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Reciprocal screw theory is used to recognize the kinematic joints of assemblies restricted by arbitrary combinations of geometry
constraints. Kinematic analysis is common for reaching a satisfactory design. If a machine is large and the incidence of redesign
frequent is high, then it becomes imperative to have fast analysis-redesign-reanalysis cycles. This work addresses this problem by
providing recognition technology for converting a 3D assembly model into a kinematic joint model, which is represented by a
graph of parts with kinematic joints among them.The three basic components of the geometric constraints are described in terms
of wrench, and it is thus easy to model each common assembly constraint. At the same time, several different types of kinematic
joints in practice are presented in terms of twist. For the reciprocal product of a twist and wrench, which is equal to zero, the
geometry constraints can be converted into the corresponding kinematic joints as a result. To eliminate completely the redundant
components of different geometry constraints that act upon the same part, the specific operation of a matrix space is applied. This
ability is useful in supporting the kinematic design of properly constrained assemblies in CAD systems.

1. Introduction

Currently, we can design a machine in terms of a top-down
approach or a bottom-up approach in a CAD system. All
parts of an assembly model are positioned using various
geometry constraints so that they are in the correct relative
positions and orientations. The 3D assembly models record
the design parameters and some information that can be
used for concept-level and detailed-level design. Its benefits
are usually recognized only by those who design precision
machines [1–3].

Any machine that consists of moving parts has to be
designed to properly perform its kinematic functions. To
analyze the kinematic property of assemblies, because of the
lack of a kinematic description, many researchers have used
screw theory. Applying screw theory to kinematics was first
performed by Ball [4]. Hunt [5] identified 22 cases of Ball’s
reciprocal screw systems. References [6–8] applied screw
theory to determine the degrees of freedom of any body

in a mechanism. Eddie Baker [9] analyzed many types of
complex mechanisms based on [6]. Mason and Salisbury
[10] used screw theory to characterize the nature of contacts
between robot gripper hands and objects. To analyze robotic
multiple peg-in-hole, Fei and Zhao [11] described the contact
forces by using the screw theory in three dimensions. Lee
and Saitou [12] determined the dimensional integrity of
robustness based on screw theory. Kim et al. [13] established
a framework to estimate the reaction of constraints about a
knee.

Assembly features encode geometric and functional rela-
tionships between parts that are widely used. Thus, many
researchers perform kinematic analysis by using the assembly
features. Konkar and Cutkosky [14] created screw system
representations of assembly mating features. Adams et al.
[15–17] used Konkar’s algorithm and extended their work
by defining extensible screw representations of some types
of assembly features. Gerbino et al. [18, 19] proposed an
algorithm to decompose the liaison diagram representing an
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assembly into simple paths, to which the application of the
twist union or intersection algorithms may be easily applied.
They also highlighted the complexity behind the analysis of
overconstraints with respect to the motion analysis. Celen-
tano [20] improved the algorithm presented in [18] and
developed a tool to analyze the motions and constraints of
CAD mechanisms. Su et al. [21] presented a theory-based
approach for the analysis and synthesis of flexible joints.
Dixon and Shah [22] provided a mechanism for user-defined
custom assembly features by using an interactive system.
After that, twist and wrench matrices could be extracted
from face pair relations and used in kinematic and structural
analysis.

Geometry constraints between two parts in an assembly
may be arbitrary combinations. References [23–25] analyzed
the state of a constraint of an assembly, mechanism, or fixture
to see if it is properly constrained or whether it contains
unwanted overconstraints. Rusli et al. [26, 27] addressed
attachment-level design, in which decisions are made to
establish the types, locations, and orientations of assembly
features. Su et al. [28] analyzed the mobility of overcon-
strained linkages and compliant mechanisms. To provide
a desired constrained motion for synthesizing a pattern of
flexures, a new screw theory that addresses “line screws” and
“line screw systems” was presented by Su and Tari [29].

According to [4–29], if the screw representations between
any two parts of the assemblymodel are known, we can easily
analyze the model’s kinematic functions. References [4–13,
23–29] manually model the corresponding screw system.
Thus, it is time consuming when the machine is large and
complex. On the other hand, to determine the screw system
by using the methods proposed in [14–22], all of the screw
representations of different features that may be used first
have to bemodeled.This is awkward and resembles geometric
reasoning [30]. If the incidence of redesign frequency is high,
the screw system has to be rebuilt again and again, which has
a great influence on the efficiency of the analysis procedure.

We hope to automatically and easily obtain the screw
system of any assembly model. Thus, when we modify the
assembly model during analysis-redesign-reanalysis cycles,
the kinematic functions can be directly validated. For con-
venience, we adopt a graph of parts with twist among
them to express the screw system. A screw system can be
easily used for kinematic analysis, such as determining the
degrees of freedom, estimating the reaction of constraints,
and characterizing the nature of contacts between any two
components.

In this paper, we propose a new method to automatically
convert a 3D assembly model into a screw system based on
reciprocal screw theory.The two fundamental concepts in the
constraint-based approach, that is, freedom and constraint,
can be represented mathematically by a twist and a wrench.
Both the twist and kinematic joint represent motion; both
the wrench and geometry constraint represent constraint.
When a twist is given, we can obtain the corresponding
wrench as the reciprocal product of a twist and wrench,
which is equal to zero. Conversely, if we know a wrench, then
the corresponding twist could be deduced as well. To avoid
geometric reasoning,wemodel the three basic components of
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Figure 1: Twist.

geometry constraints in terms of wrench. Thus, all common
assembly constraints can be automatically deduced. For the
redundant property of geometry constraints, the specific
operation of a matrix space is applied. Finally, we achieve the
graph of parts with kinematic joints among themwith respect
to an assembly model.

1.1. Organization of the Paper. Section 2 reviews the twist rep-
resentations of common kinematic joints. Section 3 analyzes
the basic components of geometry constraints and models
these components in terms of wrench. Section 4 shows how
to recognize the corresponding kinematic joints of assemblies
restricted by arbitrary combinations of geometry constraints.
Section 5 contains several examples. Section 6 presents our
conclusions.

2. Screw Models of Kinematic Joints

To recognize the corresponding kinematic joints from geom-
etry constraints, a mathematical model must be developed
that can sufficiently and simultaneously describe the proper-
ties of kinematic joints and geometry constraints.This section
shows how to define kinematic joints using twist.

2.1. Twist. A twist [32, 33] takes the form

T = [𝜔
𝑥
𝜔
𝑦
𝜔
𝑧
; 𝜐
𝑥
𝜐
𝑦
𝜐
𝑧
] . (1)

A twist is a screw that describes the instantaneousmotion,
to the first order, of a rigid body. This means that the motion
described by a twist is allowed. The first triplet represents
the angular velocity of the body with respect to a global
reference frame.The second triplet represents the velocity, in
the global reference frame, of that point on the body or its
extension, which is instantaneously located at the origin of
the global frame. Therefore, the unique line associated with
the first triplet is the axis of rotation, and the unique point
associated with the second triplet is the point on the body or
its extension, which is, at that instant, located at the origin of
the global reference frame. See Figure 1.

The ISA in Figure 1 is the axis introduced in ChaslesThe-
orem. Both the twist and kinematic joint represent motion.
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Figure 2: Prismatic joint.

Therefore, we can use a twist to characterize a component
of the kinematic joint between two parts. Afterwards, the
kinematic joint can be transformed into a corresponding
twist matrix.

2.2. Twist Representations of Kinematic Joints. There are
6 types of kinematic joints in common: prismatic joint,
revolute joint, helical joint, cylindrical joint, spherical joint,
and planar joint. In this section, we use s to characterize
the allowed motions of each kinematic joint and show their
corresponding twist matrices.

2.2.1. Prismatic Joint. The degrees of freedom (dof) of a pris-
matic joint (𝑃) is one. We use the unit vector 𝑃.v = (V

𝑥
, V
𝑦
,V
𝑧
)

to characterize the allowed translation. See Figure 2.
Thus, 𝑃.s has the form

𝑃.s = 𝑃.v. (2)

The twist matrix representation of 𝑃 is given by

T𝑃 = [0; 𝑃.s] . (3)

We use 0 instead of [0, 0, 0] unless otherwise stated.

2.2.2. Revolute Joint. The dof of a revolute joint (𝑅) is one.We
use 𝑅.L to characterize the axis of 𝑅. The unit vector of 𝑅.L
is characterized by 𝑅.v = (V

𝑥
, V
𝑦
, V
𝑧
). 𝑅.P = (𝑃

𝑥
, 𝑃
𝑦
, 𝑃
𝑧
) is a

single point on the 𝑅.L. See Figure 3.
Thus, 𝑅.L has the form

𝑅.L = 𝑅.P + 𝑎 ⋅ 𝑅.v, (4)

where 𝑎 is a real number. 𝑅.s has the form

𝑅.s = 𝑅.P × 𝑅.v. (5)

Then, the twist matrix representation of 𝑅 is given by

T𝑅 = [𝑅.v; 𝑅.s] . (6)

ISA
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R.L

Figure 3: Revolute joint.
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Figure 4: Helical joint.

2.2.3. Helical Joint. The dof of a helical joint (H) is one. We
use𝐻.L to characterize the axis of𝐻. The unit vector of𝐻.L
is characterized by 𝐻.v = (V

𝑥
, V
𝑦
, V
𝑧
). 𝐻.P = (𝑃

𝑥
, 𝑃
𝑦
, 𝑃
𝑧
) is a

single point on the𝐻.L. See Figure 4.
Thus,𝐻.L has the form

𝐻.L = 𝐻.P + 𝑎 ⋅ 𝐻.v, (7)

where 𝑎 is a real number.𝐻.s has the form

𝐻.s = 𝐻.P × 𝐻.v + 𝐻.𝑝 ⋅ 𝐻.v, (8)

where𝐻.𝑝 is the pitch of𝐻. Then, the twist matrix represen-
tation of𝐻 is given by

T𝐻 = [𝐻.v; 𝐻.s] . (9)

2.2.4. Cylindrical Joint. The dof of a cylindrical joint (𝐶) is
two. We use 𝐶.L to characterize the axis of 𝐶. The unit vector
of𝐶.L is characterized by𝐶.v = (V

𝑥
, V
𝑦
, V
𝑧
).𝐶.P = (𝑃

𝑥
, 𝑃
𝑦
, 𝑃
𝑧
)

is a single point on the 𝐶.L. See Figure 5.
Thus, 𝐶.L has the form

𝐶.L = 𝐶.P + 𝑎 ⋅ 𝐶.v, (10)
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Figure 5: Cylindrical joint.
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Figure 6: Spherical joint.

where 𝑎 is a real number. 𝐶.s has two components, as shown
in

𝐶.s
1
= 𝐶.P × 𝐶.v,

𝐶.s
2
= 𝐶.v.

(11)

Therefore, the twist matrix representation of𝐶 is given by

T𝐶 = [
𝐶.v; 𝐶.s

1

0; 𝐶.s
2

] . (12)

2.2.5. Spherical Joint. The dof of a spherical joint (𝑆) is three.
We use 𝑆.P = (𝑃

𝑥
, 𝑃
𝑦
, 𝑃
𝑧
) to characterize the central point of

𝑆 and define v
1
= (1, 0, 0), v

2
= (0, 1, 0), and v

3
= (0, 0, 1). See

Figure 6.
Thus, 𝑆.s has three components, as shown in

𝑆.s
1
= 𝑆.P × v

1
= (0, 𝑃

𝑧
, −𝑃
𝑦
) ,

𝑆.s
2
= 𝑆.P × v

2
= (−𝑃

𝑧
, 0, 𝑃
𝑥
) ,

𝑆.s
3
= 𝑆.P × v

3
= (𝑃
𝑦
, −𝑃
𝑥
, 0) .

(13)
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Figure 7: Planar joint.

Then, the twist matrix representation of 𝑆 is given by

T𝑆 = [[
[

v
1
; 𝑆.s
1

v
2
; 𝑆.s
2

v
3
; 𝑆.s
3

]

]

]

. (14)

2.2.6. Planar Joint. The dof of a planar joint (𝐸) is three. The
vectors 𝐸.v

1
= (v
𝑥1
, v
𝑦1
, v
𝑧1
) and 𝐸.v

2
= (v
𝑥2
, v
𝑦2
, v
𝑧2
) are

orthogonal in the planar surface, and the unit vector 𝐸.n is
the outer normal vector. 𝐸.P = (𝑃

𝑥
, 𝑃
𝑦
, 𝑃
𝑧
) is a single point

on the surface. See Figure 7.
Thus, 𝐸.s has three components, as shown in

𝐸.s
1
= 𝐸.v
1
,

𝐸.s
2
= 𝐸.v
2
,

𝐸.s
3
= 𝐸.P × 𝐸.n.

(15)

Then, the twist matrix representation of 𝐸 is given by

T𝐸 = [[
[

0; 𝐸.s
1

0; 𝐸.s
2

𝐸.n; 𝐸.s
3

]

]

]

. (16)

3. Reciprocal Screw Models of
Geometric Constraints

To transformarbitrary combinations of geometric constraints
between two parts into the corresponding kinematic joint,
we should use the same mathematical model with kinematic
joints or a model that can be easily transformed into a twist.
This section shows how to define geometry constraints using
wrench.

3.1. Wrench. A wrench [32, 33] takes the form

W = [𝑓
𝑥
𝑓
𝑦
𝑓
𝑧
; 𝑚
𝑥
𝑚
𝑦
𝑚
𝑧
] . (17)

A wrench is also a screw and describes the resultant force
and moment of a force system acting on a rigid body. Any
set of forces and couples applied to a body can be reduced to
a set comprising a single force acting along a specific line in
space and a pure couple acting in a plane perpendicular to
that line. This means that the motion described by a wrench
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is forbidden. The first triplet describes the resultant force in
a global reference frame. The second triplet represents the
resultant moment of the force system about the origin of the
global frame. See Figure 8.

Both a wrench and geometry constraint are structural
constraints. Therefore, we can use a wrench to characterize
a component of the geometry constraints between two parts.
Afterwards, the geometry constraints can be transformed
into a corresponding wrench matrix.

3.2. Basic Components of Geometric Constraints. When we
describe a part in space, the orientation and position should
be specified [34]. The orientation cannot be described in
absolute terms. An orientation is given by a rotation from
some known reference orientation.The amount of rotation is
known as an angular displacement. In other words, describ-
ing an orientation is mathematically equivalent to describing
an angular displacement. In the same way, when we specify
the position of a part, we cannot do so in absolute terms; we
must always do so within the context of a specific reference
frame.Therefore, specifying a position is actually the same as
specifying an amount of translation from a given reference
point (usually the origin of some coordinate system).

In practice, there are many geometry constraints, such
as align and point on line. We can use one or arbitrary
combinations of geometric constraints to restrict the relative
orientation and position between two parts. As we know,
common geometry constraints, such as coaxial constraints
and spherical constraints, usually have a high degree of
constraint (doc). However, these geometry constraints are all
combined by the three different types of basic constraints:
dot-1 constraint, dot-2 constraint, and the distance constraint
[35], which can be divided into two categories: the orientation
part and the position part.

Consider a pair of rigid bodies, denoted as bodies 𝑖 and
𝑗 in Figure 9. Reference points P

𝑖
and P

𝑗
, reference frames

f
𝑖
-g
𝑖
-h
𝑖
and f

𝑗
-g
𝑗
-h
𝑗
, and nonzero unit vectors a

𝑖
and a

𝑗

are fixed in bodies 𝑖 and 𝑗, respectively. Vector d
𝑖𝑗
connects

z

x

y

i

j

ai

Pihi

gi

f i

ri

sPi
dij

fj

hj
gj

sPj

Pj aj

rj

Figure 9: Vectors fixed in and between bodies.

P
𝑖
and P

𝑗
between bodies. The basic constraints are often

characterized by such elements.

3.2.1. Dot-1 Constraint. Dot-1 constraint restricts the relative
orientation of a pair of bodies; that is,

Φ

𝑑1

(a
𝑖
, a
𝑗
, 𝐶
1
) ≡ a
𝑖

Ta
𝑗
− 𝐶
1
= 0, 𝐶

1
∈ (−1, 1) , (18)

where doc(Φ𝑑1) = 1 and dot-1 constraint is symmetric with
regard to bodies 𝑖 and 𝑗. Note that dot-1 constraint would not
be a basic constraint if𝐶

1
= ±1.Thismeans that the vectors a

𝑖

and a
𝑗
are parallel in the same or opposite directions. In this

case, doc(Φ𝑑1(a
𝑖
, a
𝑗
, ±1)) = 2.

Writing the vectors a
𝑖
and a
𝑗
in terms of their respective

body reference transformationmatricesA
𝑖
andA

𝑗
and body-

fixed constant vectors a󸀠
𝑖
and a󸀠

𝑗
, where a

𝑖
= A
𝑖
a󸀠
𝑖
and a

𝑗
=

A
𝑗
a󸀠
𝑗
, (18) has the form

Φ

𝑑1

(a
𝑖
, a
𝑗
, 𝐶
1
) ≡ a󸀠
𝑖

TA
𝑖

TA
𝑗
a󸀠
𝑗
− 𝐶
1
= 0,

𝐶
1
∈ (−1, 1) ,

(19)

where the transformation matrices A
𝑖
and A

𝑗
in (19) depend

on the orientation generalized coordinates of bodies 𝑖 and 𝑗,
respectively.

As a result, the wrench representation for dot-1 constraint
should also freeze the relative orientation of the vectors a

𝑖
and

a
𝑗
. Therefore, the wrench matrix is given by

W𝑑1 = (0; a
𝑖
× a
𝑗
) . (20)

If we use the body reference transformationmatrices, (20)
has the form

W𝑑1 = (0; (a󸀠
𝑖

TA
𝑖

T
) × (A

𝑗
a󸀠
𝑗
)) . (21)

3.2.2. Dot-2 Constraint. Dot-2 constraint restricts the relative
position of a pair of bodies; that is,

Φ

𝑑2

(a
𝑖
, d
𝑖𝑗
, 𝐶
2
) ≡ a
𝑖

Td
𝑖𝑗
− 𝐶
2
= 0, d

𝑖𝑗
≠ 0, (22)
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where doc(Φ𝑑2) = 1, the same as that with dot-1 constraint,
although dot-2 constraint is not symmetric with regard to
bodies 𝑖 and 𝑗. Analytically, it is important to recall that dot-2
constraint breaks down if d

𝑖𝑗
= 0. Write the vector d

𝑖𝑗
as

d
𝑖𝑗
= r
𝑗
+ A
𝑗
s󸀠
𝑗

P
− r
𝑖
− A
𝑖
s󸀠
𝑖

P
. (23)

Equation (22) becomes

Φ

𝑑2

(a
𝑖
, d
𝑖𝑗
, 𝐶
2
) ≡ a󸀠
𝑖

TA
𝑖

T
(r
𝑗
+ A
𝑗
s󸀠
𝑗

P
− r
𝑖
− A
𝑖
s󸀠
𝑖

P
)

− 𝐶
2
= 0.

(24)

As a result, the wrench representation for dot-2 constraint
must freeze the relative translation along the vector a

𝑖
.

Therefore, the wrench matrix is given by

W𝑑2 = (a
𝑖
; 0) . (25)

Equation (25) also has the form

W𝑑2 = (A
𝑖
a󸀠
𝑖
; 0) . (26)

3.2.3. Distance Constraint. In practice, we often require a pair
of points on two bodies to coincide or maintain a determined
distance; that is,

Φ

𝑠

(𝑃
𝑖
, 𝑃
𝑗
, 𝐶
3
) ≡ d
𝑖𝑗

Td
𝑖𝑗
− 𝐶
3
⋅ 𝐶
3
= 0, (27)

where doc(Φ𝑠) would be different depending on whether 𝐶
3

is zero. Therefore, we have

doc (Φ𝑠) = 1 if 𝐶
3

̸= 0,

doc (Φ𝑠) = 3 if 𝐶
3
= 0.

(28)

As a result, the wrench representation for the distance
constraint should have two types of expressions, as shown in
(29) and (30):

W𝑠 = [d
𝑖𝑗
; 0] if 𝐶

3
̸= 0, (29)

where the wrench representation for the distance constraint
should freeze the relative translation along the vector d

𝑖𝑗
if

𝐶
3

̸= 0. However, if 𝐶
3
= 0, the wrench representation has

the form

W𝑠 = [[
[

1 0 0; 0
0 1 0; 0
0 0 1; 0

]

]

]

if 𝐶
3
= 0, (30)

where the wrench, which is illustrated in (30), freezes all the
relative translations along the axes 𝑥, 𝑦, and 𝑧.

3.3. Wrench Representations of Geometry Constraints. To
introduce geometry constraints, we give Figure 10.

In Figure 10, reference points P
1
and P

2
, reference frames

f
1
-g
1
-h
1
and f
2
-g
2
-h
2
, and central axes L

1
and L

2
are fixed in

cylinders 𝐵
1
and 𝐵

2
, respectively. Vector d

12
connects P

1
and

P
2
between the cylinders.

L1

B1

h1

P1

f1

F1 g1

L2

B2

h2

P2

f2
F2

g2

d12

Figure 10: Instance of geometry constraints.

The reference point P
1
has the form

P
1
= (𝑃
𝑥1
, 𝑃
𝑦1
, 𝑃
𝑧1
) . (31)

The central axis L
1
has the form

L
1
= P
1
+ 𝑎 ⋅ h

1
, (32)

where 𝑎 is a real number. The planar surface F
1
has the form

F
1
= P
1
+ 𝑏 ⋅ f

1
+ 𝑐 ⋅ g

1
, (33)

where 𝑏 and 𝑐 are both real numbers. At the same time,
the elements P

2
, L
2
, and F

2
have the same forms. The

following geometry constraints are often characterized by
such elements.

We can divide all different types of geometry constraints,
which have more than one doc, into six categories: coaxial
constraint, coplanar constraint, spherical constraint, align con-
straint, distance between line and surface, and point on line.
We have modeled the three basic components of geometry
constraints in terms of wrench. Thus, the wrench models of
these six types of geometry constraints can be automatically
deduced.

3.3.1. Coaxial Constraint. Weuse𝐶𝑜𝑖𝐿𝐿(L
1
, L
2
) to denote the

coaxial constraint of axes L
1
and L

2
, as shown in Figure 11.

The doc of 𝐶𝑜𝑖𝐿𝐿(L
1
, L
2
) is four, which restricts two

relative orientations and two relative translations. In other
words, it comprises two dot-1 constraints and two dot-2
constraints, as shown in

Φ
1

𝑑1

(h
1
, f
2
, 0) , Φ

2

𝑑1

(h
1
, g
2
, 0) , Φ

3

𝑑2

(f
1
, d
12
, 0) ,

Φ
4

𝑑2

(g
1
, d
12
, 0) .

(34)

Then, the wrench matrix of 𝐶𝑜𝑖𝐿𝐿(L
1
, L
2
) is given by

W
𝐶𝑜𝑖𝐿𝐿(L

1
,L
2
)
=

[

[

[

[

[

[

0; h
1
× f
2

0; h
1
× g
2

f
1
; 0

g
1
; 0

]

]

]

]

]

]

. (35)
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Figure 11: Coaxial constraint.
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CoiFF(F1, F2)

d12

Figure 12: Coplanar constraint.

The corresponding kinematic joint of coaxial constraint is
cylindrical joint.

3.3.2. Coplanar Constraint. We use 𝐶𝑜𝑖𝐹𝐹(F
1
, F
2
) to denote

the coplanar constraint of planar surfaces F
1
and F

2
, as shown

in Figure 12.
The doc of 𝐶𝑜𝑖𝐹𝐹(F

1
, F
2
) is three, which restricts two

relative orientations and one relative translation. In other
words, it comprises two dot-1 constraints and one dot-2
constraint, as shown in

Φ
1

𝑑1

(h
1
, f
2
, 0) , Φ

2

𝑑1

(h
1
, g
2
, 0) , Φ

3

𝑑2

(h
1
, d
12
, 0) . (36)

Then, the wrench matrix of 𝐶𝑜𝑖𝐹𝐹(F
1
, F
2
) is given by

W
𝐶𝑜𝑖𝐹𝐹(F

1
,F
2
)
=

[

[

[

0; h
1
× f
2

0; h
1
× g
2

h
1
; 0

]

]

]

. (37)

The corresponding kinematic joint of coplanar constraint
is planar joint.

3.3.3. Spherical Constraint. We use 𝐶𝑜𝑖𝑃𝑃(P
1
,P
2
) to denote

the spherical constraint of two points P
1
and P

2
, as shown in

Figure 13.

f2

P2

h2

F2 g2

L2

B2

f1

P1

h1

F1

g1

L1

B1

CoiPP(P1,P2)

Figure 13: Spherical constraint.

f2 P2 h2

F2
g2

L2

B2

f1 P1 h1

F1
g1

L1

B1

ParFF(F1, F2)

Figure 14: Align constraint.

The doc of 𝐶𝑜𝑖𝑃𝑃(P
1
,P
2
) is three, which restricts three

relative translations in three unrelated directions. In other
words, it comprises one distance constraint, which has 𝐶

3
= 0

in Section 3.2.3, as shown in

Φ

𝑠

(𝑃
𝑖
, 𝑃
𝑗
, 0) . (38)

Then, the wrench matrix of 𝐶𝑜𝑖𝑃𝑃(P
1
,P
2
) is given by

W
𝐶𝑜𝑖𝑃𝑃(P

1
,P
2
)
=

[

[

[

1 0 0; 0
0 1 0; 0
0 0 1; 0

]

]

]

. (39)

The corresponding kinematic joint of spherical constraint
is spherical joint.

3.3.4. Align Constraint. Align constraint (𝑃𝑎𝑟𝐹𝐹) is used to
make two planar surfaces F

1
and F

2
parallel, as shown in

Figure 14.
The doc of 𝑃𝑎𝑟𝐹𝐹(F

1
, F
2
) is two, which restricts two

relative orientations. In other words, it comprises two dot-1
constraints, as shown in

Φ
1

𝑑1

(h
1
, f
2
, 0) , Φ

2

𝑑1

(h
1
, g
2
, 0) . (40)
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f2 P2 h2

F2
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Figure 15: Distance between line and surface.

Then, the wrench matrix of 𝑃𝑎𝑟𝐹𝐹(F
1
, F
2
) is given by

W
𝑃𝑎𝑟𝐹𝐹(F

1
,F
2
)
= [

0; h
1
× f
2

0; h
1
× g
2

] . (41)

We cannot find a corresponding kinematic joint for align
constraint among the common kinematic joints.

3.3.5. Distance between Line and Surface. We use 𝐷𝑖𝑠𝐿𝐹(L
1
,

F
2
, 𝐷) to denote the axis L

1
and the surface F

2
that maintain

a certain distance𝐷, as shown in Figure 15.
The doc of 𝐷𝑖𝑠𝐿𝐹(L

1
, F
2
, 𝐷) is two, which restricts one

relative orientation and one relative translation. In other
words, it comprises one dot-1 constraint and one dot-2
constraint, as shown in

Φ
1

𝑑1

(h
1
, h
2
, 0) , Φ

2

𝑑2

(h
2
, d
12
, 𝐷) . (42)

Then, the wrench matrix of𝐷𝑖𝑠𝐿𝐹(L
1
, F
2
, 𝐷) is given by

W
𝐷𝑖𝑠𝐿𝐹(L

1
,F
2
,𝐷)

= [

0; h
1
× h
2

h
2
; 0

] . (43)

We also cannot find a corresponding kinematic joint
for distance between line and surface among the common
kinematic joints.

3.3.6. Point on Line. Weuse𝐶𝑜𝑖𝑃𝐿(P
1
, L
2
) to denote the point

P
1
on line L

2
, as shown in Figure 16.

The doc of 𝐶𝑜𝑖𝑃𝐿(P
1
, L
2
) is two, which restricts two

relative translations. In other words, it comprises two dot-2
constraints, as shown in

Φ
1

𝑑2

(f
2
, d
12
, 0) , Φ

2

𝑑2

(g
2
, d
12
, 0) . (44)

Then, the wrench matrix of 𝐶𝑜𝑖𝑃𝐿(P
1
, L
2
) is given by

W
𝐷𝑖𝑠𝐿𝐹(L

1
,F
2
,𝐷)

= [

f
2
; 0

g
2
; 0

] . (45)

We still cannot find a corresponding kinematic joint for
point on line among the common kinematic joints.

f2 P2 h2

F2
g2

L2

B2

f1

P1

h1

F1

g1

L1

B1

CoiPL(P1, L2)

Figure 16: Point on line.

4. Recognition of Kinematic Joints

The key to recognizing kinematic joints in terms of geometry
constraints is the reciprocity relation. We show how to define
geometry constraints using wrench. The space of screws that
defines the range of wrenches that can be exerted upon a
body and the space of screws that defines the range of twists
that the body can perform without breaking any contacts in
the joints of the mechanism are mutually reciprocal screw
spaces. When we know the wrenches acting upon a body, we
can determine the motions it can perform. Conversely, if we
know the motions a body is capable of performing, then the
constraints that are exerted upon it can also be deduced.

4.1. Algorithm. We assume that 𝐴 is a part in a 3D assembly
model restricted by parts 𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑛
. The twist space of 𝐴

is the space of screws reciprocal to the wrenches of contact
acting upon it. The space of wrenches acting upon 𝐴 is the
union of all the individual wrenches acting upon it from
the parts 𝐵

𝑖
. These individual wrenches are to be considered

as acting alone. Algorithm 1 provides the twist space of 𝐴,
denoted by T𝐴.

The 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙(P) in Algorithm 1 means to exchange
the first triplet and the second triplet of P. For example,
if P = [𝑎, 𝑏, 𝑐; 𝑑, 𝑒, 𝑓], then we have 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙(P) =

[𝑑, 𝑒, 𝑓; 𝑎, 𝑏, 𝑐]. The recursive nature of the procedure
requires the computation of the wrench space and twist
space of each component. This proves to be computationally
expensive because wrench space and twist space are defined
in terms of the reciprocal of one another. The operation of
deriving reciprocal screws involves computing the null space
of matrices. The speed of the algorithm is linearly related to
the number of 𝐵

𝑖
. That is, the algorithm is of the order 𝑂(𝑛).

4.2. Reciprocal Product. According to reciprocal screw the-
ory, two screws (a twist and a wrench) are said to be mutually
reciprocal if their reciprocal product is zero. The reciprocal
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BEGIN
FOR each part Bi, which restrict A.
Convert all the geometry constraints between A and Bi into basic components 𝐶𝑗

𝐴
, 𝑗 = 1, . . . , 𝑙.

Determine the wrenchesW𝑘
𝐴
, 𝑘= 1, . . . , 𝑚 acting upon A through C𝑗

𝐴
. We havem not less than l.

Collect all the wrenchesW𝑘
𝐴
into a matrixW.

END FOR
Compute the orthogonal matrixQ in terms ofW by Gram-Schmidt orthogonalization [31].
IF Rank(Q) = 6 THEN
Return “IMMOBILE”.

ELSE
Compute the orthogonal complement matrix P of Q.

END IF
TA =Reciprocal(P).

END

Algorithm 1: Function twist space.

f2

A2

h2
F2

g2

B2

f1
A1

F1

g1
B1

Figure 17: Redundant constraint.

product of a twist T
1
and a wrenchW

1
thatisequal to zero is

given by

T
1
∘W
1
= T
1.1−3

⋅W
2.4−6

+ T
1.4−6

⋅W
2.1−3

= [0; 0] . (46)

Mathematically, because reciprocity imposes the relation
T
1
∘W
1
, we can compute one of these quantities if the other is

known. This allows us to compute the twists that a body may
execute while in contact with other bodies without breaking
the contacts.

4.3. Redundant Constraint. When more than one geometry
constraint acts upon the same part, because some compo-
nents of these constraints may be redundant, the resultant
motion is the logical intersection of the individual wrench
matrix that defines each constraint, for example, when we
model a revolute joint 𝑅

12
with two links: 𝐵

1
and 𝐵

2
. The

constraints used are 𝐶𝑜𝑖𝐿𝐿(A
1
,A
2
) and 𝐶𝑜𝑖𝐹𝐹(F

1
, F
2
). See

Figure 17.
Also dof(𝑅

12
) = 1.Thismeans that doc(𝐵

1
, 𝐵
2
) = 5. How-

ever, we have doc(𝐶𝑜𝑖𝐿𝐿(A
1
,A
2
)) = 4 and doc(𝐶𝑜𝑖𝐹𝐹(F

1
,

F
2
)) = 3. In other words, the dimension of the orthog-

onal wrench space, which comprises W
𝐶𝑜𝑖𝐿𝐿(A

1
,A
2
)
and

f2

h2

F2
g2

B2

f1
h1

g1

B1

F1

Figure 18: Recognition of planar joint.

W
𝐶𝑜𝑖𝐹𝐹(F

1
,F
2
)
, is 5. Therefore, the motions that a body is

capable of performing while under the action of multiple
wrenches are the logical intersection of the motions it can
perform under the action of each wrench acting alone. Thus,
we can eliminate the redundant components of different
geometry constraints that act upon the same part by using
Gram-Schmidt orthogonalization in Algorithm 1.

5. Examples

In each of the examples below, different types of kinematic
joints are recognized.

Example 1 (planar joint). Figure 18 shows a planar joint
consisting of two parts, 𝐵

1
and 𝐵

2
, and a coplanar constraint:

𝐶𝑜𝑖𝐹𝐹(F
1
, F
2
).

Following the process outlined in Section 3.3.2, we find,
based on the definition of the coplanar constraint, that the
wrench matrix is

W
𝐶𝑜𝑖𝐹𝐹(F

1
,F
2
)
=

[

[

[

[

0; h
1
× f
2

0; h
1
× g
2

h
1
; 0

]

]

]

]

, (47)
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h󳰀2
g󳰀2
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f 󳰀1

h󳰀1

g󳰀1

F󳰀1

Figure 19: Recognition of prismatic joint.

whereW
𝐶𝑜𝑖𝐹𝐹(F

1
,F
2
)
is already an orthogonalmatrix.Then, the

orthogonal complement matrix P
𝐶𝑜𝑖𝐹𝐹(F

1
,F
2
)
is

P
𝐶𝑜𝑖𝐹𝐹(F

1
,F
2
)
=

[

[

[

f
1
; 0

g
1
; 0

0; h
1

]

]

]

. (48)

Therefore, the twist matrixT
12
between 𝐵

1
and 𝐵

2
has the

following form:

T
12
= 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 (P

𝐶𝑜𝑖𝐹𝐹(F
1
,F
2
)
) =

[

[

[

0; f
1

0; g
1

h
1
; 0

]

]

]

, (49)

where T
12

represents the motion of a planar joint, which is
illustrated in Section 2.2.6. Moreover, the recognition process
of a cylindrical joint or spherical joint is approximately the
same as that of the planar joint.

Example 2 (prismatic joint). Figure 19 shows a prismatic
joint consisting of two parts, 𝐵

1
and 𝐵

2
, and two coplanar

constraints: 𝐶𝑜𝑖𝐹𝐹(F
1
, F
2
) and 𝐶𝑜𝑖𝐹𝐹(F󸀠

1
, F󸀠
2
).

Following the process outlined in Example 1, we find that
the wrench matrices between 𝐵

1
and 𝐵

2
are

W
𝐶𝑜𝑖𝐹𝐹(F

1
,F
2
)
=

[

[

[

0; h
1
× f
2

0; h
1
× g
2

h
1
; 0

]

]

]

,

W
𝐶𝑜𝑖𝐹𝐹(F󸀠

1
,F󸀠
2
)
=

[

[

[

[

0; h󸀠
1
× f󸀠
2

0; h󸀠
1
× g󸀠
2

h󸀠
1
; 0

]

]

]

]

,

(50)

B0

B1

B2

B3

B4

B5
B6

B7

B8

B9

B10

B11

x

y

Figure 20: Hydraulic grab.

where W
12

= W
𝐶𝑜𝑖𝐹𝐹(F

1
,F
2
)
∪ W
𝐶𝑜𝑖𝐹𝐹(F󸀠

1
,F󸀠
2
)
. The orthogonal

matrixQ
12
ofW
12
is

Q
12
=

[

[

[

[

[

[

[

[

[

[

[

0; h
1
× f
2

0; h
1
× g
2

0; h󸀠
1
× g󸀠
2

h
1
; 0

h󸀠
1
; 0

]

]

]

]

]

]

]

]

]

]

]

. (51)

The orthogonal complement matrix P
12
ofQ
12
is

P
12
= [g
1
; 0] . (52)

Therefore, the twist matrixT
12
between 𝐵

1
and 𝐵

2
has the

following form:

T
12
= 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 (P

12
) = [0; g

1
] , (53)

where T
12

represents the motion of a prismatic joint, which
is shown in Section 2.2.1. Moreover, the recognition process
of a revolute joint is approximately the same as that of the
prismatic joint.

Example 3 (hydraulic grab). Here, we present a project
example. A hydraulic grab with three degrees of freedom in
Cartesian coordinates is illustrated in Figure 20.

The hydraulic grab comprises 12 parts, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
,

𝐵
4
, 𝐵
5
, 𝐵
6
, 𝐵
7
, 𝐵
8
, 𝐵
9
, 𝐵
10
, and 𝐵

11
, 12 coplanar constraints,

𝐶𝑜𝑖𝐹𝐹(𝐵
0
, 𝐵
2
),𝐶𝑜𝑖𝐹𝐹(𝐵

0
, 𝐵
1
),𝐶𝑜𝑖𝐹𝐹(𝐵

1
, 𝐵
3
),𝐶𝑜𝑖𝐹𝐹(𝐵

1
, 𝐵
5
),

𝐶𝑜𝑖𝐹𝐹(𝐵
1
, 𝐵
4
), 𝐶𝑜𝑖𝐹𝐹(𝐵

4
, 𝐵
6
), 𝐶𝑜𝑖𝐹𝐹(𝐵

4
, 𝐵
11
), 𝐶𝑜𝑖𝐹𝐹(𝐵

4
,

𝐵
7
), 𝐶𝑜𝑖𝐹𝐹(𝐵

4
, 𝐵
8
), 𝐶𝑜𝑖𝐹𝐹(𝐵

9
, 𝐵
10
), 𝐶𝑜𝑖𝐹𝐹(𝐵

7
, 𝐵
10
), and

𝐶𝑜𝑖𝐹𝐹(𝐵
10
, 𝐵
11
), and 15 coaxial constraints, 𝐶𝑜𝑖𝐿𝐿(𝐵

0
, 𝐵
2
),

𝐶𝑜𝑖𝐿𝐿(𝐵
0
, 𝐵
1
), 𝐶𝑜𝑖𝐿𝐿(𝐵

1
, 𝐵
3
), 𝐶𝑜𝑖𝐿𝐿(𝐵

2
, 𝐵
3
), 𝐶𝑜𝑖𝐿𝐿(𝐵

1
, 𝐵
5
),

𝐶𝑜𝑖𝐿𝐿(𝐵
1
, 𝐵
4
), 𝐶𝑜𝑖𝐿𝐿(𝐵

4
, 𝐵
6
), 𝐶𝑜𝑖𝐿𝐿(𝐵

5
, 𝐵
6
), 𝐶𝑜𝑖𝐿𝐿(𝐵

4
,

𝐵
11
), 𝐶𝑜𝑖𝐿𝐿(𝐵

4
, 𝐵
7
), 𝐶𝑜𝑖𝐿𝐿(𝐵

4
, 𝐵
8
), 𝐶𝑜𝑖𝐿𝐿(𝐵

8
, 𝐵
9
),

𝐶𝑜𝑖𝐿𝐿(𝐵
9
, 𝐵
10
), 𝐶𝑜𝑖𝐿𝐿(𝐵

7
, 𝐵
10
), and 𝐶𝑜𝑖𝐿𝐿(𝐵

10
, 𝐵
11
). See

Figure 21.
Here, we present the processes of recognition among 𝐵

1
,

𝐵
2
, and 𝐵

3
, as shown in Figure 22. The geometry constraint

between 𝐵
2
and 𝐵

3
is 𝐶𝑜𝑖𝐿𝐿(𝐵

2
, 𝐵
3
). Following the process
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Figure 21: The constraint graph of a hydraulic grab.
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Figure 22: Parts 𝐵
1
, 𝐵
2
, and 𝐵

3
in a hydraulic grab.

outlined in Section 3.3.1, we find, based on the definition of
the coaxial constraint, that the wrench matrix is

W
𝐶𝑜𝑖𝐿𝐿(𝐵

2
,𝐵
3
)
=

[

[

[

[

[

[

0; h
2
× f
3

0; h
2
× g
3

f
2
; 0

g
2
; 0

]

]

]

]

]

]

. (54)

The orthogonal complement matrix is

P
𝐶𝑜𝑖𝐿𝐿(𝐵

2
,𝐵
3
)
= [

0; h
2

h
2
; 0

] . (55)

Then, the twist matrix T
23

between 𝐵
2
and 𝐵

3
has the

following form:

T
23
= 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 (P

𝐶𝑜𝑖𝐿𝐿(𝐵
2
,𝐵
3
)
) = [

h
2
; 0

0; h
2

] . (56)

The geometry constraints between 𝐵
1

and 𝐵
3

are
𝐶𝑜𝑖𝐿𝐿(𝐵

1
, 𝐵
3
) and 𝐶𝑜𝑖𝐹𝐹(𝐵

1
, 𝐵
3
). Thus, the wrench matrices

between 𝐵
1
and 𝐵

3
are

W
𝐶𝑜𝑖𝐿𝐿(𝐵

1
,𝐵
3
)
=

[

[

[

[

[

[

[

0; h󸀠
3
× f󸀠
1

0; h󸀠
3
× g󸀠
1

f󸀠
3
; 0

g󸀠
3
; 0

]

]

]

]

]

]

]

,

W
𝐶𝑜𝑖𝐹𝐹(𝐵

1
,𝐵
3
)
=

[

[

[

[

0; h󸀠
3
× f󸀠
1

0; h󸀠
3
× g󸀠
1

h󸀠
3
; 0

]

]

]

]

,

(57)

where W
13

= W
𝐶𝑜𝑖𝐿𝐿(𝐵

1
,𝐵
3
)
∪ W
𝐶𝑜𝑖𝐹𝐹(𝐵

1
,𝐵
3
)
. The orthogonal

matrixQ
13
ofW
13
is given by

Q
13
=

[

[

[

[

[

[

[

[

[

[

0; h󸀠
3
× f󸀠
1

0; h󸀠
3
× g󸀠
1

f󸀠
3
; 0

g󸀠
3
; 0

h󸀠
3
; 0

]

]

]

]

]

]

]

]

]

]

. (58)

Then, the orthogonal complement matrix P
13
ofQ
13
is

P
13
= [0; h󸀠

3
] . (59)

Therefore, the twist matrix T
13
between 𝐵

1
and 𝐵

3
is

T
13
= 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 (P

13
) = [h󸀠

3
; 0] . (60)

In this paper, we propose a new method to automatically
convert a 3D assembly model into a screw system based
on reciprocal screw theory. According to the geometry
constraints between any two parts in the hydraulic grab
and Algorithm 1, we obtain the screw system, as shown in
Figure 23.

As mentioned in [4–29], we can perform some different
types of kinematic analyses using the screw system, such as
determining the degrees of freedom of 𝐵

1
and 𝐵

4
; that is,

T
𝐵
1

= T1
0
∩ (T2
0
∪ T3
2
∪ T3
1
) ,

T
𝐵
4

= (T
𝐵
1

∪ T4
1
) ∩ (T

𝐵
1

∪ T5
1
∪ T6
5
∪ T6
4
) ,

(61)

where the resultant of the motions that the end-effector of
a purely serial chain may perform due to the action of each
joint acting alone is the union of that set and the resultant of
the set of twists allowed separately by multiple contacts upon
a body is the intersection of the individual twists. Thus, the
degrees of freedom of 𝐵

1
are equal to the dimension of the

orthogonal twist space of𝐵
1
, denoted byT

𝐵
1

. In the sameway,
we can obtain the degrees of freedomof𝐵

4
and any part in the

hydraulic grab.
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T: twist
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Figure 23: The screw system of a hydraulic grab.

R: revolute joint
C: cylindrical joint

B0B1

B2B3

B4

B5B6

B7 B8

B9B10

B11

R3
1

R1
0

R2
0

11
10

R11
4

C9
8

R7
4 R8

4

R4
1

R6
4 R5

1

R10
7

R

R10
9 C3

2

C6
5

Figure 24: The kinematic joint model of a hydraulic grab.

According to Sections 2.2.2 and 2.2.4, the kinematic joints
between 𝐵

2
and 𝐵

3
and 𝐵

1
and 𝐵

3
are the cylindrical joint and

revolute joint. As a result, we can obtain the kinematic joint
model. See Figure 24. If the corresponding kinematic joint
between any two parts cannot be recognized, we can easily
analyze the model’s geometry constraints.

6. Conclusions

This paper investigates a method for determining the kine-
matic joints of assemblies restricted by arbitrary combina-
tions of geometry constraints using reciprocal screw theory.
We achieve the process of recognition in terms of the
basic components of geometry constraints and kinematic
joints. We describe the three basic components of geometric
constraints in terms of wrench. At the same time, the specific
operation of a matrix space is applied to eliminate the redun-
dant components between different geometry constraints
that act upon the same part. A user of this method can auto-
matically and easily convert any assembly model into a screw
system in any CAD system. Afterwards, the screw system can
be easily used for validating kinematic functions, analyzing
over- or underconstrained assembly configurations, and so
on.

Additional Points

(i) We provide a new method for converting any 3D
assembly model into a screw system based on recip-
rocal screw theory.

(ii) We describe the three basic components of geometric
constraints in terms of wrench.

(iii) We eliminate the redundant components of different
geometry constraints that act upon the same part by
the specific operation of a matrix space.

(iv) We establish the maps between geometry constraints
and kinematic joints as the reciprocal product of a
twist and wrench, which is equal to zero.

(v) We present several application examples.
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