑚+1

∑

𝜃=−𝑑𝑀+2

𝜆
−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

−

−𝑑𝑚+1

∑

𝜃=−𝑑𝑀+2

𝑡−1

∑

𝑠=𝑡−1+𝜃

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

≤ −

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+ (𝑑
𝑀
− 𝑑
𝑚
) 𝜆
−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

(21)

which is equal to

Δ𝑉
𝑖3
≤ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

(𝑑
𝑀
− 𝑑
𝑚
) 𝜆
−2

𝑖
𝑄
𝑖
0

0 0

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

−

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) ,

(22)

Δ𝑉
𝑖4
(𝑡) = 𝑉

𝑖4
(𝑡 + 1) − 𝑉

𝑖4
(𝑡) ≤ 𝑉

𝑖4
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖4
(𝑡)

≤

0

∑

𝜃=−𝑑𝑀+1

𝑡−1

∑

𝑠=𝑡+𝜃

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) + 𝑑

𝑀

⋅ 𝜆
−2

𝑖
𝑦
𝑇
(𝑡) 𝑅
𝑖
𝑦 (𝑡)

−

0

∑

𝜃=−𝑑𝑀+1

𝑡−1

∑

𝑠=𝑡−1+𝜃

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) ≤ 𝑑

𝑀

⋅ 𝜆
−2

𝑖
𝑦
𝑇
(𝑡) 𝑅
𝑖
𝑦 (𝑡) −

𝑡−1

∑

𝑠=𝑡−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) .

(23)

Since 𝑦(𝑠) = 𝜆
𝑖
𝑥(𝑠 + 1) − 𝑥(𝑠), we substitute it into (23) and

obtain

Δ𝑉
𝑖4
(𝑡) ≤ 𝜆

−2

𝑖
𝑑
𝑀
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

(𝜆
𝑖
𝐴
𝑇

𝑖
− 𝐼) 𝑅

𝑖
(𝜆
𝑖
𝐴
𝑖
− 𝐼) 𝜆

𝑖
(𝜆
𝑖
𝐴
𝑇

𝑖
− 𝐼) 𝑅

𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑅
𝑖
(𝜆
𝑖
𝐴
𝑖
− 𝐼) 𝜆

𝑖
𝜆
2

𝑖
𝐵
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

−

𝑡−1

∑

𝑠=𝑡−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) ,

(24)
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where we apply the transformation 𝜙(𝑠) = 𝜆
(𝑠−𝑡−1)

𝑖
𝑥(𝑠). Then

we have 𝜆𝑠−𝑡−1
𝑖

𝑦(𝑠) = 𝜙(𝑠+1)−𝜙(𝑠); by Lemma 7 we continue
to have

−

𝑡−1

∑

𝑠=𝑡−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) ≤ [

𝜙 (𝑡)

𝜙 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

𝐺
1
+ 𝐺
𝑇

1
−𝐺
𝑇

1
+ 𝐺
2

∗ −𝐺
2
− 𝐺
𝑇

2

][

𝜙 (𝑡)

𝜙 (𝑡 − 𝑑 (𝑡))

]

+ [

𝜙 (𝑡)

𝜙 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

𝐺
𝑇

1

𝐺
𝑇

2

]𝑑
𝑀
𝑅
−1

𝑖
[𝐺1 𝐺2] [

𝜙 (𝑡)

𝜙 (𝑡 − 𝑑 (𝑡))

] .

(25)

Due to the fact that𝜙(𝑡) = 𝜆−1
𝑖
𝑥(𝑡),𝜙(𝑡−𝑑(𝑡)) = 𝜆−(𝑑(𝑡)+1)

𝑖
𝑥(𝑡−

𝑑(𝑡)) ≤ 𝜆
−1

𝑖
𝑥(𝑡 − 𝑑(𝑡)), it holds that

Δ𝑉
𝑖4
(𝑡) ≤ 𝜆

−2

𝑖
𝑑
𝑀
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

(𝜆
𝑖
𝐴
𝑇

𝑖
− 𝐼) 𝑅

𝑖
(𝜆
𝑖
𝐴
𝑖
− 𝐼) 𝜆

𝑖
(𝜆
𝑖
𝐴
𝑇

𝑖
− 𝐼) 𝑅

𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑅
𝑖
(𝜆
𝑖
𝐴
𝑖
− 𝐼) 𝜆

𝑖
𝜆
2

𝑖
𝐵
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

+ 𝜆
−2

𝑖
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

𝐺
1
+ 𝐺
𝑇

1
−𝐺
𝑇

1
+ 𝐺
2

∗ −𝐺
2
− 𝐺
𝑇

2

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

+ 𝜆
−2

𝑖
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

𝐺
𝑇

1

𝐺
𝑇

2

]𝑑
𝑀
𝑅
−1

𝑖
[𝐺1 𝐺2] [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

] .

(26)

Let 𝜉(𝑡) = [
𝑥(𝑡)

𝑥(𝑡−𝑑(𝑡))
]; then we add (15), (20), (22), and (26)

together to yield

Δ𝑉
𝑖
≤ 𝜉
𝑇
(𝑡) Ω𝜉 (𝑡) , (27)

whereΩ = [
Ω1 Ω2

∗ Ω3
],

Ω
1
= 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝜆
−2

𝑖
𝑄
𝑖
+ (𝑑
𝑀
− 𝑑
𝑚
) 𝜆
−2

𝑖
𝑄
𝑖

+ 𝜆
−2

𝑖
𝑑
𝑀
[𝜆
2

𝑖
𝐴
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
𝑖
𝐴
𝑇

𝑖
𝑅
𝑖
+ 𝑅
𝑖
]

+ 𝜆
−2

𝑖
(𝐺
1
+ 𝐺
𝑇

1
+ 𝑑
𝑀
𝐺
𝑇

1
𝑅
−1

𝑖
𝐺
1
) ,

Ω
2
= 𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
(𝐴
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
− 𝜆
−1

𝑖
𝑅
𝑖
𝐵
𝑖
)

+ 𝜆
−2

𝑖
(−𝐺
𝑇

1
+ 𝐺
2
+ 𝑑
𝑀
𝐺
𝑇

1
𝑅
−1

𝑖
𝐺
2
) ,

Ω
3
= 𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
− 𝜆
−2(1+𝑑𝑀)

𝑖
𝑄
𝑖
+ 𝑑
𝑀
𝐵
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖

+ 𝜆
−2

𝑖
(−𝐺
2
− 𝐺
𝑇

2
+ 𝑑
𝑀
𝐺
𝑇

2
𝑅
−1

𝑖
𝐺
2
) .

(28)

By (8) and (9) and Lemma 6, we can obtain

Ω = [

Ω
1
Ω
2

∗ Ω
3

] ≤ 0. (29)

It follows from (27) and (29) that

𝑉
𝑖
(𝑡 + 1) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) . (30)

Therefore,

𝑉
𝑖
(𝑡) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡 − 1) ≤ ⋅ ⋅ ⋅ ≤ 𝜆

−2(𝑡−𝑡0)

𝑖
𝑉
𝑖
(𝑡
0
) . (31)

This completes the proof.

Lemma 9. For given constants 𝜆
𝑖
and 𝛾

0
, suppose that there

exist matrices Ξ
1
, Ξ
2
, and Ξ

3
such that

(i)

Ξ
3
≤ 0 (32)

(ii)

Ξ
1
− Ξ
2
Ξ
−1

3
Ξ
𝑇

2
≤ 0 (33)

and 𝛾
0
> 0, 𝜀
1
> 0, and 𝜀

2
> 0 satisfying

𝛾
2

0
𝐼 ≥ 𝜀
−1

1
𝐼 + 𝜀
−1

2
𝐼 + 𝐶
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
+ 𝐸
𝑇

𝑖
𝐸
𝑖
; (34)

then along the trajectory of system (1), one has

𝑉
𝑖
(𝑡 + 1) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 𝑍

𝑇
(𝑡) 𝑍 (𝑡) , (35)

where

Ξ
1
= Ω
1
+ 𝜀
1
𝜑
𝑇

1𝑖
𝜑
1𝑖
+ 𝐷
𝑇

𝑖
𝐷
𝑖
,

Ξ
2
= Ω
2
,

Ξ
3
= Ω
3
+ 𝜀
2
𝜑
𝑇

2𝑖
𝜑
2𝑖
,

𝜑
1𝑖
= 𝐶
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
+ 𝑑
𝑀
(𝐶
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
−1

𝑖
𝐶
𝑇

𝑖
𝑅
𝑖
) + 𝐸
𝑇

𝑖
𝐷
𝑖

𝜑
2𝑖
= 𝐶
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
.

(36)



6 Mathematical Problems in Engineering

Proof. Using Lemma 8 and (1), we have

𝑉
𝑖
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝑍

𝑇
(𝑡) 𝑍 (𝑡) − 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡)

≤ 𝜉
𝑇
(𝑡) Ω𝜉 (𝑡) + 𝑥

𝑇
(𝑡)

⋅ [𝐴
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
(𝐴
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
− 𝜆
−1

𝑖
𝑅
𝑖
𝐶
𝑖
) + 𝐷

𝑇

𝑖
𝐸
𝑖
]

⋅ 𝑤 (𝑡) + 𝑤
𝑇
(𝑡)

⋅ [𝐶
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
+ 𝑑
𝑀
(𝐶
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
−1

𝑖
𝐶
𝑇

𝑖
𝑅
𝑖
) + 𝐸
𝑇

𝑖
𝐷
𝑖
]

⋅ 𝑥 (𝑡) + 𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) [𝐵

𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐵
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
]𝑤 (𝑡)

+ 𝑤
𝑇
(𝑡) [𝐶

𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
] 𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝑥
𝑇
(𝑡) 𝐷
𝑇

𝑖
𝐷
𝑖
𝑥 (𝑡) + 𝑤

𝑇
(𝑡)

⋅ (𝐶
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
+ 𝐸
𝑇

𝑖
𝐸
𝑖
− 𝛾
2

0
𝐼)𝑤 (𝑡) .

(37)

Based on Lemmas 4 and 5, it holds that

𝑥
𝑇
(𝑡) [𝐴

𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
(𝐴
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
− 𝜆
−1

𝑖
𝑅
𝑖
𝐶
𝑖
) + 𝐷

𝑇

𝑖
𝐸
𝑖
]

⋅ 𝑤 (𝑡) + 𝑤
𝑇
(𝑡)

⋅ [𝐶
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
+ 𝑑
𝑀
(𝐶
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
−1

𝑖
𝐶
𝑇

𝑖
𝑅
𝑖
) + 𝐸
𝑇

𝑖
𝐷
𝑖
]

⋅ 𝑥 (𝑡) ≤ 𝜀
1
𝑥
𝑇
(𝑡) 𝜑
𝑇

1𝑖
𝜑
1𝑖
𝑥 (𝑡) + 𝜀

−1

1
𝑤
𝑇
(𝑡) 𝑤 (𝑡) .

𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) [𝐵

𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐵
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
]𝑤 (𝑡) + 𝑤

𝑇
(𝑡)

⋅ [𝐶
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
] 𝑥 (𝑡 − 𝑑 (𝑡))

≤ 𝜀
2
𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝜑

𝑇

2𝑖
𝜑
2𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝜀

−1

2
𝑤
𝑇
(𝑡)

⋅ 𝑤 (𝑡) .

(38)

Then, it follows from (35) and (38) that

𝑉
𝑖
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝑍

𝑇
(𝑡) 𝑍 (𝑡) − 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡)

≤ 𝜉
𝑇
(𝑡)

⋅ [

Ω
1
+ 𝜀
1
𝜑
𝑇

1𝑖
𝜑
1𝑖
+ 𝐷
𝑇

𝑖
𝐷
𝑖

Ω
2

∗ Ω
3
+ 𝜀
2
𝜑
𝑇

2𝑖
𝜑
2𝑖

] 𝜉 (𝑡)

+ 𝑤
𝑇
(𝑡) [𝜀
−1

1
𝐼 + 𝜀
−1

2
𝐼 + 𝐶
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖

+ 𝐸
𝑇

𝑖
𝐸
𝑖
− 𝛾
2

0
𝐼]𝑤 (𝑡) .

(39)

Combining (32), (33) with (34) will lead to

𝑉
𝑖
(𝑡 + 1) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 𝑍

𝑇
(𝑡) 𝑍 (𝑡) . (40)

This completes the proof.

Now, our 𝐿
2
-gain analysis results can be presented as

follows.

Theorem 10. For given constants 𝜆
𝑖
and 𝛾
0
, suppose that there

exist matrices Ξ
1
, Ξ
2
, and Ξ

3
such that

(i)

Ξ
3
≤ 0 (41)

(ii)

Ξ
1
− Ξ
2
Ξ
−1

3
Ξ
𝑇

2
≤ 0 (42)

and 𝛾
0
> 0, 𝜀
1
> 0, and 𝜀

2
> 0 satisfying

𝛾
2

0
𝐼 ≥ 𝜀
−1

1
𝐼 + 𝜀
−1

2
𝐼 + 𝐶
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
+ 𝐸
𝑇

𝑖
𝐸
𝑖
. (43)

Then the switched delay system (1) has a 𝐿
2
-gain withMDADT

𝜏
𝑎𝑝
> 𝜏
∗

𝑎𝑝
= ln 𝜇

𝑝
/2 ln 𝜆

𝑝
, where 𝜇

𝑝
≥ 1 satisfying (35) and𝜑

1𝑖
,

𝜑
2𝑖
, Ξ
1
, Ξ
2
, and Ξ

3
are defined in Lemma 9.

Proof. Choose the Lyapunov functional candidate (12). From
(41) and (42) and Lemma 9, we have

𝑉
𝑖
(𝑡 + 1) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 𝑍

𝑇
(𝑡) 𝑍 (𝑡) . (44)

Let Γ(𝑡) = 𝛾
2

0
𝑤
𝑇
(𝑡)𝑤(𝑡) − 𝑍

𝑇
(𝑡)𝑍(𝑡). From (35), since 𝑡

𝑖−1
=

𝑡
𝑖
− 1, we have

𝑉
𝜎(𝑡)

(𝑡) ≤ 𝜆
𝜎(𝑡𝑖)

−2(𝑡−𝑡𝑖)
𝑉
𝜎(𝑡𝑖)

(𝑡
𝑖
) +

𝑡−1

∑

𝑗=𝑡𝑖

𝜆
−2(𝑡−𝑗−1)

𝜎(𝑡𝑖)
Γ (𝑗)

≤ 𝜇
𝜎(𝑡𝑖)

𝜆
𝜎(𝑡𝑖)

−2(𝑡−𝑡𝑖)
𝑉
𝜎(𝑡𝑖−1)

(𝑡
𝑖
) +

𝑡−1

∑

𝑗=𝑡𝑖

𝜆
−2(𝑡−𝑗−1)

𝜎(𝑡𝑖)
Γ (𝑗)

≤ 𝜇
𝜎(𝑡𝑖)

𝜆
𝜎(𝑡𝑖)

−2(𝑡−𝑡𝑖)
{

{

{

𝜆
−2(𝑡𝑖−𝑡𝑖−1)

𝜎(𝑡𝑖−1)
𝑉
𝜎(𝑡𝑖−1)

(𝑡
𝑖−1
)

+

𝑡𝑖−1

∑

𝑗=𝑡𝑖−1

𝜆
−2(𝑡𝑖−𝑗−1)

𝜎(𝑡𝑖−1)
Γ (𝑗)

}

}

}

+

𝑡−1

∑

𝑗=𝑡𝑖

𝜆
−2(𝑡−𝑗−1)

𝜎(𝑡𝑖)
Γ (𝑗) ≤ ⋅ ⋅ ⋅

≤ (

𝑖

∏

𝑠=1

𝜇
𝜎(𝑡𝑠)

) ⋅ exp(−2
𝑖

∑

𝑠=1

ln 𝜆
𝜎(𝑡𝑠−1)

(𝑡
𝑠
− 𝑡
𝑠−1
))

⋅ 𝑉
𝜎(𝑡0)

(𝑡
0
) +

𝑖

∑

𝑘=1

[(

𝑖

∏

𝑠=𝑘

𝜇
𝜎(𝑡𝑠)

)

⋅ exp(−2
𝑖

∑

𝑠=𝑘

ln 𝜆
𝜎(𝑡𝑠−1)

(𝑡
𝑠
− 𝑡
𝑠−1
))] Γ (𝑡

𝑘−1
)

= exp[
𝑖

∑

𝑠=1

(ln 𝜇
𝜎(𝑡𝑠)

− 2 ln 𝜆
𝜎(𝑡𝑠−1)

(𝑡
𝑠
− 𝑡
𝑠−1
))]

⋅ 𝑉
𝜎(𝑡0)

(𝑡
0
)

+

𝑖

∑

𝑘=1

{exp[
𝑖

∑

𝑠=𝑘

(ln 𝜇
𝜎(𝑡𝑠)

− 2 ln 𝜆
𝜎(𝑡𝑠−1)

(𝑡
𝑠
− 𝑡
𝑠−1
))]}

⋅ Γ (𝑡
𝑘−1

)

(45)
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which combined with Definition 2 and the MDADT scheme
𝑁
𝜎𝑝
(𝑇, 𝑡) ≤ 𝑇

𝑝
(𝑇, 𝑡)/𝜏

𝑎𝑝
yields

𝑉
𝜎(𝑡)

(𝑡) ≤ exp[
𝑚

∑

𝑝=1

(ln 𝜇𝑁𝜎𝑝(𝑡,𝑡0)𝑝 − 2 ln 𝜆
𝑝
𝑇
𝑝
(𝑡, 𝑡
0
))]

⋅ 𝑉
𝜎(𝑡0)

(𝑡
0
)

+

𝑖

∑

𝑘=1

{exp[
𝑚

∑

𝑝=1

(ln 𝜇𝑁𝜎𝑝(𝑡,𝑡𝑘−1)𝑝 − 2 ln 𝜆
𝑝
𝑇
𝑝
(𝑡, 𝑡
𝑘−1

))]}

⋅ Γ (𝑡
𝑘−1

) ≤ 𝑒
−𝛽𝑇𝑝(𝑡,𝑡0)

𝑉
𝜎(𝑡0)

(𝑡
0
) +

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡𝑘−1)

Γ (𝑡
𝑘−1

) ,

(46)

where 𝛽 = ∑𝑚
𝑝=1

(2 ln 𝜆
𝑝
− ln 𝜇

𝑝
/𝜏
𝜎𝑝
) > 0.

Under zero initial condition, from (46), one obtains

0 ≤ 𝑉
𝜎(𝑡)

(𝑡) ≤

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡0)

Γ (𝑡
𝑘−1

) (47)

which implies that

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡𝑘−1)

𝑍
𝑇
(𝑡
𝑘−1

) 𝑍 (𝑡
𝑘−1

)

≤

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡𝑘−1)

𝛾
2

0
𝑤
𝑇
(𝑡
𝑘−1

) 𝑤 (𝑡
𝑘−1

) .

(48)

Then, we multiply both sides by 𝑒−𝛽𝑇𝑝(𝑡𝑘−1 ,𝑡0) to get

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡0)

𝑍
𝑇
(𝑡
𝑘−1

) 𝑍 (𝑡
𝑘−1

)

≤

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡0)

𝛾
2

0
𝑤
𝑇
(𝑡
𝑘−1

) 𝑤 (𝑡
𝑘−1

) .

(49)

Thus,

𝑖

∑

𝑘=0

𝑍
𝑇
(𝑡
𝑘
) 𝑍 (𝑡
𝑘
) ≤

𝑖

∑

𝑘=0

𝛾
2

0
𝑤
𝑇
(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) . (50)

This completes the proof.

4. A Numerical Example

Consider the switched delay system (1) with the following
specifications:

𝐴
1
= [

−0.2 0.3

0.1 −0.5

] ,

𝐵
1
= [

0.4 0

0.1 −0.5

] ,

𝐴
2
= [

−0.1 1

0 −0.6
] ,

𝐵
2
= [

−0.7 0.1

1 0.2
] ,

𝐶
1
= [

1 0

0 0

] ,

𝐶
2
= [

0 1

1 0

] ,

𝐷
1
= [1, 1] ,

𝐷
2
= [0, 1] ,

𝐸
1
= 𝐸
2
= [0.2, 0.8] ,

(51)

and 𝑑(𝑡) = sin(𝑡𝜋/2) + 1, so that 𝑑
𝑀

= 2, 𝑑
𝑚

= 0. The
disturbance input is defined as

𝑤 (𝑡) =

{

{

{

1, 0 < 𝑡 ≤ 20,

0, 𝑡 > 20.

(52)

Let 𝜇
1

= 𝜇
2

= 12; by the LMI Control Toolbox and
Theorem 10, we obtain

𝑃
1
= [

12.5739 5.0613

5.0613 4.8703
] ,

𝑄
1
= [

2.6676 1.2445

1.2445 0.9452
] ,

𝑅
1
= [

4.4703 −0.6996

−0.6996 9.3862

] ,

𝑃
2
= [

12.3445 18.3565

18.3565 30.2222

] ,

𝑄
2
= [

2.3941 3.7907

3.7907 6.1097

] ,

𝑅
2
= [

16.1813 18.8134

18.8134 22.4268
] ,

(53)

and 𝜆
1
= 27.2485, 𝜆

2
= 38.7807, where 𝜏∗

𝑎1
= ln 𝜇

1
/2 ln 𝜆

1
=

0.3759 and 𝜏
∗

𝑎2
= ln 𝜇

2
/2 ln 𝜆

2
= 0.3397. Now, we choose
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Figure 1: State trajectories of the switched delay system (1) under
MDADT switching.

the switching periods 𝜏
𝑎1

= 2, 𝜏
𝑎2

= 1 and take the initial
state condition 𝜓(𝑙) = [1; 2] for all 𝑙 = −2, −1, 0. Then the
numerical simulations can be shown in Figure 1.

It can be seen from Figure 1 that under the designed
MDADT switching signals the switched delay system can
achieve better dynamics performance and disturbance toler-
ance capability, which shows the potentiality of our results in
practice.

5. Conclusions

In this paper, the problem of 𝐿
2
-gain analysis for discrete-

time switched systems with MDADT switching has been
investigated. By combining with the multiple Lyapunov
function method, sufficient conditions are established to
ensure 𝐿

2
-gain performance for discrete-time switched delay

system, and the admissible MDADT switching signals are
also designed accordingly. Finally, a numerical example is
given to demonstrate the usefulness of the obtained results.
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