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This paper studies the problem of positive 𝑙1 state-bounding observer design for a class of positive Markovian jump systems with
interval parameter uncertainties by a linear programming approach. For the first, necessary and sufficient conditions are obtained
for stochastic stability and 𝑙1 performance of positive Markovian jump systems by an “equivalent” deterministic positive linear
system. Furthermore, based on the results obtained in this paper, sufficient conditions for the existence of the positive 𝑙1 state-
bounding observer are derived. The conditions can be solved in terms of linear programming. Finally, a numerical example is used
to illustrate the effectiveness of the results obtained.

1. Introduction

Positive systems whose state and output are nonnegative for
any given nonnegative initial state and input have developed
a new branch and play an important role in system theory.
Positive systems are frequently used in communication,
queue processes, and traffic modeling [1]. Recently, many
contributions, such as realization, controllability, reachability
and stability [2, 3], and positive filtering [4], have been
highlighted by many researchers.

Aswe know, if systemshave their parameters or structures
changed abruptly, it is necessary and natural to describe
them as Markovian jump systems. Markovian jump systems
have two mechanisms simultaneously. The first one is the
time-evolving mechanism and related to the state vector. The
second one called system mode is event-driven mechanism
and driven by a Markov process taking values in a finite set.
Some achievements on Markovian jump systems are given;
for instance, see [5–10]. The conditions of stochastic stability
on this kind of system are reported in [5–8].When this system
is positive, stochastic stability is investigated in [9, 10]. Also,
there are many other results proposed, such as stabilisation
[11], 𝑙1-gain performance analysis and positive filter design
[12],𝐻∞ filtering [13, 14], and 𝑙1 control [15]. Sometimes, it is
not easy to obtain all the state variables in practical systems.

It is necessary to design observer to estimate state variables.
The observer design problems for positive systems have been
considered in [16–20]. To the best of our knowledge, the
observer design for positive Markovian jump systems has
not been fully investigated, especially systems with interval
parameter uncertainties. We know that the conventional
observers estimate the state of the system in an asymptotic
way. If we want to obtain the information of the transient
state of positive interval Markovian jump systems, we need to
design new observers, which motivate the current research.

In this paper, we investigate the positive 𝑙1 state-bounding
observer design problem for positive interval Markovian
jump systems. The main contributions of this paper include
the following. (1) By an “equivalent” deterministic posi-
tive linear system, necessary and sufficient conditions are
obtained for stochastic stability and 𝑙1 performance of pos-
itive Markovian jump systems. (2) For positive interval
Markovian jump systems, we design a new observer which
is different from the traditional observer. Based on the
proposed results, sufficient conditions for the existence of the
positive 𝑙1 state-bounding observer are derived.

The rest of the paper is organized as follows. Prelimi-
naries are presented in Section 2. Stochastic stability and 𝑙1
performance analysis problem are discussed in Section 3. In
Section 4, observer problem of positive interval Markovian
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jump systems is studied. A numerical example is provided in
Section 5. Conclusions are presented in Section 6.

Notations. R is the set of real number. R𝑛(R𝑛+) is the 𝑛-
dimensional real (nonnegative) vector space; R𝑝×𝑚 is the
set of 𝑝 × 𝑚 real matrix. Z+ is the set of positive integer.(Ω,F,P) is a probability space where Ω is sample space, F
is the 𝜎-algebra of subsets of the sample space, and P is the
probability measure. 𝐴 ⪰ 0 (𝐴 ≻ 0, 𝐴 ⪯ 0, 𝐴 ≺ 0) means that
all entries of matrix 𝐴 are nonnegative (positive, nonpositive,
and negative). 𝐴 ≻ 𝐵 (𝐴 ⪰ 𝐵) means 𝐴 − 𝐵 ≻ 0 (𝐴 − 𝐵 ⪰ 0).𝐸{⋅}means the mathematical expectation of {⋅}. 𝐴 𝑖 ∈ [𝐴𝑖, 𝐴 𝑖]
means 𝐴𝑖 ⪯ 𝐴 𝑖 ⪯ 𝐴𝑖. 1-norm of vector 𝑥(𝑡) ∈ R𝑛 is denoted
by ‖𝑥(𝑡)‖1 = ∑𝑛𝑘=1 |𝑥𝑘(𝑡)|, where 𝑥𝑘(𝑡) is the 𝑘th component
of 𝑥(𝑡) ∈ R𝑛. The 𝑙1-norm of a Lebesgue integrable function𝑥(𝑡) is defined as ‖𝑥(𝑡)‖𝑙1 = ∫∞

0
‖𝑥(𝑡)‖1𝑑𝑡. The space of all

vector-valued functions defined on R𝑛+ with finite 𝑙1-norm is
denoted by 𝑙1(R𝑛+). 𝐼𝑟 is the 𝑟-dimensional identity matrix.
The transpose of a matrix or a vector is expressed as the
superscript “𝑇.” A block diagonal matrix with diagonal block𝐴1, 𝐴2, . . . , 𝐴𝑟 will be denoted by diag{𝐴1, 𝐴2, . . . , 𝐴𝑟}. The
symbol 1𝑛 is the 𝑛-dimensional vector whose all entries are
equal to 1. ⊗ denotes the Kronecker product.

2. Preliminaries

In the complete probability space (Ω,F,P), we will con-
sider a class of continuous-time Markovian jump systems
described as follows:𝑥̇ (𝑡) = 𝐴 (𝑟𝑡) 𝑥 (𝑡) + 𝐵 (𝑟𝑡)𝑤 (𝑡)𝑦 (𝑡) = 𝐶 (𝑟𝑡) 𝑥 (𝑡) + 𝐷 (𝑟𝑡) 𝑤 (𝑡) , (1)

where 𝑥(𝑡) ∈ R𝑛 is the system state vector, 𝑤(𝑡) ∈ R𝑚 is
the input, and 𝑦(𝑡) ∈ R𝑝 is the output. For simplicity, when𝑟𝑡 = 𝑖, the system matrices 𝐴(𝑟𝑡), 𝐵(𝑟𝑡), 𝐶(𝑟𝑡), and 𝐷(𝑟𝑡) are
expressed as 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖. 𝐴 𝑖 ∈ R𝑛×𝑛, 𝐵𝑖 ∈ R𝑛×𝑚,𝐶𝑖 ∈ R𝑝×𝑛, and 𝐷𝑖 ∈ R𝑝×𝑚 belong to the following interval
uncertainty domain: 𝐴 𝑖 ∈ [𝐴𝑖, 𝐴 𝑖] ,𝐵𝑖 ∈ [𝐵𝑖, 𝐵𝑖] ,𝐶𝑖 ∈ [𝐶𝑖, 𝐶𝑖] ,𝐷𝑖 ∈ [𝐷𝑖, 𝐷𝑖] .

(2)

The jump process {𝑟𝑡, 𝑡 ≥ 0} is a homogeneous Markov
process taking values in a finite set 𝑆 = {1, 2, 3, . . . , 𝑁}. System
(1) has the following mode transition probabilities:

Pr {𝑟𝑡+Δ𝑡 = 𝑗 | 𝑟𝑡 = 𝑖} = {{{𝜆𝑖𝑗Δ𝑡 + 𝑜 (Δ𝑡) 𝑖 ̸= 𝑗1 + 𝜆𝑖𝑗Δ𝑡 + 𝑜 (Δ𝑡) 𝑖 = 𝑗, (3)

where Δ𝑡 > 0, limΔ𝑡→0(𝑜(Δ𝑡)/Δ𝑡) = 0, and 𝜆𝑖𝑗 ≥ 0 (𝑖, 𝑗 ∈𝑆, 𝑖 ̸= 𝑗) denotes the transition rates from mode 𝑖 at time 𝑡 to

mode 𝑗 at time 𝑡+Δ𝑡, and∑𝑁𝑗=1,𝑗 ̸=𝑖 𝜆𝑖𝑗 = −𝜆𝑖𝑖. Furthermore, the
transition rate matrix of theMarkov process can be expressed
as

Π =(𝜆11 𝜆12 ⋅ ⋅ ⋅ 𝜆1𝑁𝜆21 𝜆22 ⋅ ⋅ ⋅ 𝜆2𝑁... ... d
...𝜆𝑁1 𝜆𝑁2 ⋅ ⋅ ⋅ 𝜆𝑁𝑁). (4)

Definition 1 (see [1]). System (1) is said to be positive if and
only if 𝑥(𝑡) ∈ R𝑛+, 𝑦(𝑡) ∈ R

𝑝
+, for any initial condition 𝑥(0) ∈

R𝑛+ and 𝑤(𝑡) ∈ R𝑚+ , ∀𝑡 ≥ 0, ∀𝑟0 ∈ 𝑆.
Definition 2 (see [10]). System (1) is stochastically stable if the
solution to system (1) for 𝑤(𝑡) = 0 satisfies 𝐸{∫∞

0
‖𝑥(𝑡)‖1𝑑𝑡 |𝑥(0), 𝑟0} < ∞, where 𝑥(0) is the initial condition and 𝑟0 ∈ 𝑆.

Lemma 3 (see [1]). System (1) is positive if and only if 𝐴 𝑖 is
Metzler matrix, 𝐵𝑖 ⪰ 0, 𝐶𝑖 ⪰ 0, and𝐷𝑖 ⪰ 0, 𝑖 ∈ 𝑆.
Remark 4. 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖 belong to the following interval
uncertainty domain:𝐴 𝑖 ∈ [𝐴𝑖, 𝐴 𝑖],𝐵𝑖 ∈ [𝐵𝑖, 𝐵𝑖],𝐶𝑖 ∈ [𝐶𝑖, 𝐶𝑖],
and𝐷𝑖 ∈ [𝐷𝑖, 𝐷𝑖].𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖 are uncertain, but 𝐴𝑖, 𝐵𝑖,𝐶𝑖, and 𝐷𝑖 are known. Due to 𝐴𝑖 ⪯ 𝐴 𝑖, 𝐵𝑖 ⪯ 𝐵𝑖, 𝐶𝑖 ⪯ 𝐶𝑖, and𝐷𝑖 ⪯ 𝐷𝑖, if 𝐴𝑖 is Metzler matrix, 𝐵𝑖 ⪰ 0, 𝐶𝑖 ⪰ 0, and 𝐷𝑖 ⪰ 0
for any 𝑖 ∈ 𝑆, it is natural that system (1) is positive.

Lemma 5 (see [21]). Consider the following positive system:𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑤 (𝑡)𝑦 (𝑡) = C𝑥 (𝑡) + 𝐷𝑤 (𝑡) . (5)

The following statements are equivalent for 𝑤(𝑡) = 0:
(i) This system is asymptotically stable.
(ii) 𝐴 is a Hurwitz.
(iii) There exists a vector 𝑝 ≻ 0 such that 𝑝𝑇𝐴 ≺ 0.

Definition 6 (see [19]). Suppose that positive system (5) is
stable; its 𝑙1-induced norm is defined as‖I‖(𝑙1−𝑙1) ≜ sup

𝑤 ̸=0,𝑤∈𝑙1(R
𝑛

+
)

󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑙1‖𝑤‖𝑙1 , (6)

where I : 𝑙1 → 𝑙1 denotes the convolution operator; that is,𝑦(𝑡) = (I ∗ 𝑤)(𝑡). System (5) has 𝑙1-induced performance
at the level 𝛾 if, under zero initial conditions, ‖I‖(𝑙1−𝑙1) < 𝛾,
where 𝛾 is a given scalar.

Lemma 7 (see [4]). Positive system (5) is asymptotically stable
and satisfies ‖𝑦‖𝑙1 ≤ 𝛾‖𝑤‖𝑙1 if and only if there exists a vector𝑝 ≻ 0 satisfying

1𝑇𝐶 + 𝑝𝑇𝐴 ≺ 0𝑝𝑇𝐵 + 1𝑇𝐷 − 𝛾1𝑇 ≺ 0. (7)



Mathematical Problems in Engineering 3

Definition 8. Suppose that positive system (1) is stable; its 𝑙1-
induced norm is defined as󵄩󵄩󵄩󵄩I𝑀󵄩󵄩󵄩󵄩(𝑙1−𝑙1) ≜ sup

𝑤 ̸=0,𝑤∈𝑙1(R
n
+
),𝑟0∈𝑆

󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑙1‖𝑤‖𝑙1 , (8)

where I : 𝑙1 → 𝑙1 denotes the convolution operator; that is,𝑦(𝑡) = (I ∗ 𝑤)(𝑡). System (1) has 𝑙1-induced performance at
the level 𝛾 if, under zero initial conditions, ‖I𝑀‖(𝑙1−𝑙1) < 𝛾,
where 𝛾 is a given scalar.

3. Stochastic Stability and 𝑙1
Performance Analysis

In this section, we consider the stochastic stability and
analyze the 𝑙1-induced performance for positive Markovian
jump systems.

Theorem 9. The following statements are equivalent:

(i) Positive system (1) is stochastically stable.
(ii) There exist vectors V𝑖 ≻ 0, 𝑖 ∈ 𝑆, such that𝐴𝑇𝑖 V𝑖 + 𝑁∑

𝑗=1

𝜆𝑖𝑗V𝑗 ≺ 0. (9)

(iii) 𝐴̃ = Π𝑇 ⊗ 𝐼𝑛 + diag{𝐴1, 𝐴2, . . . , 𝐴𝑁} is Hurwitz.
Proof. (i)⇔(iii) Define the indicator function as (2.2) in [22]

1{𝑟𝑡=𝑖} (𝑤) = {{{1 𝑟𝑡 (𝑤) = 𝑖, 𝑖 ∈ 𝑆0 otherwise. (10)

Let 𝑞(𝑡) = 𝐸{𝑥(𝑡)}, 𝑞𝑖(𝑡) = 𝐸{𝑥(𝑡)1{𝑟𝑡=𝑖}}. Then

𝑞 (𝑡) = 𝐸 {𝑥 (𝑡)} = 𝑁∑
𝑖=1

𝐸 {𝑥 (𝑡) 1{𝑟𝑡=𝑖}} = 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) . (11)

By [22], we have𝑞̇𝑖 (𝑡) = 𝐴 𝑖𝑞𝑖 (𝑡) + 𝑁∑
𝑗=1

𝜆𝑗𝑖𝑞𝑗 (𝑡) . (12)

Note 𝑞̂ (𝑡) = [𝑞𝑇1 (𝑡) 𝑞𝑇2 (𝑡) ⋅ ⋅ ⋅ 𝑞𝑇𝑁 (𝑡)]𝑇 ,𝐴̃ = Π𝑇 ⊗ 𝐼𝑛 + diag {𝐴1, 𝐴2, . . . , 𝐴𝑁} . (13)

Then we obtain 𝑞̂(𝑡) that satisfies the following system:̇̂𝑞 (𝑡) = 𝐴̃𝑞̂ (𝑡)𝑞̂ (0) = [𝑞𝑇1 (0) 𝑞𝑇2 (0) ⋅ ⋅ ⋅ 𝑞𝑇𝑁 (0)]𝑇 ⪰ 0. (14)

Also we can conclude the following equation as (16) in [12]:

󵄩󵄩󵄩󵄩𝑞̂ (𝑡)󵄩󵄩󵄩󵄩1 = 1𝑇𝑁𝑛𝑞̂ (𝑡) = 1𝑇𝑛
𝑁∑
𝑖=1

𝑞𝑖 (𝑡) = 1𝑇𝑛𝐸 {𝑥 (𝑡)}= 𝐸 {‖𝑥 (𝑡)‖1} . (15)

Then we have

𝐸{∫∞
0
‖𝑥 (𝑡)‖1 𝑑𝑡 | 𝑥 (0) , 𝑟0}= ∫∞
0
𝐸 {‖𝑥 (𝑡)‖1 | 𝑥 (0) , 𝑟0} 𝑑𝑡 = ∫∞

0

󵄩󵄩󵄩󵄩𝑞̂ (𝑡)󵄩󵄩󵄩󵄩1 𝑑𝑡< ∞ (16)

which implies lim𝑡→∞‖𝑞̂(𝑡)‖1 = 0; that is, for every 𝑞̂(0) ⪰0, lim𝑡→∞𝑞̂(𝑡) = 0. Therefore, the stochastic stability of
system (1) is equivalent to asymptotic stability of system
(14). By Lemma 5, system (14) being asymptotically stable is
equivalent to the matrix 𝐴̃ = Π𝑇 ⊗ 𝐼𝑛 + diag{𝐴1, 𝐴2, . . . , 𝐴𝑁}
being Hurwitz.

(ii)⇔(iii) By Lemma 5, the matrix 𝐴̃ = Π𝑇 ⊗ 𝐼𝑛 +
diag{𝐴1, 𝐴2, . . . , 𝐴𝑁} being Hurwitz is equivalent to the fact
that there exists a vector 𝑝 ≻ 0 satisfying 𝑝𝑇𝐴̃ ≺ 0. Let𝑝 = [𝑝𝑇1 𝑝𝑇2 ⋅ ⋅ ⋅ 𝑝𝑇𝑛 ]𝑇, where 𝑝𝑖 ∈ R𝑛; then

(𝑝𝑇1 𝑝𝑇2 ⋅ ⋅ ⋅ 𝑝𝑇𝑛 )((
𝐴1 + 𝜆11𝐼𝑛 𝜆21𝐼𝑛 ⋅ ⋅ ⋅ 𝜆𝑁1𝐼𝑛𝜆12𝐼𝑛 𝐴2 + 𝜆22𝐼𝑛 ⋅ ⋅ ⋅ 𝜆𝑁2𝐼𝑛... ... d

...𝜆1𝑁𝐼𝑛 𝜆2𝑁𝐼𝑛 ⋅ ⋅ ⋅ 𝐴𝑁 + 𝜆𝑁𝑁𝐼𝑛
)
)

≺ 0 (17)

which implies 𝑝𝑇𝑖 𝐴 𝑖 + ∑𝑁𝑗=1 𝜆𝑖𝑗𝑝𝑇𝑗 ≺ 0; it is equivalent to𝐴𝑇𝑖 𝑝𝑖 + ∑𝑁𝑗=1 𝜆𝑖𝑗𝑝𝑗 ≺ 0. The conclusion holds. The proof is
completed.

Theorem 10. For positive system (1) and a given 𝛾 > 0, system
(1) is stochastically stable and satisfies ‖𝑦‖𝑙1 ≤ 𝛾‖𝑤‖𝑙1 if and
only if there exist vectors 𝑝𝑖 ≻ 0, 𝑖 ∈ 𝑆, such that
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1𝑇𝐶𝑖 + 𝑝𝑇𝑖 𝐴 𝑖 + 𝑁∑
𝑗=1

𝜆𝑖𝑗𝑝𝑇𝑗 ≺ 0 (18)𝑝𝑇𝑖 𝐵𝑖 + 1𝑇𝐷𝑖 − 𝛾1𝑇 ≺ 0. (19)

Proof. Define the indicator function as Theorem 9. Let𝑧̂ (𝑡) = [𝑧𝑇1 (𝑡) 𝑧𝑇2 (𝑡) ⋅ ⋅ ⋅ 𝑧𝑇𝑁 (𝑡)]𝑇𝑤̂ (𝑡) = [𝑤𝑇1 (𝑡) 𝑤𝑇2 (𝑡) ⋅ ⋅ ⋅ 𝑤𝑇𝑁 (𝑡)]𝑇𝑧𝑖 (𝑡) = 𝐸 {𝑦 (𝑡) 1{𝑟𝑡=𝑖}}𝑤𝑖 (𝑡) = 𝐸 {𝑤 (𝑡) 1{𝑟𝑡=𝑖}}𝐴̃ = Π𝑇 ⊗ 𝐼𝑛 + diag {𝐴1, 𝐴2, . . . , 𝐴𝑁}𝐵̃ = diag {𝐵1, 𝐵2, . . . , 𝐵𝑁}𝐶 = diag {𝐶1, 𝐶2, . . . , 𝐶𝑁}𝐷̃ = diag {𝐷1, 𝐷2, . . . , 𝐷𝑁} .

(20)

By [22], it follows that𝑑𝑞𝑖 (𝑡) = 𝐸 {𝑑𝑥 (𝑡) 1{𝑟𝑡=𝑖} + 𝑥 (𝑡) 𝑑1{𝑟𝑡=𝑖}}= 𝐸 {(𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑤 (𝑡)) 1{𝑟𝑡=𝑖}} 𝑑𝑡+ 𝐸 {𝑥 (𝑡) 𝑑1{𝑟𝑡=𝑖}}= 𝐴 𝑖𝐸 {𝑥 (𝑡) 1{𝑟𝑡=𝑖}} 𝑑𝑡 + 𝐵𝑖𝐸 {𝑤 (𝑡) 1{𝑟𝑡=𝑖}} 𝑑𝑡+ 𝑁∑
𝑗=1

𝜆𝑗𝑖𝑞𝑗 (𝑡) 𝑑𝑡
= 𝐴 𝑖𝑞𝑖 (𝑡) 𝑑𝑡 + 𝐵𝑖𝑤𝑖 (𝑡) 𝑑𝑡 + 𝑁∑

𝑗=1

𝜆𝑗𝑖𝑞𝑗 (𝑡) 𝑑𝑡𝑧𝑖 (𝑡) = 𝐸 {𝑦 (𝑡) 1{𝑟𝑡=𝑖}}= 𝐸 {[𝐶𝑖𝑥 (𝑡) + 𝐷𝑖𝑤 (𝑡)] 1{𝑟𝑡=𝑖}}= 𝐶𝑖𝐸 {𝑥 (𝑡) 1{𝑟𝑡=𝑖}} + 𝐷𝑖𝐸 {𝑤 (𝑡) 1{𝑟𝑡=𝑖}}= 𝐶𝑖𝑞𝑖 (𝑡) + 𝐷𝑖𝑤𝑖 (𝑡) .

(21)

From (21), we obtain the following system:̇̂𝑞 (𝑡) = 𝐴̃𝑞̂ (𝑡) + 𝐵̃𝑤̂ (𝑡)𝑧̂ (𝑡) = 𝐶̃𝑞̂ (𝑡) + 𝐷̃𝑤̂ (𝑡) . (22)

Since the proof ofTheorem 9, system (22) is stable if and only
if system (1) is stochastically stable. Next, we want to show
the relationship of 𝑙1-induced performance between system
(1) and system (22). Applying the similar way of (15), there are‖𝑧̂(𝑡)‖1 = 𝐸{‖𝑦(𝑡)‖1} and ‖𝑤̂(𝑡)‖1 = 𝐸{‖𝑤(𝑡)‖1}; then ‖𝑦‖𝑙1 ≤𝛾‖𝑤‖𝑙1 is equivalent to ‖𝑧̂‖𝑙1 ≤ 𝛾‖𝑤̂‖𝑙1 . Therefore, system (1) is

stochastically stable and satisfies ‖𝑦‖𝑙1 ≤ 𝛾‖𝑤‖𝑙1 if and only if
system (22) is stable and satisfies ‖𝑧̂‖𝑙1 ≤ 𝛾‖𝑤̂‖𝑙1 . By Lemma 7,

there exists a vector 𝑝 = [𝑝𝑇1 𝑝𝑇2 ⋅ ⋅ ⋅ 𝑝𝑇𝑛 ]𝑇 ⪰ 0 satisfying
1𝑇𝐶̃ + 𝑝𝑇𝑖 𝐴̃ ≺ 0𝑝𝑇𝑖 𝐵̃ + 1𝑇𝐷̃ − 𝛾1𝑇 ≺ 0. (23)

Substitute 𝐴̃, 𝐵̃, 𝐶, and 𝐷̃ to (23); the conclusion is proved.
The proof is completed.

4. Design of Observer

We know that the conventional observers estimate the state
of the system in an asymptotic way. If we want to obtain
the information of the transient state of positive interval
Markovian jump systems, we need to design new observers.
Therefore, we design a pair of positive 𝑙1 state-bounding
observers that can bound the state 𝑥(𝑡) all the time.

For system (1), observers are considered as follows:󵱰̇𝑥 (𝑡) = 𝐹𝑖 󵱰𝑥 (𝑡) + 𝐺𝑖𝑦 (𝑡) + 𝐾𝑖𝑤 (𝑡) (24)̇𝑥̆ (𝑡) = 𝐹𝑖𝑥̆ (𝑡) + 𝐺𝑖𝑦 (𝑡) + 𝐾𝑖𝑤 (𝑡) , (25)

where 𝑖 ∈ 𝑆, 󵱰𝑥(𝑡) ∈ R𝑛, and 𝑥̆(𝑡) ∈ R𝑛 are the upper-bounding
and lower-bounding estimated state of state 𝑥(𝑡); 𝐹𝑖 ∈ R𝑛×𝑛,𝐺𝑖 ∈ R𝑛×𝑝,𝐾𝑖 ∈ R𝑛×𝑚, 𝐹𝑖 ∈ R𝑛×𝑚,𝐺𝑖 ∈ R𝑛×𝑚, and𝐾𝑖 ∈ R𝑛×𝑚

are observer parameters to be determined.
Define 󵱰𝑒(𝑡) = 󵱰𝑥(𝑡) −𝑥(𝑡). By systems (1) and (24), we have󵱰̇𝑒 (𝑡) = (𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴 𝑖) 𝑥 (𝑡) + 𝐹𝑖󵱰𝑒 (𝑡)+ (𝐺𝑖𝐷𝑖 + 𝐾𝑖 − 𝐵𝑖)𝑤 (𝑡) . (26)

We let 󵱰𝑧𝑜(𝑡) = 𝐿 𝑖󵱰𝑒(t), where 󵱰𝑧𝑜(𝑡) is the output of error state;𝐿 𝑖 ⪰ 0 (𝑖 ∈ 𝑆) are known.
Define 󵱰𝑥𝑜 (𝑡) = (𝑥 (𝑡)󵱰𝑒 (𝑡)) ,𝐴𝑜𝑖 = ( 𝐴 𝑖 0𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴 𝑖 𝐹𝑖)𝐵𝑜𝑖 = ( 𝐵𝑖𝐺𝑖𝐷𝑖 + 𝐾𝑖 − 𝐵𝑖) ,𝐶𝑜𝑖 = (0 𝐿 𝑖) .

(27)

Then by (26) and (27), we have the system as follows:󵱰̇𝑥𝑜 (𝑡) = 𝐴𝑜𝑖 󵱰𝑥𝑜 (𝑡) + 𝐵𝑜𝑖𝑤 (𝑡)󵱰𝑧𝑜 (𝑡) = 𝐶𝑜𝑖 󵱰𝑥𝑜 (𝑡) . (28)

Observer (24) is designed for positive system (1) to approxi-
mate 𝑥(𝑡) by 󵱰𝑥(𝑡). Therefore, the estimate 󵱰𝑥(𝑡) is required to
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be positive; that is, the observer (24) is positive. By Lemma 3,
we know it needs that 𝐹𝑖 is Metzler, 𝐺𝑖 ⪰ 0 and 𝐾𝑖 ⪰ 0.

Therefore, the upper-bounding observer problem can be
stated as follows: design a positive observer in the formof (24)
such that system (28) is positive and stochastically stable and
satisfies the performance ‖󵱰𝑧𝑜‖𝑙1 ≤ 𝛾‖𝑤‖𝑙1 under zero initial
conditions.

Similarly, define ̆𝑒(𝑡) = 𝑥(𝑡)−𝑥̆(𝑡). By systems (1) and (25),
we have ̇̆𝑒 (𝑡) = (𝐴 𝑖 − 𝐺𝑖𝐶𝑖 − 𝐹𝑖) 𝑥 (𝑡) + 𝐹𝑖 ̆𝑒 (𝑡)+ (𝐵𝑖 − 𝐺𝑖𝐷𝑖 − 𝐾𝑖) 𝑤 (𝑡) . (29)

We let 𝑧̆𝑜(𝑡) = 𝐿 𝑖 ̆𝑒(𝑡), where 𝑧𝑜(𝑡) is the output of error state;𝐿 𝑖 ⪰ 0 (𝑖 ∈ 𝑆) are known. Define𝑥̆𝑜 (𝑡) = (𝑥 (𝑡)𝑒̆ (𝑡)) ,𝐴𝑜𝑖 = ( 𝐴 𝑖 0𝐴 𝑖 − 𝐺𝑖𝐶𝑖 − 𝐹𝑖 𝐹𝑖)𝐵𝑜𝑖 = ( 𝐵𝑖𝐵𝑖 − 𝐺𝑖𝐷𝑖 − 𝐾𝑖) ,𝐶𝑜𝑖 = (0 𝐿 𝑖) .
(30)

Then by (29) and (30), we have the system as follows:̇𝑥̆𝑜 (𝑡) = 𝐴𝑜𝑖𝑥𝑜 (𝑡) + 𝐵𝑜𝑖𝑤 (𝑡)𝑧̆𝑜 (𝑡) = 𝐶𝑜𝑖𝑥𝑜 (𝑡) . (31)

Therefore, the lower-bounding observer problem can be
stated as follows: design a positive observer in the form of (25)
such that system (31) is positive and stochastically stable and
satisfies the performance ‖𝑧̆𝑜‖𝑙1 ≤ 𝛾‖𝑤‖𝑙1 under zero initial
conditions.

Next, we give the existence condition of the upper-
bounding and lower-bounding observer. Before giving the
condition, we denote system matrix as follows:𝐴𝑖 = (𝐴𝑖1 𝐴𝑖2 ⋅ ⋅ ⋅ 𝐴𝑖𝑛)𝑇𝐴𝑖 = (𝐴𝑖1 𝐴𝑖2 ⋅ ⋅ ⋅ 𝐴𝑖𝑛)𝑇𝐵𝑖 = (𝐵𝑖1 𝐵𝑖2 ⋅ ⋅ ⋅ 𝐵𝑖𝑛)𝑇𝐵𝑖 = (𝐵𝑖1 𝐵𝑖2 ⋅ ⋅ ⋅ 𝐵𝑖𝑛)𝑇𝐶𝑖 = (𝐶𝑖1 𝐶𝑖2 ⋅ ⋅ ⋅ 𝐶𝑖𝑛)𝐶𝑖 = (𝐶𝑖1 𝐶𝑖2 ⋅ ⋅ ⋅ 𝐶𝑖𝑛) ,

(32)

where 𝐴𝑖𝑡 ∈ R𝑛, 𝐵𝑖𝑡 ∈ R𝑚, 𝐶𝑖𝑡 ∈ R𝑝, 𝐴𝑖𝑡 ∈ R𝑛, 𝐵𝑖𝑡 ∈ R𝑚,𝐶𝑖𝑡 ∈ R𝑝, 𝑖 ∈ 𝑆, 𝑡 = 1, 2, . . . , 𝑛, 𝑠 = 1, 2, . . . , 𝑚.
Theorem 11. Consider positive system (1). For a given 𝛾 >0, there exists positive upper-bounding observer (24) such

that system (28) is positive and stochastically stable and
satisfies ‖󵱰𝑧𝑜‖𝑙1 ≤ 𝛾‖𝑤‖𝑙1 if there exist Metzler matrix𝜂𝑖 = (𝜂𝑖1 𝜂𝑖2 ⋅ ⋅ ⋅ 𝜂𝑖𝑛)𝑇, 𝜉𝑖 = (𝜉𝑖1 𝜉𝑖2 ⋅ ⋅ ⋅ 𝜉𝑖𝑛)𝑇 ⪰ 0,𝜃𝑖 = (𝜃𝑖1 𝜃𝑖2 ⋅ ⋅ ⋅ 𝜃𝑖𝑛)𝑇 ⪰ 0, 𝛼𝑖 ≻ 0, and 𝛽𝑖 =(𝛽𝑖1 𝛽𝑖2 ⋅ ⋅ ⋅ 𝛽𝑖𝑛)𝑇 ≻ 0 with 𝛼𝑖 ∈ R𝑛, 𝛽𝑖 ∈ R𝑛, 𝜂𝑖𝑡 ∈ R𝑛,𝜉𝑖𝑡 ∈ R𝑝, 𝜃𝑖𝑡 ∈ R𝑚, 𝑖 ∈ 𝑆, 𝑡 = 1, 2, . . . , 𝑛, such that𝜂𝑇𝑖𝑡 + 𝜉𝑇𝑖𝑡𝐶𝑖 − 𝛽𝑖𝑡𝐴𝑇𝑖𝑡 ⪰ 0 (33)𝜉𝑇𝑖𝑡𝐷𝑖 + 𝜃𝑇𝑖𝑡 − 𝛽𝑖𝑡𝐵𝑇𝑖𝑡 ⪰ 0 (34)𝛼𝑇𝑖 𝐴𝑖 + 𝑛∑

𝑗=1

𝜂𝑇𝑖𝑗 + 𝑛∑
𝑗=1

𝜉𝑇𝑖𝑗𝐶𝑖 − 𝛽𝑇𝑖 𝐴𝑖 + 𝑁∑
𝑗=1

𝜆𝑖𝑗𝛼𝑇𝑗 ≺ 0 (35)

1𝑇𝐿 𝑖 + 𝑛∑
𝑗=1

𝜂𝑇𝑖𝑗 + 𝑁∑
𝑗=1

𝜆𝑖𝑗𝛽𝑇𝑗 ≺ 0 (36)

𝛼𝑇𝑖 𝐵𝑖 + 𝑛∑
𝑗=1

𝜉𝑇𝑖𝑗𝐷𝑖 + 𝑛∑
𝑗=1

𝜃𝑇𝑖𝑗 − 𝛽𝑇𝑖 𝐵𝑖 − 𝛾1𝑇 ≺ 0. (37)

Then, the parameters of the observer are given by𝐺𝑖 = (𝐺𝑖1 𝐺𝑖2 ⋅ ⋅ ⋅ 𝐺𝑖𝑛)𝑇= (𝛽−1𝑖1 𝜉𝑖1 𝛽−1𝑖2 𝜉𝑖2 ⋅ ⋅ ⋅ 𝛽−1𝑖𝑛 𝜉𝑖𝑛)𝑇𝐹𝑖 = (𝐹𝑖1 𝐹𝑖2 ⋅ ⋅ ⋅ 𝐹𝑖𝑛)𝑇= (𝛽−1𝑖1 𝜂𝑖1 𝛽−1𝑖2 𝜂𝑖2 ⋅ ⋅ ⋅ 𝛽−1𝑖𝑛 𝜂𝑖𝑛)𝑇𝐾𝑖 = (𝐾𝑖1 𝐾𝑖2 ⋅ ⋅ ⋅ 𝐾𝑖𝑛)𝑇= (𝛽−1𝑖1 𝜃𝑖1 𝛽−1𝑖2 𝜃𝑖2 ⋅ ⋅ ⋅ 𝛽−1𝑖𝑛 𝜃𝑖𝑛)𝑇 .
(38)

Proof. Since 𝛽𝑖 ≻ 0, 𝜉𝑖 ⪰ 0, and 𝜃𝑖 ⪰ 0 and 𝜂𝑖 is Metzler, it
follows that 𝐹𝑖 is Metzler, 𝐺𝑖 ⪰ 0 and 𝐾𝑖 ⪰ 0 from (38). Thus,
observer (24) is positive.

From (33), (34), and 𝛽𝑖 ≻ 0, we obtain𝛽−1𝑖𝑡 𝜂𝑇𝑖𝑡 + 𝛽−1𝑖𝑡 𝜉𝑇𝑖𝑡𝐶𝑖 − 𝐴𝑇𝑖𝑡 ⪰ 0𝛽−1𝑖𝑡 𝜉𝑇𝑖𝑡𝐷𝑖 + 𝛽−1𝑖𝑡 𝜃𝑇𝑖𝑡 − 𝐵𝑇𝑖𝑡 ⪰ 0. (39)

By (38), we have 𝐹𝑇𝑖𝑡 + 𝐺𝑇𝑖𝑡𝐶𝑖 − 𝐴𝑇𝑖𝑡 ⪰ 0𝐺𝑇𝑖𝑡𝐷𝑖 + 𝐾𝑇𝑖𝑡 − 𝐵𝑇𝑖𝑡 ⪰ 0. (40)

Further, we obtain 𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴𝑖 ⪰ 0𝐺𝑖𝐷𝑖 + 𝐾𝑖 − 𝐵𝑖 ⪰ 0. (41)
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From (41) and 𝐺𝑖 ⪰ 0, it follows that, for any 𝐴 𝑖 ∈ [𝐴𝑖, 𝐴 𝑖],𝐵𝑖 ∈ [𝐵𝑖, 𝐵𝑖], 𝐶𝑖 ∈ [𝐶𝑖, 𝐶𝑖], and 𝐷𝑖 ∈ [𝐷𝑖, 𝐷𝑖],𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴 𝑖 ⪰ 𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴𝑖 ⪰ 0𝐺𝑖𝐷𝑖 + 𝐾𝑖 − 𝐵𝑖 ⪰ 𝐺𝑖𝐷𝑖 + 𝐾𝑖 − 𝐵𝑖 ⪰ 0 (42)

which imply 𝐴𝑜𝑖 is Metzler and 𝐵𝑜𝑖 ⪰ 0 in (27); therefore,
system (28) is positive.

From (38), we have

𝑛∑
𝑗=1

𝜉𝑇𝑖𝑗 = 𝑛∑
𝑗=1

𝛽𝑖𝑗𝐺𝑇𝑖𝑗 = 𝛽𝑖𝑇𝐺𝑖
𝑛∑
𝑗=1

𝜂𝑇𝑖𝑗 = 𝑛∑
𝑗=1

𝛽𝑖𝑗𝐹𝑇𝑖𝑗 = 𝛽𝑖𝑇𝐹𝑖
𝑛∑
𝑗=1

𝜃𝑇𝑖𝑗 = 𝑛∑
𝑗=1

𝛽𝑖𝑗𝐾𝑇𝑖𝑗 = 𝛽𝑖𝑇𝐾𝑖.
(43)

According to (43), (35)–(37) become𝛼𝑇𝑖 𝐴𝑖 + 𝛽𝑇𝑖 𝐹𝑖 + 𝛽𝑇𝑖 𝐺𝑖𝐶𝑖 − 𝛽𝑇𝑖 𝐴𝑖 + 𝑁∑
𝑗=1

𝜆𝑖𝑗𝛼𝑇𝑗 ≺ 0
1𝑇𝐿 𝑖 + 𝛽𝑇𝑖 𝐹𝑖 + 𝑁∑

𝑗=1

𝜆𝑖𝑗𝛽𝑇𝑗 ≺ 0𝛼𝑇𝑖 𝐵𝑖 + 𝛽𝑇𝑖 𝐺𝑖𝐷𝑖 + 𝛽𝑇𝑖 𝐾𝑖 − 𝛽𝑇𝑖 𝐵𝑖 − 𝛾1𝑇 ≺ 0
(44)

which imply that

1𝑇 (0 𝐿 𝑖) + 𝑝𝑇𝑖 ( 𝐴𝑖 0𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴𝑖 𝐹𝑖) + 𝑁∑𝑗=1𝜆𝑖𝑗𝑝𝑇𝑗 ≺ 0𝑝𝑇𝑖 ( 𝐵𝑖𝐺𝑖𝐷𝑖 + 𝐾𝑖 − 𝐵𝑖) − 𝛾1𝑇 ≺ 0,
(45)

where 𝑝𝑇𝑖 = (𝛼𝑇𝑖 𝛽𝑇𝑖 ). For any 𝐴 𝑖 ∈ [𝐴𝑖, 𝐴 𝑖], 𝐵𝑖 ∈ [𝐵𝑖, 𝐵𝑖],𝐶𝑖 ∈ [𝐶𝑖, 𝐶𝑖], and 𝐷𝑖 ∈ [𝐷𝑖, 𝐷𝑖], we obtain𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴 𝑖 ⪯ 𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴𝑖𝐺𝑖𝐷𝑖 + 𝐾𝑖 − 𝐵𝑖 ⪯ 𝐺𝑖𝐷𝑖 + 𝐾𝑖 − 𝐵𝑖. (46)

Further, we have

1𝑇 (0 𝐿 𝑖) + 𝑝𝑇𝑖 ( 𝐴 𝑖 0𝐹𝑖 + 𝐺𝑖𝐶𝑖 − 𝐴 𝑖 𝐹𝑖) + 𝑁∑𝑗=1𝜆𝑖𝑗𝑝𝑇𝑗 ≺ 0𝑝𝑇𝑖 ( 𝐵𝑖𝐺𝑖D𝑖 + 𝐾𝑖 − 𝐵𝑖) − 𝛾1𝑇 ≺ 0. (47)

By Theorem 10, system (28) is stochastically stable and
satisfies ‖𝑦‖𝑙1 ≤ 𝛾‖𝑤‖𝑙1 . The proof is completed.

Similarly, we give the existence condition of the lower-
bounding observer.

Theorem 12. Consider positive system (1). For a given 𝛾 >0, there exists positive lower-bounding observer (25) such
that system (31) is positive and stochastically stable and
satisfies ‖𝑧̆𝑜‖𝑙1 ≤ 𝛾‖𝑤‖𝑙1 if there exist Metzler matrix𝜂
𝑖
= (𝜂

𝑖1
𝜂
𝑖2
⋅ ⋅ ⋅ 𝜂
𝑖𝑛
)𝑇, 𝜉
𝑖
= (𝜉

𝑖1
𝜉
𝑖2
⋅ ⋅ ⋅ 𝜉
𝑖𝑛
)𝑇 ⪰ 0,𝜃𝑖 = (𝜃𝑖1 𝜃𝑖2 ⋅ ⋅ ⋅ 𝜃𝑖𝑛)𝑇 ⪰ 0, and 𝛼𝑖 ≻ 0, 𝛽𝑖 =(𝛽𝑖1 𝛽𝑖2 ⋅ ⋅ ⋅ 𝛽𝑖𝑛)𝑇 ≻ 0 with 𝛼𝑖 ∈ R𝑛, 𝛽𝑖 ∈ R𝑛, 𝜂
𝑖𝑡
∈ R𝑛,𝜉

𝑖𝑡
∈ R𝑝, 𝜃𝑖𝑡 ∈ R𝑚, 𝑖 ∈ 𝑆, 𝑡 = 1, 2, . . . , 𝑛, such that𝛽𝑖𝑡𝐴𝑇𝑖𝑡 − 𝜉𝑇𝑖𝑡𝐶𝑖 − 𝜂𝑇𝑖𝑡 ⪰ 0𝛽𝑖𝑡𝐵𝑇𝑖𝑡 − 𝜉𝑇𝑖𝑡𝐷𝑖 − 𝜃𝑇𝑖𝑡 ⪰ 0𝛼𝑇𝑖 𝐴𝑖 + 𝛽𝑇𝑖 𝐴𝑖 − 𝑛∑

𝑗=1

𝜉𝑇
𝑖𝑗
𝐶𝑖 − 𝑛∑
𝑗=1

𝜂𝑇
𝑖𝑗
+ 𝑁∑
𝑗=1

𝜆𝑖𝑗𝛼𝑇𝑗 ≺ 0
𝑛∑
𝑗=1

𝜂𝑇
𝑖𝑗
+ 𝑁∑
𝑗=1

𝜆𝑖𝑗𝛽𝑇𝑗 + 1𝑇𝐿 i ≺ 0
𝛼𝑇𝑖 𝐵𝑖 + 𝛽𝑇𝑖 𝐵𝑖 − 𝑛∑

𝑗=1

𝜉𝑇
𝑖𝑗
𝐷𝑖 − 𝑛∑
𝑗=1

𝜃𝑇𝑖𝑗 − 𝛾1𝑇 ≺ 0.
(48)

Then, the parameters of the observer are given by𝐺𝑖 = (𝐺𝑖1 𝐺𝑖2 ⋅ ⋅ ⋅ 𝐺𝑖𝑛)𝑇= (𝛽−1𝑖1 𝜉𝑖1 𝛽−1𝑖2 𝜉𝑖2 ⋅ ⋅ ⋅ 𝛽−1𝑖𝑛 𝜉𝑖𝑛)𝑇𝐹𝑖 = (𝐹𝑖1 𝐹𝑖2 ⋅ ⋅ ⋅ 𝐹𝑖𝑛)𝑇= (𝛽−1𝑖1 𝜂𝑖1 𝛽−1𝑖2 𝜂𝑖2 ⋅ ⋅ ⋅ 𝛽−1𝑖𝑛 𝜂𝑖𝑛)𝑇𝐾𝑖 = (𝐾𝑖1 𝐾𝑖2 ⋅ ⋅ ⋅ 𝐾𝑖𝑛)𝑇= (𝛽−1𝑖1 𝜃𝑖1 𝛽−1𝑖2 𝜃𝑖2 ⋅ ⋅ ⋅ 𝛽−1𝑖𝑛 𝜃𝑖𝑛)𝑇 .
(49)

5. Numerical Examples

Consider a three-dimensional continuous-time uncertain
Markovian jump system of form (1) with 𝑟𝑡 ∈ 𝑆 = {1, 2}, and
its parameters are given by

𝐴1 = (−1.5 ± 0.01 0.1 0.50.5 −2 ± 0.01 0.20.1 0.7 ± 0.02 −0.9) ,
𝐴2 = (−1.4 ± 0.02 0.2 0.4 ± 0.010.7 −1.5 0.30.2 0.5 −0.8 ± 0.03) ,
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𝐵1 = (0.20.50.3) ,
𝐵2 = ( 0.10.20.3 ± 0.01) ,
𝐶1 = (0.9 0.8 1 ± 0.1) ,𝐶2 = (0.8 ± 0.03 0.9 0.9) ,𝐷1 = 1,𝐷2 = 1.2 ± 0.02.

(50)

The transition rate matrix is given as

Π = (−0.5 0.50.4 −0.4) . (51)

Here, we choose 𝐿1 = (0.2 0.3 0.4), 𝐿2 = (0.3 0.2 0.4) and
assume that 𝛾 = 0.1. Solving the LP problem in Theorems
11 and 12, the parameters of the positive upper-bounding
observer and lower-bounding observer are given by𝐺1 = (0.0242 0.0173 0.0080)𝑇 ,𝐺2 = (0.0233 0.0130 0.0057)𝑇

𝐹1 = (−1.5315 0.0807 0.47330.4066 −2.0237 0.18100.0722 0.6736 −0.9088)
𝐹2 = (−1.4393 0.1791 0.36910.6892 −1.5117 0.28830.1953 0.4949 −0.8051)𝐾1 = (0.1757 0.4826 0.2920)𝑇 ,𝐾2 = (0.0716 0.1842 0.2831)𝑇𝐺1 = (0.0017 0.0011 0.0007)𝑇 ,𝐺2 = (0.1244 0.0005 0.0100)𝑇
𝐹1 = (−1.4914 0.0987 0.49840.4990 −1.9890 0.19900.1006 0.7206 −0.9006)
𝐹2 = (−1.4758 0.1230 0.29790.7010 −1.4912 0.29950.2230 0.7160 −0.7790)

3
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Figure 1: The simulation of system mode 𝑟𝑡.

Time (s)
151050

x
1
(t
)

x1(t)

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Lower-bounding estimate x1(t)

Upper-bounding estimate x1(t)

Figure 2: System state and estimated system state 𝑥1(𝑡).
𝐾1 = (0.1984 0.4989 0.2993)𝑇 ,𝐾2 = (0 0.1993 0.2980)𝑇 .

(52)

With input 𝑤(𝑡) = 2.3𝑒−𝑡| sin 4𝑡| and the initial conditions𝑥(0) = (0 0 0), we have the simulation of system mode
shown in Figure 1. The system state, upper-bounding, and
lower-bounding estimated states are showed in Figures 2, 3,
and 4.
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Figure 3: System state and estimated system state 𝑥2(𝑡).
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Figure 4: System state and estimated system state 𝑥3(𝑡).
6. Conclusions

In this paper, positive 𝑙1 state-bounding observer design for
a class of positive Markovian jump systems with interval
parameter uncertainties is investigated. First, necessary and
sufficient conditions are obtained for stochastic stability and𝑙1 performance of positive Markovian jump systems by an
“equivalent” deterministic positive linear system.Then based
on the proposed results, sufficient conditions for existence
of the positive 𝑙1 state-bounding observer are derived. The
conditions can be solved in terms of linear programming.

Finally, a numerical example is used to demonstrate the
effectiveness of the proposed results.

So far, many results on Markov jump systems have
been applied to networked control systems, such as [23–
27]. However, the state of networked control systems may
need to be nonnegative. Therefore, the results of positive
Markov jump systems can also be applied to networked
control systems, which have been proposed in a few papers,
such as [20]. In the future, we can try our best to extend our
results to deal with the problemof networked control systems.
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