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The existence and uniqueness of the solution of a new kind of system—linear fractional differential-algebraic equations (LFDAE)—
are investigated. Fractional derivatives involved are under the Caputo definition. By using the tool of matrix pair, the LFDAE in
which coefficients matrices are both square matrices have unique solution under the condition that coefficients matrices make up
a regular matrix pair. With the help of equivalent transformation and Kronecker canonical form of the coefficients matrices, the
sufficient condition for existence and uniqueness of the solution of the LFDAE in which coefficients matrices are both not square
matrices is proposed later. Two examples are given to justify the obtained theorems in the end.

1. Introduction

The dynamical behavior of a mechanical system was usually
modeled via differential-algebraic equations (DAE) whose
general form appears as 𝐹(𝑡, 𝑦, ̇𝑦) = 0, including both differ-
ential and algebraic equations to describe the corresponding
constraints, for example, by Newton’s laws of motion or
by position constraints such as the movement on a given
surface. On the other hand, researchers had effectively solved
engineering problems with fractional differential equations
(FDE), which involves fractional derivatives𝑦(𝛼) in themodel
[1–6].

Recently, some investigators tried using fractional differ-
ential-algebraic equations (FDAE), which denote the combi-
nation of DAE and FDE, in dealing with the studied system.
The general form of FDAE appears as 𝐹(𝑡, 𝑦, 𝑦(𝛼)) = 0, where
𝐹, 𝑦, 𝑦(𝛼) could be vectors if necessary. Till now, the majority
of these attempts concentrated on the algorithms for solving
the FDAE [7–10], while fundamental problems such as the
existence and uniqueness of the solution were neglected.

Existence and uniqueness of the solution of themodel are
of great significance, since the existence of the solution guar-
antees the practicability of themodel, while the uniqueness of
the solution guarantees the validity of the obtained solution.

In this paper, the existence and uniqueness of the solu-
tion of linear fractional differential-algebraic systems are
discussed to lay the groundwork for the further studies and
applications.

2. Linear Fractional
Differential-Algebraic System

Consider the initial value problem for linear fractional
differential-algebraic equations (LFDAE) in the form

𝐸
𝑡0
𝐷
(𝛼)

𝑡 y = 𝐴y + z,

y𝑡=𝑡0 = 0,
(1)

where 0 < 𝛼 < 1, y(𝑡) ∈ R𝑛, z(𝑡) ∈ R𝑚, y(𝑡), z(𝑡) ∈

𝐿1(0, 𝑇), 0 < 𝑡 < 𝑇 < +∞, 𝑚 ≤ 𝑛. 𝐸,𝐴 ∈ 𝑅
𝑚×𝑛

are constant coefficients matrices.
𝑡0
𝐷
(𝛼)

𝑡 denotes Caputo’s
fractional derivative operator [11–13],

𝑡0
𝐷
(𝛼)

𝑡 𝑦 = (1/Γ(1 −

𝛼)) ∫
𝑡

𝑡0
(𝑦

(𝜉)/(𝑡 − 𝜉)

𝛼
)𝑑𝜉, since Caputo’s fractional derivative

allows us to couple the fractional differential equations with
initial conditions in the traditional form y|𝑡=𝑡0 = y0(= 0).
And it is linked to other fractional definitions under certain
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conditions [11]. For convenience, we write system (1) as (𝐸,𝐴)
in short.

For given z(𝑡) ∈ R𝑚, whether there exists unique solution
y(𝑡) ∈ R𝑛 for LFDAE (1) is a problem of great significance in
application and it is our main concern as well.

System (1) is also valid when y|𝑡=𝑡0 ̸= 0. In this
case, by a simple coordinate transformation, we can obtain
𝐸
𝑡0
𝐷
(𝛼)

𝑡 y1 = 𝐴y1 + z1, y1|𝑡=𝑡0 = 0, where y1 = y − y0, 𝐴 =

(𝑎𝑖𝑗)𝑚×𝑛, 𝑧1𝑖 = 𝑧𝑖 + ∑
𝑛

𝑗=1 𝑎𝑖𝑗𝑦0𝑗, 𝑖 = 1, 2, . . . , 𝑚.

It is worth pointing out that algebraic constraints𝑔(y, z) =
0 are represented while rows in 𝐸 whose elements are all 0
appear.

3. Equivalent Transformation of LFDAE

To discuss the theorems on the existence and uniqueness
of the solution of the LFDAE introduced in Section 2, we
give definition of equivalent matrix pair [14] as a necessary
preparation.

Definition 1. Two pairs of matrices (𝐸1,𝐴1) and (𝐸2, 𝐴2), 𝑖 =
1, 2, are called (strongly) equivalent if there exist nonsingular
matrices 𝑃1 ∈ 𝑅

𝑚×𝑚 and 𝑃2 ∈ 𝑅
𝑛×𝑛 such that 𝐸2 = 𝑃1𝐸1𝑃2,

𝐴2 = 𝑃1𝐴1𝑃2. If this is the case, one writes (𝐸1, 𝐴1)∼(𝐸2, 𝐴2).
Multiplying nonsingularmatrix𝑃1 ∈ 𝑅

𝑚×𝑚 on the left and
setting y = 𝑃2ỹ, 𝑃2 ∈ 𝑅𝑛×𝑛 is a nonsingular matrix, LFDAE
(1), where 𝐸,𝐴 ∈ 𝑅

𝑚×𝑛
(𝑚 ̸= 𝑛), y(𝑡) ∈ R𝑛, z(𝑡) ∈ R𝑚 is

transformed into

𝐸
𝑡0
𝐷
(𝛼)

𝑡 ỹ = 𝐴ỹ + z̃,

ỹ𝑡=𝑡0 = 0,

𝐸 = 𝑃1𝐸𝑃2, 𝐴 = 𝑃1𝐴𝑃2, z̃ (𝑡) = 𝑃1z (𝑡)

(2)

which is again a linear fractional differential-algebraic equa-
tion with constant coefficients. System (2) could be written
as (𝐸, 𝐴) and (𝐸, 𝐴) ∼ (𝐸, 𝐴). Because of the linearity of
the operator

𝑡0
𝐷
(𝛼)

𝑡 and the nonsingularity of square matrices
𝑃1, 𝑃2, it is evident that system (2) has the same solution
property as system (1). Thus, by equivalent transformation,
we can consider the transformed system (2) instead of (1) with
respect to solvability and related questions.

4. Regular Matrix Pair and
the Solution of LFDAE

To simplify the problem, we now focus on the LFDAE in
which 𝐸, 𝐴 are both square matrices; that is, 𝐸,𝐴 ∈ 𝐶

𝑛×𝑛.
Recall Definition 2 [14].

Definition 2. Let 𝐸,𝐴 ∈ 𝐶
𝑚×𝑛, the matrix pair (𝐸, 𝐴) is

called regular matrix pair if 𝑚 = 𝑛, and the characteristic
polynomial 𝑝(𝜆) = det(𝜆𝐸−𝐴) is not the zero polynomial. A
matrix pair which is not regular is called singular.

Lemma 3 allows us to gain an equivalent but more simple
form of the matrix pair (𝐸,𝐴)—Weierstrass canonical form
[14].

Lemma 3. Let 𝐸,𝐴 ∈ 𝐶
𝑛×𝑛 and (𝐸, 𝐴) be regular. Then, one

has the Weierstrass canonical form

(𝐸, 𝐴) ∼ ([

𝐼 0

0 𝑁
] , [

𝐽 0

0 𝐼
]) , (3)

where 𝐽 is a matrix in Jordan canonical form and 𝑁 is a
nilpotent matrix also in Jordan canonical form. Moreover, it is
allowed that one or the other block is not present.

Let 𝑙 be the index of nilpotent matrix 𝑁 ∈ 𝐶
𝑘×𝑘; that is,

𝑁
𝑙
= 0 and𝑁𝑙−1 ̸= 0 (in fact, 𝑙 is always less than 𝑘); we have

Theorem 4 which is fundamental on the solvability of LFDAE
(1).

Theorem 4. Let 𝑙 be the index of nilpotent matrix
𝑁 ∈ 𝐶

𝑘×𝑘; z(𝑡) is differentiable enough; that is,
𝑡0
𝐷
(𝑖𝛼)

𝑡
z(𝑡) (𝑖 = 0, 1, 2, . . . , 𝑙) is well defined, where

𝑡0
𝐷
(𝑖𝛼)

𝑡 =

𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑡0
𝐷
(𝛼)

𝑡 𝑡0
𝐷
(𝛼)

𝑡 ⋅ ⋅ ⋅
𝑡0
𝐷
(𝛼)

𝑡 denotes sequential fractional
derivatives [11, 15–17]. Then linear fractional differential-
algebraic equation

𝑁
𝑡0
𝐷
(𝛼)

𝑡 y (𝑡) = y (𝑡) + z (𝑡) (∗)

has unique solution y(𝑡) = −∑𝑙−1𝑖=0𝑁
𝑖

𝑡0
𝐷
(𝑖𝛼)

𝑡 z(𝑡).

Proof. Firstly, we prove solutions of (∗) have the form of
y(𝑡) = −∑𝑙−1𝑖=0𝑁

𝑖

𝑡0
𝐷
(𝑖𝛼)

𝑡 z(𝑡).
Since 𝑡0𝐷

(𝛼)

𝑡
is a linear operator maps function y(𝑡) into

its derivative of order 𝛼, moving the left hand term in (∗) to
the right, we have

(𝐼 − 𝑁 𝑡0
𝐷
(𝛼)

𝑡
) y (𝑡) + z (𝑡) = 0. (4)

Because𝑁 is a matrix consisting of constant number, it is
commutable with operator 𝑡0𝐷

(𝛼)

𝑡
; using Neumann series and

taking 𝑙 as the index of nilpotent matrix 𝑁 into account, we
obtain

y (𝑡) = − (𝐼 − 𝑁 𝑡0𝐷
(𝛼)

𝑡
)
−1
z (𝑡) = −

+∞

∑

𝑖=0

(𝑁 𝑡0
𝐷
(𝛼)

𝑡
)
𝑖
z (𝑡)

= −

𝑙−1

∑

𝑖=0

𝑁
𝑖

𝑡0
𝐷
(𝑖𝛼)

𝑡
z (𝑡) .

(5)

Secondly, we prove function y(𝑡) = −∑
𝑙−1

𝑖=0𝑁
𝑖
𝑡0
𝐷
(𝑖𝛼)

𝑡
z(𝑡)

is the solution of (∗).
Substituting y(𝑡) = −∑𝑙−1𝑖=0𝑁

𝑖
𝑡0
𝐷
(𝑖𝛼)

𝑡
z(𝑡) into (∗) yields

𝑁 𝑡0
𝐷
(𝛼)

𝑡
y (𝑡) − y (𝑡) − z (𝑡)

= −𝑁 𝑡0
𝐷
(𝛼)

𝑡
[

𝑙−1

∑

𝑖=0

(𝑁
𝑖

𝑡0
𝐷
(𝑖𝛼)

𝑡
) z (𝑡)]
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− [−

𝑙−1

∑

𝑖=0

(𝑁
𝑖

𝑡0
𝐷
(𝑖𝛼)

𝑡
) z (𝑡)] − z (𝑡)

= [−

𝑙−1

∑

𝑖=1

(𝑁
𝑖

𝑡0
𝐷
(𝑖𝛼)

𝑡
) z (𝑡)]

− [−

𝑙−1

∑

𝑖=0

(𝑁
𝑖

𝑡0
𝐷
(𝑖𝛼)

𝑡
) z (𝑡)] − z (𝑡) , (𝑁

𝑙
= 0)

= z (𝑡) − z (𝑡) = 0.
(6)

Obviously, y(𝑡) is really the solution of (∗).
So equation 𝑁 𝑡0𝐷

(𝛼)

𝑡
y(𝑡) = y(𝑡) + z(𝑡) has the unique

solution y(𝑡) = −∑𝑙−1𝑖=0𝑁
𝑖
𝑡0
𝐷
(𝑖𝛼)

𝑡
z(𝑡).

Now let us elaborate onTheorem 5 below.

Theorem 5. Let 𝐸,𝐴 ∈ 𝑅
𝑛×𝑛
, y(𝑡); z(𝑡) ∈ R𝑛, 0 < 𝑡 < 𝑇 <

+∞ and y(𝑡), z(𝑡) ∈ 𝐿1(0, 𝑇), z(𝑡) is differentiable enough;
then there exists unique solution for the linear fractional
differential-algebraic equations

𝐸 𝑡0
𝐷
(𝛼)

𝑡
y = 𝐴y + z,

y𝑡=𝑡0 = 0
(7)

if the matrix pair (𝐸, 𝐴) is regular.

Proof. As claimed in Section 3, system (7) has the same
solution property as system (8),

𝐸
𝑡0
𝐷
(𝛼)

𝑡 y = 𝐴y + z,

y𝑡=𝑡0 = 0,

𝐸 = 𝑃1𝐸𝑃2 ∈ 𝑅
𝑛×𝑛
, 𝐴 = 𝑃1𝐴𝑃2 ∈ 𝑅

𝑛×𝑛
, z = 𝑃1z.

(8)

We now discuss the solvability of system (8). Using
Lemma 3, 𝐸 = 𝑃1𝐸𝑃2, 𝐴 = 𝑃1𝐴𝑃2 in system (8) could be
obtained in the following Weierstrass canonical form:

𝐸 = [

𝐼 0

0 𝑁
] ,

𝐴 = [

𝐽 0

0 𝐼
] .

(9)

Hence system (8) appears as

[

𝐼 0

0 𝑁
]
𝑡0
𝐷
(𝛼)

𝑡 y = [
𝐽 0

0 𝐼
] y + z,

y𝑡=𝑡0 = 0.

(10)

By setting y = [y1, y2], system (8) is separated into two
subsystems:

𝐼 𝑡0
𝐷
(𝛼)

𝑡
y1 = 𝐽y1 + z1

y1
𝑡=𝑡0

= 0,
(11)

𝑁
𝑡0
𝐷
(𝛼)

𝑡 y2 = 𝐼y2 + z2

y2
𝑡=𝑡0

= 0.
(12)

Subsystem (11) is a normal fractional differential system,
which has unique solution with given initial value [11]. As
discussed in Theorem 4, subsystem (12) has unique solution
y2(𝑡) = −∑

𝑙−1

𝑖=0𝑁
𝑖
𝑡0
𝐷
(𝑖𝛼)

𝑡
z2(𝑡).

Hence, system (8) has unique solution; accordingly sys-
tem (7) has unique solution as a result. And the proof of
Theorem 5 is completed.

Remark 6. Since the solution 𝑦(𝑡) in Theorem 4 is obtained
without specifying the initial value of 𝑦(𝑡), initial value
y2|𝑡=𝑡0 = 0 is consistent when 𝑡0𝐷

(𝑖𝛼)

𝑡
z2(𝑡0) = 0 (𝑖 =

1, 2, . . . , 𝑙 − 1), where 𝑙 is the index of nilpotent matrix𝑁.

Remark 7. As derivative of fractional order is the generaliza-
tion of derivative of integer order, the condition “the matrix
pair (𝐸, 𝐴) is regular” plays the same role as in theory of
differential-algebraic equation [18].

5. Kronecker Canonical Form and
the Solution of LFDAE

We have investigated the existence and uniqueness of the
solution of LFDAE (1) in which 𝐸,𝐴 ∈ 𝑅

𝑛×𝑛 are both square
matrices. Nevertheless, the general form of LFDAE (1), where
𝐸,𝐴 ∈ R𝑚×𝑛 (𝑚 ̸= 𝑛) are both not square matrices, is
frequently modeled in mechanical systems. We go on to
investigate this case by tools of equivalent transformation and
the Kronecker canonical form of the system.

Kronecker canonical form which is referred to as 𝐸,
𝐴 in Lemma 8 plays an important role in analyzing the
existence and uniqueness of the solution of LFDAE. In 1974,
Gantmacher pointed out Lemma 8 [19, 20].

Lemma 8. Let 𝐴 ∈ 𝑅
𝑚×𝑛; then there exist nonsingular

matrices 𝑃 ∈ 𝑅
𝑚×𝑚 and 𝑄 ∈ 𝑅

𝑛×𝑛, such that (𝐸,𝐴)∼(𝐸,𝐴)
(𝑃𝐸𝑄 = 𝐸, 𝑃𝐴𝑄 = 𝐴), where 𝐸, 𝐴 take the next form:

𝐸 = 𝑃𝐸𝑄

= diag (0𝑛0×𝑛0 , 𝐿1, 𝐿2, . . . , 𝐿𝑝, 𝐿1, 𝐿2, . . . , 𝐿𝑞, 𝐼,𝑁) ,

𝐴 = 𝑃𝐴𝑄

= diag (0𝑛0×𝑛0 , 𝐽1, 𝐽2, . . . , 𝐽𝑝, 𝐽1, 𝐽2, . . . , 𝐽𝑞, 𝐴1, 𝐼) ,
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𝐿 𝑖 =

[
[
[
[
[

[

1 0

1 0

d d

1 0

]
]
]
]
]

]

,

𝐽𝑖 =

[
[
[
[
[

[

0 1

0 1

d d

0 1

]
]
]
]
]

]

∈ R
𝑛𝑖×(𝑛𝑖+1),

𝐿𝑗 =

[
[
[
[
[
[
[
[

[

1

0 1

d d

1

0

]
]
]
]
]
]
]
]

]

,

𝐽𝑗 =

[
[
[
[
[
[
[
[

[

0

1 0

d d

0

1

]
]
]
]
]
]
]
]

]

∈ R
(𝑛𝑗+1)×𝑛𝑗

𝑖 = 1, 2, . . . , 𝑝, 𝑗 = 1, 2, . . . , 𝑞,

𝑁 = diag (𝑁1, 𝑁2, . . . , 𝑁𝑙) ∈ R
ℎ×ℎ
,

𝑁𝑠 =

[
[
[
[
[
[
[
[

[

0 1

0 1

d d

0 1

0

]
]
]
]
]
]
]
]

]

∈ R
𝑘𝑠×𝑘𝑠 ,

𝐴1, 𝐼 ∈ R
𝑔×𝑔
.

(13)

Dimension of each matrix satisfies

𝑛0 +∑

𝑖

𝑛𝑖 +∑

𝑗

(𝑛𝑗 + 1) +∑

𝑠

𝑘𝑠 + 𝑔 = 𝑚;

𝑛0 +∑

𝑖

(𝑛𝑖 + 1) +∑

𝑗

𝑛𝑗 +∑

𝑠

𝑘𝑠 + 𝑔 = 𝑛;

∑

𝑠

𝑘𝑠 = ℎ.

(14)

According to Lemma 8, setting 𝑃1 = 𝑃, 𝑃2 = 𝑄, 𝐸, 𝐴 in
system (2) transformed from system (1) have the Kronecker
canonical form through equivalent transformation: y = 𝑄ỹ,
z̃(𝑡) = 𝑃z(𝑡).

Considering the structure of 𝐸, 𝐴, we now divide the
vector ỹ(𝑡) and vector z̃(𝑡) as below:

ỹ (𝑡) = [𝑦0
𝑇
; 𝑦𝐿1
𝑇
, 𝑦𝐿2
𝑇
, . . . , 𝑦𝐿𝑝

𝑇
; 𝑦�̃�1
𝑇
, 𝑦�̃�2
𝑇
, . . . , 𝑦�̃�𝑞

𝑇
;

𝑦𝐼
𝑇
; 𝑦𝑁1
𝑇
, 𝑦𝑁2
𝑇
, . . . , 𝑦𝑁𝑙

𝑇
]
⊤
;

z̃ (𝑡) = [𝑧0
𝑇
; 𝑧𝐿1
𝑇
, 𝑧𝐿2
𝑇
, . . . , 𝑧𝐿𝑝

𝑇
; 𝑧�̃�1
𝑇
, 𝑧�̃�2
𝑇
, . . . , 𝑧�̃�𝑞

𝑇
; 𝑧𝐼
𝑇
;

𝑧𝑁1
𝑇
, 𝑧𝑁2
𝑇
, . . . , 𝑧𝑁𝑙

𝑇
]
⊤
.

(15)

Hence, LFDAE (2) could be transformed into the follow-
ing equivalent equations:

0𝑛0×𝑛0 𝑡0𝐷
(𝛼)

𝑡 𝑦0 (𝑡) = 𝑧0 (𝑡) , (16)

𝐿 𝑖 𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑖 (𝑡) = 𝐽𝑖𝑦𝐿𝑖 (𝑡) + 𝑧𝐿𝑖 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑝;

(17)

𝐿𝑗 𝑡0
𝐷
(𝛼)

𝑡
𝑦�̃�𝑗

(𝑡) = 𝐽𝑗𝑦�̃�𝑗
(𝑡) + 𝑧�̃�𝑗

(𝑡) ,

𝑗 = 1, 2, . . . , 𝑞;

(18)

𝑁𝑠𝐷
(𝛼)

𝑡 𝑦𝑁𝑠 (𝑡) = 𝑦𝑁𝑠 (𝑡) + 𝑧𝑁𝑠 (𝑡) ,

𝑠 = 1, 2, . . . , 𝑙,

(19)

and the equation

𝐷
(𝛼)

𝑡 𝑦𝐼 (𝑡) = 𝐴1𝑦𝐼 (𝑡) + 𝑧𝐼 (𝑡) .
(20)

Now, let us discuss (16)–(20) to investigate the existence
and uniqueness of the solution of LFDAE (2) in which 𝐸, 𝐴
take the Kronecker canonical form.

With regard to (16), it is easy to see that the equation is
solvable if and only if all components of 𝑧0(𝑡) are zeros; that is,
𝑧0(𝑡) = 0. In this case, (16) either has no solutionwhile 𝑧0(𝑡) ̸=

0 or has solutions of infinite number (as long as 𝑧0(𝑡) = 0, any
function that is differentiable of order 𝛼 could be considered
as the solution of (16)). So there exists no unique solution for
(16).

With regard to (17), considering the particular form of 𝐿 𝑖,
𝐽𝑖, (17) appears as

[
[
[
[
[

[

1 0

1 0

d d

1 0

]
]
]
]
]

]

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑖 (𝑡)

=

[
[
[
[
[

[

0 1

0 1

d d

0 1

]
]
]
]
]

]

𝑦𝐿𝑖 (𝑡) + 𝑧𝐿𝑖 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑝, 𝐿 𝑖, 𝐽𝑖 ∈ R
𝑛𝑖×(𝑛𝑖+1).

(21)
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Denoting components of 𝑦𝐿𝑖(𝑡) as (𝑦𝐿𝑖
(1)
, 𝑦𝐿𝑖
(2)
, . . . ,

𝑦𝐿𝑖
(𝑛𝑖+1))
𝑇 and 𝑧𝐿𝑖(𝑡) as (𝑧𝐿𝑖

(1)
, 𝑧𝐿𝑖
(2)
, . . . , 𝑧𝐿𝑖

(𝑛𝑖))
𝑇, the above

equation is precisely equal to

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑖
(1)
(𝑡) = 𝑦𝐿𝑖

(2)
(𝑡) + 𝑧𝐿𝑖

(1)
(𝑡) ,

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑖
(2)
(𝑡) = 𝑦𝐿𝑖

(3)
(𝑡) + 𝑧𝐿𝑖

(2)
(𝑡) ,

.

.

.

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑖
(𝑛𝑖)
(𝑡) = 𝑦𝐿𝑖

(𝑛𝑖+1)
(𝑡) + 𝑧𝐿𝑖

(𝑛𝑖)
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑝.

(22)

We further have

𝑦𝐿𝑖
(2)
(𝑡) =

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑖
(1)
(𝑡) − 𝑧𝐿𝑖

(1)
(𝑡) ,

𝑦𝐿𝑖
(3)
(𝑡) =

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑖
(2)
(𝑡) − 𝑧𝐿𝑖

(2)
(𝑡) ,

.

.

.

𝑦𝐿𝑖
(𝑛𝑖+1)

(𝑡) =
𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑖
(𝑛𝑖)
(𝑡) − 𝑧𝐿𝑖

(𝑛𝑖)
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑝.

(23)

Since 𝑦𝐿𝑖
(1)
(𝑡) in (23) is free of all restrictions, any

function differentiable of order 𝛼 could be considered as
𝑦𝐿𝑖
(1)
(𝑡); thus (17) has solutions of infinite number.

With regard to (18), considering the particular form of
matrices 𝐿𝑗, 𝐽𝑗, (18) appears as

[
[
[
[
[
[
[
[

[

1

0 1

d d

1

0

]
]
]
]
]
]
]
]

]

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑗 (𝑡)

=

[
[
[
[
[
[
[
[

[

0

1 0

d d

0

1

]
]
]
]
]
]
]
]

]

𝑦𝐿𝑗 (𝑡) + 𝑧𝐿𝑗 (𝑡) ,

𝑗 = 1, 2, . . . , 𝑞, 𝐿𝑗, 𝐽𝑗 ∈ R
(𝑛𝑗+1)×𝑛𝑗 .

(24)

Denoting components of 𝑦𝐿𝑗(𝑡) as (𝑦𝐿𝑗
(1)
, 𝑦𝐿𝑗
(2)
, . . . ,

𝑦𝐿𝑗
(𝑛𝑗))
𝑇 and 𝑧𝐿𝑗(𝑡) as (𝑧𝐿𝑗

(1)
, 𝑧𝐿𝑗
(2)
, . . . , 𝑧𝐿𝑗

(𝑛𝑗+1))
𝑇, the above

equation is precisely equal to

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑗
(1)
(𝑡) = 𝑧𝐿𝑗

(1)
(𝑡) ,

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑗
(2)
(𝑡) = 𝑦𝐿𝑗

(1)
(𝑡) + 𝑧𝐿𝑗

(2)
(𝑡) ,

.

.

.

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑗
(𝑛𝑗)

(𝑡) = 𝑦𝐿𝑗
(𝑛𝑗−1)

(𝑡) + 𝑧𝐿𝑗
(𝑛𝑗)

(𝑡) ,

𝑗 = 1, 2, . . . , 𝑞,

(25)

and an additional formula

𝑦𝐿𝑗
(𝑛𝑗)

(𝑡) + 𝑧𝐿𝑗
(𝑛𝑗+1)

(𝑡) = 0 (26)

from which we get

𝑦𝐿𝑗
(𝑛𝑗)

(𝑡) = −𝑧𝐿𝑗
(𝑛𝑗+1)

(𝑡) . (26

)

Thus 5 could be rewritten in a recursive form of reverse
order:

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑗
(1)
(𝑡) = 𝑧𝐿𝑗

(1)
(𝑡) ,

𝑦𝐿𝑗
(1)
(𝑡) =

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑗
(2)
(𝑡) − 𝑧𝐿𝑗

(2)
(𝑡) ,

.

.

.

𝑦𝐿𝑗
(𝑛𝑗−1)

(𝑡) =
𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑗
(𝑛𝑗)

(𝑡) − 𝑧𝐿𝑗
(𝑛𝑗)

(𝑡) ,

𝑗 = 1, 2, . . . , 𝑞.

(25

)

Obviously, to any given differential enough z𝐿𝑗(𝑡), 5 has
unique solution y𝐿𝑗(𝑡). But the obtained𝑦𝐿𝑗

(1)
(𝑡)hardly satisfy

the equation
𝑡0
𝐷
(𝛼)

𝑡 𝑦𝐿𝑗
(1)
(𝑡) = 𝑧𝐿𝑗

(1)
(𝑡) in 5 except very

special situation. Therefore, (18) has no feasible solution for
any given z𝐿𝑗(𝑡).

With regard to (19), considering the particular form of
matrices𝑁𝑠, (19) appears as

[
[
[
[
[
[
[
[

[

0 1

0 1

d d

0 1

0

]
]
]
]
]
]
]
]

]

𝐷
(𝛼)

𝑡 𝑦𝑁𝑠 (𝑡) = 𝑦𝑁𝑠 (𝑡) + 𝑧𝑁𝑠 (𝑡) ,

𝑠 = 1, 2, . . . , 𝑙; 𝑁𝑠 ∈ R
𝑘𝑠×𝑘𝑠 .

(27)

Denoting components of 𝑦𝑁𝑠(𝑡) as (𝑦𝑁𝑠
(1)
, 𝑦𝑁𝑠
(2)
, . . . ,

𝑦𝑁𝑠
(𝑘𝑠))
𝑇 and 𝑧𝑁𝑠(𝑡) as (𝑧𝑁𝑠

(1)
, 𝑧𝑁𝑠
(2)
, . . . , 𝑧𝑁𝑠

(𝑘𝑠))
𝑇, the above

equation is equal to

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝑁𝑠
(2)
(𝑡) = 𝑦𝑁𝑠

(1)
(𝑡) + 𝑧𝑁𝑠

(1)
(𝑡) ,

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝑁𝑠
(3)
(𝑡) = 𝑦𝑁𝑠

(2)
(𝑡) + 𝑧𝑁𝑠

(2)
(𝑡) ,

.

.

.

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝑁𝑠
(𝑘𝑠)
(𝑡) = 𝑦𝑁𝑠

(𝑘𝑠−1)
(𝑡) + 𝑧𝑁𝑠

(𝑘𝑠−1)
(𝑡) ,

𝑦𝑁𝑠
(𝑘𝑠)
(𝑡) + 𝑧𝑁𝑠

(𝑘𝑠)
(𝑡) = 0,

𝑠 = 1, 2, . . . , 𝑙.

(28)
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We further obtain the equivalence of (28) as below:

𝑦𝑁𝑠
(1)
(𝑡) =

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝑁𝑠
(2)
(𝑡) − 𝑧𝑁𝑠

(1)
(𝑡) ,

𝑦𝑁𝑠
(2)
(𝑡) =

𝑡0
𝐷
(𝛼)

𝑡 𝑦𝑁𝑠
(3)
(𝑡) − 𝑧𝑁𝑠

(2)
(𝑡) ,

.

.

.

𝑦𝑁𝑠
(𝑘𝑠−1)

(𝑡) =
𝑡0
𝐷
(𝛼)

𝑡 𝑦𝑁𝑠
(𝑘𝑠)
(𝑡) − 𝑧𝑁𝑠

(𝑘𝑠−1)
(𝑡) ,

𝑦𝑁𝑠
(𝑘𝑠)
(𝑡) = −𝑧𝑁𝑠

(𝑘𝑠)
(𝑡) ,

𝑠 = 1, 2, . . . , 𝑙.

(29)

Obviously, to any given z𝑁𝑠(𝑡), solution y𝑁𝑠(𝑡) could be
derived from (29) if z(𝑡) is differentiable enough; that is,
𝑡0
𝐷
(𝑖𝛼)

𝑡 z is well defined.Thus, (19) always has unique solution
towards any given suitable vector z𝑁𝑠(𝑡).

With regard to (20), where 𝐸 = 𝐼 ∈ R𝑔×𝑔, 𝐴1 ∈ R𝑔×𝑔

are square matrices, because of Theorem 5, (20) has unique
solution if the matrix pair (𝐼, 𝐴1) is regular.

Bringing the analysis above together, LFDAE (2) has
unique solution if (16) to (18) do not appear in their Kro-
necker canonical form, while matrix pair (𝐼, 𝐴1) is regular.
The above-mentioned summarization brings us to Theo-
rem 9.

Theorem 9. Let 𝐸,𝐴 ∈ R𝑚×𝑛. The linear fractional differen-
tial-algebraic equations

𝐸
𝑡0
𝐷
(𝛼)

𝑡 y = 𝐴y + 𝑏z

y𝑡=𝑡0 = 0
(30)

in which y(𝑡) ∈ R𝑛, z(𝑡) ∈ R𝑚, 0 < 𝑡 < 𝑇 < +∞ satisfy the
following:

(1) y(𝑡), z(𝑡) ∈ 𝐿1(0, 𝑇);
(2)
𝑡0
𝐷
(𝑖𝛼)

𝑡 z (𝑖 = 0, 1, 2, . . . , 𝑛) is well defined, and

𝑡0
𝐷
(𝑖𝛼)

𝑡 z(0) = 0, (𝑖 = 0, 1, 2, . . . , 𝑛).

Then, the system has unique solution if there exist nonsin-
gular matrices 𝑃 ∈ 𝑅

𝑚×𝑚 and 𝑄 ∈ 𝑅
𝑛×𝑛, such that (𝐸,𝐴)∼

(𝐸,𝐴), where 𝐸 = diag(𝐼,𝑁), 𝐴 = diag(𝐴1, 𝐼), and matrix
pair (𝐼, 𝐴1) is regular.

Remark 10. Theorem 9 is also suitable when other fractional
derivatives are involved. Since 𝑡0𝐷

(𝛼)

𝑡
in the sequential frac-

tional derivatives in Theorem 4 can mean the Riemann-
Liouville, the Grünwald-Letnikov, the Caputo, or even any
other definition of fractional derivatives [11], Theorem 5 is
applicable to these fractional derivatives.Meanwhile, analysis
in Section 5 is still valid for other definitions of fractional
derivatives, so it is the same as Theorem 9 as a result.

6. Examples

Now let us take some examples on the theorems represented
before.

Example 1. LFDAE in which 𝐸 = 𝑁 is a nilpotent matrix and
𝐴 = 𝐼 is as below (example of Theorem 4):

(

0 1 2

0 0 3

0 0 0

)(

0
𝐷
(0.5)

𝑡 𝑦1 (𝑡)

0
𝐷
(0.5)

𝑡 𝑦2 (𝑡)

0
𝐷
(0.5)

𝑡 𝑦3 (𝑡)

)

= (

1 0 0

0 1 0

0 0 1

)(

𝑦1 (𝑡)

𝑦2 (𝑡)

𝑦3 (𝑡)

) +(

𝑡
2.5

𝑡
2

𝑡
1.5

),

y (0) = 0.

(31)

In the example, 𝐸 = (
0 1 2
0 0 3
0 0 0

) = 𝑁 is a nilpotent matrix

with index 𝑙 = 3,𝐴 = ( 1 0 00 1 0
0 0 1

) = 𝐼. So according toTheorem4,
the unique solution of Example 1 is

y (𝑡) = −
𝑙−1

∑

𝑖=0

𝑁
𝑖
0𝐷
(𝑖×0.5)

𝑡 z (𝑡) = − (z (𝑡) + 𝑁 0𝐷
(0.5)

𝑡
z (𝑡)

+ 𝑁
2
0𝐷
(2×0.5)

𝑡 z (𝑡)) = −((

𝑡
2.5

𝑡
2

𝑡
1.5

)

+(

0 1 2

0 0 3

0 0 0

) 0𝐷
(0.5)

𝑡
(

𝑡
2.5

𝑡
2

𝑡
1.5

)

+(

0 1 2

0 0 3

0 0 0

)

2

0𝐷
(2×0.5)

𝑡
(

𝑡
2.5

𝑡
2

𝑡
1.5

)) = −
(
(

(

(

𝑡
2.5

𝑡
2

𝑡
1.5

)

+(

0 1 2

0 0 3

0 0 0

)
(
(

(

Γ(3.5)

Γ (3)
𝑡
2

Γ (3)

Γ (2.5)
𝑡
1.5

Γ (2.5)

Γ (2)
𝑡

)
)

)

+(

0 0 3

0 0 0

0 0 0

)
(
(

(

Γ(3.5)

Γ (2.5)
𝑡
1.5

Γ (3)

Γ (2)
𝑡

Γ (2.5)

Γ (1.5)
𝑡
0.5

)
)

)

)
)

)

= −(

𝑡
2.5
+
Γ (3)

Γ (2.5)
𝑡
1.5
+
2Γ (2.5)

Γ (2)
𝑡 +

3Γ (2.5)

Γ (1.5)
𝑡
0.5

𝑡
2
+
3Γ (2.5)

Γ (2)
𝑡

𝑡
1.5

).

(32)
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Figure 1: Solution of Example 1.

Figure 1 shows the solution of Example 1. The correctness
and the initial value consistency of the solution could be
verified by computation.

Example 2. LFDAE with Kronecker canonical form is as
below (example of Theorem 5):

(

2 1 2 5

3 2 2 6

0 0 0 0

0 0 1 2

)(

0
𝐷
(0.5)

𝑡 𝑦1 (𝑡)

0
𝐷
(0.5)

𝑡 𝑦2 (𝑡)

0
𝐷
(0.5)

𝑡 𝑦3 (𝑡)

0
𝐷
(0.5)

𝑡 𝑦4 (𝑡)

)

=(

4 3 5 11

5 4 5 13

0 0 1 2

0 0 3 5

)(

𝑦1 (𝑡)

𝑦2 (𝑡)

𝑦3 (𝑡)

𝑦4 (𝑡)

) +(

2𝑡

2𝑡

𝑡

2𝑡

)

(a)

with the initial value y(0) = 0.

In this example, 𝐸 = (

2 1 2 5
3 2 2 6
0 0 0 0
0 0 1 2

), 𝐴 = (

4 3 5 11
5 4 5 13
0 0 1 2
0 0 3 5

); there

exist two nonsingular matrices 𝑃 and 𝑄:

𝑃 =(

1 0 3 −2

−1 1 −2 1

0 0 −2 1

0 0 1 0

),

𝑄 =(

1 −1 0 1

−1 2 1 −3

0 0 2 −1

0 0 −1 1

),

(33)

satisfying

𝐸 = 𝑃𝐸𝑄 =(

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

),

𝐴 = 𝑃𝐴𝑄 =(

1 2 0 0

0 1 0 0

0 0 1 0

0 0 0 1

),

𝑍 = 𝑃𝑍 =(

𝑡

0

0

𝑡

) .

(34)

Obviously, 𝐸 = diag(𝐼,𝑁), 𝐴 = diag(𝐴1, 𝐼); we further
get |𝜆𝐼 − 𝐴1| =


𝜆−1 −2
0 𝜆−1

 = (𝜆 − 1)
2, which is not a zero

polynomial; hence the matrix pair (𝐼, 𝐴1) is regular.
From Theorem 9, the fractional system has unique solu-

tion. Now let us find the solution.
By setting y(𝑡) = 𝑄ỹ(𝑡), that is, ỹ(𝑡) = 𝑄

−1y(𝑡),
multiplying 𝑃 on the left to (a), we obtain the equivalent
transformation of (a) in the next form:

(

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

)(

(

0
𝐷
(0.5)

𝑡 𝑦1 (𝑡)

0
𝐷
(0.5)

𝑡 𝑦2 (𝑡)

0
𝐷
(0.5)

𝑡 𝑦3 (𝑡)

0
𝐷
(0.5)

𝑡 𝑦4 (𝑡)

)

)

=(

1 2 0 0

0 1 0 0

0 0 1 0

0 0 0 1

)(

(

𝑦1 (𝑡)

𝑦2 (𝑡)

𝑦3 (𝑡)

𝑦4 (𝑡)

)

)

+(

𝑡

0

0

𝑡

) ,

ỹ (0) = 0.

(b)

It is easy to obtain the unique solution for (b) by Laplace
transform [11]:

𝑦1 (𝑡) = 𝑡
3/2
𝐸1/2,5/2 (

√𝑡) =

+∞

∑

𝑘=0

𝑡
(𝑘+3)/2

Γ ((𝑘 + 5) /2)
,

𝑦2 (𝑡) = 0,

𝑦3 (𝑡) = −
2

√𝜋

√𝑡,

𝑦4 (𝑡) = −𝑡.

(35)
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Figure 2: Solution of Example 2.

Accordingly, the solution for LFDAE (a) is

𝑦1 (𝑡) =

+∞

∑

𝑘=0

𝑡
(𝑘+3)/2

Γ ((𝑘 + 5) /2)
− 𝑡,

𝑦2 (𝑡) = −

+∞

∑

𝑘=0

𝑡
(𝑘+3)/2

Γ ((𝑘 + 5) /2)
−

2

√𝜋

√𝑡 + 3𝑡,

𝑦3 (𝑡) = −
4

√𝜋

√𝑡 + 𝑡,

𝑦4 (𝑡) =
2

√𝜋

√𝑡 − 𝑡.

(36)

And the solution satisfies y(0) = 0.The solution of Example 2
is shown in Figure 2.
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