
Research Article
The Multiobjective Constraint Fault-Tolerant
Control of Event-Triggered Nonuniform Transmission for
Networked T-S Fuzzy System

Ya-jie Li1,2 and Wei Li1

1College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2Automation Institute of Lanzhou Petrochemical of PetroChina, Lanzhou 730060, China

Correspondence should be addressed to Wei Li; liwei@lut.cn

Received 13 April 2016; Revised 19 September 2016; Accepted 5 October 2016

Academic Editor: Mohammad D. Aliyu

Copyright © 2016 Y.-j. Li and W. Li. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Considering the actuator saturation, the problem of multiobjective constraint fault-tolerant control is studied for networked
Takagi-Sugeno (T-S) fuzzy system with nonuniform transmission period under the discrete event-triggered communication
scheme (DETCS). A closed-loop T-S fuzzy model, which includes numerous factors such as actuator saturation, actuator failure,
event-triggered condition, nonuniform transmission period, and time-delay, is established by transferring the effect caused by
the nonuniform update period on the system performance into the effect on the system time-delay. Two stability criterions
and two codesign methods for the networked closed-loop failure T-S fuzzy system are developed based on a discontinuous
Lyapunov-Krasovskii function, a kind of reciprocally convex technology, a kind of linear convex combination, Jessen inequality,
and Wirtinger’s inequality. A feasible experimental solution is presented to verify the effectiveness of the proposed method.

1. Introduction

The T-S fuzzy model is known as an effective way of
expressing nonlinear system, in which the model expresses
the nonlinear system into a combination of several linear
subsystems with different membership degrees, applying
numerous mature methods of the linear system into the
nonlinear system [1, 2]. Therefore, a large class of nonlin-
ear systems can be well approximated by T-S fuzzy mod-
els because these models can easily present the dynamic
performance of the complex system [3], like wastewater
treatment plant [3], a nonlinear model of the vehicle [4],
and so on [5]. There are numerous results [6–9] of analysis
and synthesis for the nonlinear networked control sys-
tem (NCS) described by T-S fuzzy model because of the
successful application of the network in different indus-
tries. Furthermore, these results not only possess impor-
tant theoretical significance but also have special practical
value.

Based on the existing nonlinear NCS research results
on T-S fuzzy model, most of the work was studied by
adopting a periodic time-triggered communication scheme
(PTTCS). Although the system design under PTTCS is easy
to analyze and implement, the scheme could lead to a
few problems such as network resource waste and network
congestion. Essentially, the NCS is an integrated body of
control and communication, whereas the PTTCS considers
the control and communication in a fragmented way in the
process of analysis and synthesis. Thus, the PTTCS cannot
simultaneously consider the system control quality and the
network service quality for system design. The appearance
of DETCS offers an effective way to solve the preceding
problems. Saving network communication resources will be
obvious because only the data which satisfies certain event-
triggered conditions will be transmitted by the network.
Furthermore, the DETCS unifies the control attribute and
the communication attribute into one framework, which is
the basis for the implementation of the codesign between
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control and communication. Recently, the nonlinear NCS
control problems underDETCS are gradually attractingmore
attention by utilizing the T-S fuzzy model [10–12]. Reference
[11] presents a kind of DETCS for a class of networked T-S
fuzzy systems. In the existing study results under DETCS,
a nonuniform transmission period exists when the event
trigger selects the transmission data. These problems are
usually studied by using the continuous method in one
period. The nonuniform transmission period generated by
the event trigger is essentially an integer multiple of the
sample period; thus, the nonuniform transmission control
problem underDETCS is regarded as the nonuniform sample
control problem. Regardless of whether there is an equal
sample period in the sampler or not, we can bind the event
generator with the sampler and consider both the event
generator and the sampler as a virtual nonuniform sampler.
Therefore, NCS is essentially a typical sample-data hybrid
system which can possibly analyze and synthesize the system
by adopting the related study method of the sample-data
control system.

By studying the method for the sample-data control
system, all the methods can be generally summarized into
three categories [13]. The first method is converting the
continuous time plant into discrete one and designing the
discrete controller under the discrete system control theory.
In the second method, the continuous time controller is
designed based on the continuous system control theory and
then converting the continuous time controller into discrete
one [14]. The effect generated by the nonuniform update
period on the system performance is transferred into the
effect of the system time-delay during the third method, and
the related problems are studied using excellent and mature
methods in the time-delay system [13, 15]. The conclusion
is drawn by further analyzing the three preceding methods.
Obtaining the nonlinear discrete system model by using the
first method is difficult. Selecting a smaller sample period to
implement better approximation for continuous time con-
troller in the second method is necessary. The two preceding
methods should either consider the discrete sample period
before solving the controller or consider the discrete sample
period after obtaining the controller. Moreover, the third
method is carried out based on the relativemature time-delay
system theory, which neither needs to convert the continuous
control plant into discrete one nor needs to convert the
continuous time controller into discrete one and only needs
to analyze the effect of the nonuniform sample period on the
system performance by the dealingmethod of the input delay.
Therefore, the nonuniform sample system control problem
based on the third method has gradually attracted more
attention [13, 15, 16].

The stability and the performances of the system cannot
be ensured with the general control law if any component of
the system has a fault [3, 4]. A kind of control technology,
which is known as the fault-tolerant control, has been pro-
posed for this situation to guarantee the stability and accept-
able performances. In addition, because of the complexness
and uncertainties of NCS, security has become the focus
of attention. In the last ten years, the fault-tolerant control
technology played an important role in improving the safety

and reliability in NCS, thereby attracting numerous scholars
[17–19]who devoted numerous efforts to the research of fault-
tolerant control in NCS. Compared with the fault-tolerant
control technology in a traditional control system, the fault-
tolerant technology of NCS can solve a few problems caused
by network communication such as data dropout, time-delay,
and disorder [20, 21]. Apart from the general fault-tolerant
control in NCS, the multiobjective constraint fault-tolerant
control of NCS has also become the focus of academic
research [22–24]. Aside from stability, the failure system
should possess a few other control performances such as 𝛼-
safety degree [25], 𝐻∞-performance, 𝐻2-performance, and
pole assignment.

Thus, few circumstances of the nonuniform transmission
sample-data hybrid system under the DETCS were studied
by using the methods of nonuniform sample-data control
system for the nonlinear NCS based on the T-S fuzzy model.
Afterwards, the case simulated the interest of studying the
codesign between nonuniform transmission multiobjective
constraint fault-tolerant control for nonlinear NCS and net-
work communication.

The study has three main contributions:

(1) A closed-loop T-S fuzzy model is established. The
model includes actuator saturation, actuator failure,
event-triggered condition, nonuniform transmission
period, and time-delay. In building the model, the
effect of nonuniform transmission period on trans-
mission time-delay is thoroughly analyzed in the
present study by utilizing the research method in the
nonuniform sample-data system.

(2) Two multiobjective constraint sufficient conditions
and twomultiobjective codesignmethods are derived
for the T-S fuzzy NCS. The multiobjective con-
straint includes 𝛼-safety degree, 𝐻∞-performance
index, 𝐻2-performance index, and as little as possible
network communication resource occupancy. The
proposed method provides a better dynamic perfor-
mance for the controlled plant while simultaneously
occupying fewer network communications for the
entire system.

(3) The codesign method processes less conservatism
during solving the controller and event-triggered
weight matrix. The discontinuous Lyapunov-Krasov-
skii function which can allow the system in tolerating
a bigger time-delay undermultiobjective constraint is
adopted. The bigger time-delay makes the codesign
easier. The relevant content is analyzed in the simula-
tion experiment.

Notations. 𝑅𝑛 represents the 𝑛-dimensional real vector space;𝑅𝑚×𝑛 is the set of all (𝑚 × 𝑛)-dimensional real matrices; 𝐴 >0(≥ 0) indicates that the matrix is a positive (nonnegative)
definite; diag{⋅ ⋅ ⋅ } refers to the block-diagonal matrix; 𝐼 is the
identity matrix of the appropriate dimension; and 𝐴𝑇 is the
transpose of the matrix 𝐴. In symmetric block matrices, “∗”
is used as an ellipsis for terms induced by symmetry;matrices,
if not explicitly stated, are assumed to possess appropriate
dimensions.
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2. The Statement of the Problem and
Preparation

2.1.TheDescription of the Plant. The typical class of nonlinear
controlled plant can be expressed as

�̇� (𝑡) = 𝐹 (𝑥 (𝑡) , sat (𝑢 (𝑡)) , 𝑤 (𝑡))
= 𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) (sat (𝑢 (𝑡)) , 𝑤 (𝑡)) ,

𝑧1 (𝑡) = 𝐶1 (𝑥 (𝑡)) ,
𝑧2 (𝑡) = 𝐶2 (𝑥 (𝑡)) ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 and 𝑢(𝑡) ∈ 𝑅𝑚 denote the state vector
and the control input, respectively. The function sat(⋅) :𝑅𝑚 → 𝑅𝑚 denotes the standard multivariable saturation
function defined as sat(𝑢) = [sat(𝑢1), sat(𝑢2), . . . , sat(𝑢𝑚)]𝑇,
and sat(𝑢𝑖) = sign(𝑢𝑖)min{1, |𝑢𝑖|}. 𝑧1(𝑡) and 𝑧2(𝑡) are
two regulated outputs. 𝑤(𝑡) ∈ 𝐿2[0, ∞) is the external
disturbance. 𝑓(𝑥(𝑡)), 𝑔(𝑥(𝑡)), 𝐶1(𝑥(𝑡)), and 𝐶2(𝑥(𝑡)) are the
unknown nonlinear functions based on 𝑥(𝑡).

T-S fuzzy model can be regarded as a universal approx-
imator for the general nonlinear system. Considering the
following nonlinear systems represented by several simple
local linear dynamic systems with their linguistic description,
the controlled plant with the actuator saturation constraint
can be described based on the following if-then rule.

If 𝜃1(𝑡) is 𝑀𝑖1 . . . and 𝜃𝑔(𝑡) is 𝑀𝑖𝑔, then

�̇� (𝑡) = (𝐴 𝑖 + Δ𝐴 𝑖) 𝑥 (𝑡) + (𝐵𝑖 + Δ𝐵𝑖) sat (𝑢 (𝑡))
+ 𝐵𝑤𝑖𝑤 (𝑡) ,

𝑧1 (𝑡) = 𝐶𝑖1𝑥 (𝑡) ,
𝑧2 (𝑡) = 𝐶𝑖2𝑥 (𝑡) ,

(2)

where 𝜃(𝑡) = [𝜃1(𝑡), 𝜃2(𝑡), . . . , 𝜃𝑔(𝑡)]𝑇 denotes the premise
variables which assume that 𝜃(𝑡) is either a given function or
a function of 𝑥(𝑡) which does not depend on 𝑢(𝑡); 𝑀𝑖𝑗 (𝑖 =1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑟) is the fuzzy set, and 𝑟 is the
number of if-then rules; 𝐴 𝑖 ∈ 𝑅𝑛×𝑛 and 𝐵𝑖 ∈ 𝑅𝑛×𝑚 are the
system matrix and the input matrix, respectively. Moreover,Δ𝐴 𝑖, Δ𝐵𝑖 (𝑖 = 1, 2, . . . , 𝑟), which are assumed as norm-
bounded, denote the uncertainty matrix of system param-
eters. Δ𝐴 𝑖, Δ𝐵𝑖 (𝑖 = 1, 2, . . . , 𝑟) are time-varying and are
satisfying

[Δ𝐴 𝑖, Δ𝐵𝑖] = 𝑀𝐹 (𝑡) [𝐸𝑎𝑖, 𝐸𝑏𝑖] , (3)

where 𝑀, 𝐸𝑎𝑖, and 𝐸𝑏𝑖 are the real constant matrices with
appropriate dimensions; 𝐹(𝑡) is an unknown time-varying
continuousmatrix function with real values and the elements
of 𝐹(𝑡) are Lebesgue measurable. 𝐹(𝑡) satisfies 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼.

The fuzzy system is the weighted average of every output
of the subsystem; namely,

�̇� (𝑡) = 𝑟∑
𝑖=1

ℎ𝑖 (𝜃 (𝑡)) [(𝐴 𝑖 + Δ𝐴 𝑖) 𝑥 (𝑡)
+ (𝐵𝑖 + Δ𝐵𝑖) sat (𝑢 (𝑡)) + 𝐵𝑤𝑖𝑤 (𝑡)] ,

𝑧1 (𝑡) = 𝑟∑
𝑖=1

ℎ𝑖 (𝜃 (𝑡)) 𝐶𝑖1𝑥 (𝑡) ,

𝑧2 (𝑡) = 𝑟∑
𝑖=1

ℎ𝑖 (𝜃 (𝑡)) 𝐶𝑖2𝑥 (𝑡) ,

(4)

where

ℎ𝑖 (𝜃 (𝑡)) = 𝑤𝑖 (𝜃 (𝑡))∑𝑟
𝑖=1 𝑤𝑖 (𝜃 (𝑡)) ≥ 0,

𝑟∑
𝑖=1

𝑤𝑖 (𝜃 (𝑡)) > 0,
∀𝑡 ≥ 0,

𝑟∑
𝑖=1

ℎ𝑖 (𝜃 (𝑡)) = 1, (𝑖 = 1, 2, . . . , 𝑟) ,

𝑤𝑖 (𝜃 (𝑡)) = 𝑔∏
𝑠=1

𝑀𝑖𝑠 (𝜃𝑠 (𝑡)) ,

(5)

and 𝑀𝑖𝑠(𝜃𝑠(𝑡)) is the degree of the membership for the
variable 𝜃𝑠(𝑡) which belongs to the fuzzy set 𝑀𝑖𝑠.

2.2. The Analysis of the Effective Nonuniform Transmission
Sequence for the Sample Signal under DETCS. This paper
adopted DETCS for studying nonuniform transmission mul-
tiobjective fault-tolerant control problem of nonlinear NCS
with actuator saturation to reduce the network resourcewaste
and implement the codesign between control and communi-
cation. The structure chart is expressed as in Figure 1.

Figure 1 shows that there are the controlled plants based
on T-S fuzzy model, sensor, sampler, event generator, fuzzy
fault-tolerant controller, zero-order holder, and actuator. The
sampler is driven by the clock whereas the controller and the
zero-order holder are both driven by the event. In contrast to
traditional NCS, the sampled data passes the event generator
before transmission by the network.The function of the event
generator is to determine whether the latest sample signal
should be transmitted to the controller. The discrete event-
triggered condition is presented as follows:

[𝑥 (𝑖𝑘ℏ) − 𝑥 (𝑡𝑘ℏ)]𝑇 Φ [𝑥 (𝑖𝑘ℏ) − 𝑥 (𝑡𝑘ℏ)]
≤ 𝜎𝑥𝑇 (𝑡𝑘ℏ) Φ𝑥 (𝑡𝑘ℏ) , (6)

where Φ is a symmetric positive definite matrix which is
the weight matrices of the DETCS to be designed; 𝜎 > 0
is the event-triggered parameter; 𝑥(𝑖𝑘ℏ) and 𝑥(𝑡𝑘ℏ) denote
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Figure 1: The control structure chart of nonuniform transmission
nonlinear NCS under DETCS.

the current sampled data and the latest transmission data,
respectively.

Suppose that {𝑖𝑘ℏ} (𝑘 = 0, 1, 2, . . .) denotes the sample
instant sequence in the rear end of the sampler and ℏ is
the sample period. {𝑡𝑘ℏ} (𝑘 = 0, 1, 2, . . .) denotes the data
transmission instant sequence in the rear end of the genera-
tor. Simultaneously, suppose that the data to be transmitted
in the nonlinear NCS will arrive at the end of the holder
after a piece of comprehensive time-delay 𝜏𝑡𝑘ℏ. We set the
comprehensive time-delay as 𝜏𝑡𝑘ℏ = 𝜏𝑡𝑘ℏ𝑠𝑐 + 𝜏𝑡𝑘ℏ𝑐𝑎 + 𝜏𝑡𝑘ℏ𝑐 at
the instant 𝑡𝑘ℏ, where 𝜏𝑡𝑘ℏ𝑠𝑐 and 𝜏𝑡𝑘ℏ𝑐𝑎 denote the transmission
time-delay from the generator to the controller and from
the controller to the actuator front end, respectively, and

𝜏𝑡𝑘ℏ𝑐 denote the calculation time-delay. The data transmission
instant sequence at the end of the controller is {𝑡𝑘ℏ = 𝑡𝑘ℏ +𝜏𝑡𝑘ℏ𝑠𝑐 + 𝜏𝑡𝑘ℏ𝑐 } (𝑘 = 0, 1, 2, . . .); the updating instant sequence
at the front end of the holder is {𝑡𝑘ℏ = 𝑡𝑘ℏ + 𝜏𝑡𝑘ℏ𝑠𝑐 + 𝜏𝑡𝑘ℏ𝑐𝑎 +𝜏𝑡𝑘ℏ𝑐 } (𝑘 = 0, 1, 2, . . .). Essentially, 𝑡𝑘ℏ (𝑘 = 0, 1, 2, . . .) is also
the updating instant for the continuous signal at the rear end
of the holder.

Based on the analysis of the data transmission circum-
stance for nonlinear NCS under nonuniform data transmis-
sion, the schematic diagram of data updating sequence is
shown in Figure 2, following the rear end of the sampler to
the rear end of the holder.

As shown in Figure 2, 𝑡𝑘ℏ denotes the transmission
instant of effective data which satisfies the trigger condition
in the generator and represents the data which can affect
the controlled plant through control feedback.These effective
data are transmitted to the computing unit of the fault-
tolerant controller through transmission time-delay 𝜏𝑡𝑘ℏ𝑠𝑐 .
Afterwards, the multiobjective constraint fault-tolerant con-
troller based onT-S fuzzymodel is calculated after computing
time-delay 𝜏𝑡𝑘ℏ𝑐 . Last, the related control law is conveyed to the
zero-order holder after the time-delay 𝜏𝑡𝑘ℏ𝑐𝑎 .

2.3.TheEstablishment of T-SHybridClosed FailureNCSModel
under Nonuniform Transmission. Suppose that the network
transmission time-delay exists in both the front and rear
end of the controller and the system state is completely
measurable; then the system adopts the static state feedback
controller. When 𝑡 ∈ [𝑡𝑘ℏ + 𝜏𝑡𝑘ℏ, 𝑡𝑘+1ℏ + 𝜏𝑡𝑘+1ℏ), the control
signals at the rear end of the T-S fuzzy controller and the
front end of the zero-order holder are expressed in (7) and
(8), respectively.

𝑢 (𝑡) = 𝑟∑
𝑗=1

ℎ𝑗 (𝜃 (𝑡𝑘ℏ)) 𝐾𝑗𝑥 (𝑡𝑘ℏ) , 𝑘 = 0, 1, 2, . . . , 𝑡 ∈ [𝑡𝑘ℏ + 𝜏𝑡𝑘ℏ𝑠𝑐 + 𝜏𝑡𝑘ℏ𝑐 , 𝑡𝑘+1ℏ + 𝜏𝑡𝑘+1ℏ𝑠𝑐 + 𝜏𝑡𝑘+1ℏ𝑐 ) , (7)

𝑢 (𝑡) = 𝑟∑
𝑗=1

ℎ𝑗 (𝜃 (𝑡𝑘ℏ)) 𝐾𝑗𝑥 (𝑡𝑘ℏ) , 𝑘 = 0, 1, 2, . . . , 𝑡 ∈ [𝑡𝑘ℏ + 𝜏𝑡𝑘ℏ𝑠𝑐 + 𝜏𝑡𝑘ℏ𝑐 + 𝜏𝑡𝑘ℏ𝑐𝑎 , 𝑡𝑘+1ℏ + 𝜏𝑡𝑘+1ℏ𝑠𝑐 + 𝜏𝑡𝑘+1ℏ𝑐 + 𝜏𝑡𝑘+1ℏ𝑐𝑎 ) , (8)

where 𝐾𝑗 (𝑗 = 1, 2, . . . , 𝑟) is the related state feedback gain
matrix. Obviously, ⋃∞

𝑘=1[𝑡𝑘, 𝑡𝑘+1) = [0, ∞), ℎ𝑘 denotes the
data transmission period in the event generator, and ℎ𝑘 =𝑡𝑘+1ℏ − 𝑡𝑘ℏ.

Through the preceding analysis, a nonuniform trans-
mission period for the transmission data after the event
generator exists even if the sample period in the sampler is
uniform. At present, the sampler and generator are regarded
as a virtual nonuniform sampler. The updating period in the
front end of holder for the traditional nonuniform sample
system is determined by the variable sample period of the
sampler, whereas the data updating period at the front
end of the holder in the present study is determined by
the nonuniform transmission period, network transmission
time-delay, and computing time-delay for the nonuniform
transmission system. Although different factors determine
the data updating period on the holder side, the uncertainty

of the updating period, which exists in the rear end of the
holder in these two kinds of system, is a consistent fact on
the macrolevel. Therefore, the study ideas based on tradi-
tional nonuniform sample control system are presentedwhen
establishing the closed-loop failure model for nonuniform
transmission nonlinear NCS under DETCS.

When 𝑥(𝑡𝑘ℏ) has reached the actuator but 𝑥(𝑡𝑘+1ℏ) has
not arrived, the transmission interval is defined as

Ω = [𝑡𝑘ℏ + 𝜏𝑡𝑘ℏ, 𝑡𝑘+1ℏ + 𝜏𝑡𝑘+1ℏ) . (9)

The transmission interval is divided into several subinter-
vals, such that

Ω = Δ0
𝑘 ∪ ⋅ ⋅ ⋅ Δ1𝑘

𝑘
∪ ⋅ ⋅ ⋅ ∪ Δ𝑑𝑘

𝑘
, (10)

whereΔ𝑙𝑘
𝑘

= [𝑡𝑘ℏ+𝑙𝑘ℏ+𝜏𝑡𝑘ℏ+𝑙𝑘ℏ, 𝑡𝑘ℏ+(𝑙𝑘+1)ℏ+𝜏𝑡𝑘ℏ+(𝑙𝑘+1)ℏ) and𝑙𝑘 = 0, 1, 2, . . . , 𝑑𝑘, 𝑑𝑘ℏ = 𝑡𝑘+1ℏ−𝑡𝑘ℏ−ℏ. 𝜏𝑡𝑘ℏ+𝑙𝑘ℏ is assumed as
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Figure 2: The schematic diagram of the effective transmission sequence for the sample signal under DETCS.

the virtual network transmission delay at the sample instant𝑡𝑘ℏ+𝑙𝑘ℏ to guarantee the effectiveness of the interval division.
The static state feedback control law is adopted in

the present study. Therefore, three kinds of time-delay(𝜏𝑡𝑘ℏ𝑠𝑐 , 𝜏𝑡𝑘ℏ𝑐 , 𝜏𝑡𝑘ℏ𝑐𝑎 ) are considered as a kind of comprehensive
time-delay (𝜏(𝑡)). Considering these kinds of time-delay,
respectively, is unnecessary. When 𝑡 ∈ Δ𝑙𝑘

𝑘
, the function 𝜏(𝑡)

is defined as

𝜏 (𝑡) = 𝑡 − 𝑡𝑘ℏ. (11)

We define 𝑖𝑘 = 𝑖𝑘ℏ, 𝑡𝑘 = 𝑡𝑘ℏ, 𝑙𝑘 = 𝑙𝑘ℏ, 𝑑𝑘 = 𝑑𝑘ℏ for
convenience in the discussion.

Based on (9) and (10), the upper and lower bounds of 𝜏(𝑡)
are described as

0 < 𝑙𝑘 + 𝜏𝑡𝑘+𝑙𝑘 ≤ 𝜏 (𝑡)
≤ (𝑙𝑘 + 1) + 𝜏𝑡𝑘+(𝑙𝑘+1)
≤ (𝑑𝑘 + 1) + 𝜏𝑡𝑘+(𝑙𝑘+1),

(𝑑𝑘 + 1) + 𝜏𝑡𝑘+(𝑙𝑘+1) = 𝑡𝑘+1 − 𝑡𝑘 + 𝜏𝑡𝑘+(𝑙𝑘+1) < ℎmax 𝑘 + 𝜏
≤ ℎ𝜏,

(12)

where ℎ𝜏 = ℎmax 𝑘+max{𝜏𝑡𝑘+(𝑙𝑘+1)} = ℎmax 𝑘+𝜏. ℎ𝜏 is the upper
bound of the time-delay function in the interval Δ𝑙𝑘

𝑘
. ℎmax 𝑘 is

the upper bound of the variable transmission period which is
induced by the event generator. 𝜏 is the upper bound of the
time-delay 𝜏(𝑡) at the instant 𝑡𝑘+(𝑙𝑘+1).
Remark 1. Based on (12), the upper and lower bound for
the time-delay function are not only related to the upper
bound 𝜏 of the network transmission time-delay but are

also associated with the upper bound ℎmax 𝑘 of the variable
transmission period which is induced by the discrete event
generator. The time-delay analysis method unifies nonuni-
form transmission period and network time-delay into a
unified framework, thereby providing a solid foundation
for consecutive model establishment and codesign between
fault-tolerance and communication.

When 𝑡 ∈ Δ𝑙𝑘
𝑘
, the state error 𝑒(𝑖𝑘) is defined as

𝑒 (𝑖𝑘) = 𝑥 (𝑖𝑘) − 𝑥 (𝑡𝑘) . (13)

When 𝑡 ∈ Δ𝑙𝑘
𝑘
, based on the combinations of (6), (11), and

(13), we obtain

𝑒𝑇 (𝑖𝑘) Φ𝑒 (𝑖𝑘) ≤ 𝜎𝑥𝑇 (𝑡 − 𝜏 (𝑡)) Φ𝑥 (𝑡 − 𝜏 (𝑡)) . (14)

Based on the combination of (8) and (11), 𝑢(𝑡) is also
written as

𝑢 (𝑡) = 𝑟∑
𝑗=1

ℎ𝑗 (𝜃 (𝑡𝑘)) 𝐾𝑗 (𝑥 (𝑡𝑘))

= 𝑟∑
𝑗=1

ℎ𝑗 (𝜃 (𝑡 − 𝜏 (𝑡))) 𝐾𝑗 (𝑥 (𝑡 − 𝜏 (𝑡))) .
(15)

With regard to the model of general actuator failures in [17],
the control input with actuator failure is described as

𝑢𝑓 (𝑡) = 𝐿𝑢 (𝑡) . (16)

Matrix 𝐿 denotes the mode set of the system actuator failures
and describes the fault extent, where 𝐿 = diag{𝑙1, . . . , 𝑙𝑚},𝑙𝑞 ∈ [0, 1], 𝑞 = 1, 2, . . . , 𝑚; 𝑙𝑞 = 0 indicates that the 𝑞th
system actuator is invalid; 𝑙𝑞 ∈ (0, 1) implies that the 𝑞th
system actuator is at fault to some extent; and 𝑙𝑞 = 1 denotes
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that the 𝑞th system actuator properly operates. Notably, the
case of 𝐿 = 0 does not exist because the fault-tolerant control
technology is based on redundancy.

With regard to (4), (13), (15), and (16), the closed-loop
failure system model of the event-triggered nonuniform
transmission is obtained for nonlinear NCS with actuator
saturation based on the DETCS, which is as follows:

�̇� (𝑡) = 𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖 (𝜃 (𝑡)) ℎ𝑗 (𝜃 (𝑡 − 𝜏 (𝑡)))
⋅ [(𝐴 𝑖 + Δ𝐴 𝑖) 𝑥 (𝑡)
+ (𝐵𝑖 + Δ𝐵𝑖) sat (𝐿𝐾𝑗 (𝑥 (𝑖𝑘) − 𝑒 (𝑖𝑘)))
+ 𝐵𝑤𝑖𝑤 (𝑡)] ,

𝑧1 (𝑡) = 𝑟∑
𝑖=1

ℎ𝑖 (𝜃 (𝑡)) 𝐶𝑖1𝑥 (𝑡) ,

𝑧2 (𝑡) = 𝑟∑
𝑖=1

ℎ𝑖 (𝜃 (𝑡)) 𝐶𝑖2𝑥 (𝑡) .

(17)

2.4. The Goal of Fault-Tolerant Control under Multiobjec-
tive Constraint. Based on DETCS, the goal of codesign-
ing between multiobjective constraint fault-tolerant control
and network communication for nonuniform transmission
nonlinear NCS with regard to the constraint of actuator
saturation and actuator failures is to seek the state feedback
controller gain 𝐾 and the event-triggered weight matrix Φ.𝐾 and Φ can guarantee that the failure nonlinear NCS with
actuator saturation satisfies the following conditions:

(1) When 𝑤(𝑡) = 0, the failure nonlinear NCS possesses𝛼-safety degree [25].
(2) Under zero initial condition, for any nonzero𝑤(𝑡) ∈ 𝐿2[0, ∞], the failure nonlinear NCS satisfies‖𝑧1(𝑡)‖2 ≤ 𝛾1‖𝑤(𝑡)‖2, where 𝛾1 is a given scalar and‖ ⋅ ‖2 denotes 𝐿2[0, ∞] norm. The scalar 𝛾1 is the

disturbance rejection level.
(3) Under the zero initial condition, for any nonzero𝑤(𝑡) ∈ 𝐿2[0, ∞], the system satisfies ‖𝑧2(𝑡)‖∞ ≤𝛾2‖𝑤(𝑡)‖2, where 𝛾2 is a given scalar and ‖ ⋅ ‖2 denotes𝐿2[0, ∞] norm. The constraint index can guarantee

that the output peak will be smaller than a certain
value.The scalar 𝛾2 can also be seen as the output peak
rejection level.

(4) Based on the hypothesis of satisfying the preceding
constraint indexes and all the indexes possessing
compatibility, the codesign method guarantees a pos-
sibly less occupancy rate of the network communica-
tion resource.

2.5. Lemma Preparation. In this paper, we used three defini-
tions which are in our previous paper [25]: 𝛼-safety degree,
attraction domain of fault-tolerancewith𝛼-safety degree, and
the contractively invariant set of fault-tolerance with 𝛼-safety
degree.

ℓ(𝐹) = {𝑥0 ∈ 𝑅𝑛 : |𝑓𝑙𝑥| ≤ 1, 𝑙 = 1, 2, . . . , 𝑚}, where
matrix 𝐹 ∈ 𝑅𝑚×𝑛, and 𝑓𝑙 denotes the 𝑙th row of the matrix𝐹; thereafter, ℓ(𝐹) is defined as the region where the feedback
control 𝑢 = sat(𝐹𝑥) is linear for 𝑥, as indicated in [26].

Based on an ellipsoid estimation of the attraction domain,𝑃 ∈ 𝑅𝑛×𝑛 is a positive definite matrix. For 𝜌 > 0, the ellipsoid
is defined as 𝜀(𝑃, 𝜌) = {𝑥 ∈ 𝑅𝑛, 𝑥𝑇𝑃𝑥 ≤ 𝜌}, where 𝜀(𝑃)
denotes 𝜀(𝑃, 1).
Lemma 2 (reciprocal convex inequality [27]). For anymatrix𝑀 = [ 𝑅 𝑈

∗ 𝑅 ] ≥ 0, scalars 0 ≤ 𝑑(𝑡) ≤ 𝑑, and a vector function�̇� : [−𝑑, 0] → R𝑛 such that the integration in the following
inequality is well defined, thereby holding

−𝑑 ∫𝑡

𝑡−𝑑
�̇�𝑇 (𝛼) 𝑅�̇� (𝛼) 𝑑𝛼 ≤ 𝜗𝑇 (𝑡) 𝑍𝜗 (𝑡) , (18)

where

𝜗𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − 𝑑 (𝑡)) 𝑥𝑇 (𝑡 − 𝑑)] ,

𝑍 = [[[
[

−𝑅 𝑅 − 𝑈 𝑈
∗ −2𝑅 + 𝑈 + 𝑈𝑇 𝑅 − 𝑈
∗ ∗ −𝑅

]]]
]

. (19)

Lemma 3 (see [1]). Let 𝑌 > 0, and 𝜔(𝑠) is an appropriate
dimensional vector. Thereafter, we have the following:

− ∫𝑡2

𝑡1

𝜔𝑇 (𝑠) 𝑌𝜔 (𝑠) 𝑑𝑠 ≤ (𝑡2 − 𝑡1) 𝜉𝑇𝑡 𝐹𝑇𝑌−1𝐹𝜉𝑡
+ 2𝜉𝑇𝑡 𝐹𝑇 ∫𝑡2

𝑡1

𝜔 (𝑠) 𝑑𝑠,
(20)

where matrix 𝐹 and vector 𝜉𝑡, which are independent on the
integral variable, are arbitrary appropriate dimensional ones.

Lemma4 (linear convex combination [28]). For anymatrices𝑍𝑖 (𝑖 = 1, 2, 3) with proper dimensions, then

𝑍1 + 𝛿𝑍2 + (1 − 𝛿) 𝑍3 < 0 (21)

holds for ∀𝛿 ∈ [0, 1] if and only if the following set of
inequalities hold:

𝑍1 + 𝑍2 < 0,
𝑍1 + 𝑍3 < 0. (22)

Lemma 5 (Wirtinger’s inequality [29]). Let 𝑧(𝑡) ∈ 𝑊[𝑎, 𝑏)
which denotes the space of functionsΦ : [𝑎, 𝑏] → R𝑛, which are
absolutely continuous on [𝑎, 𝑏), have a finite lim𝜃→𝑏−Φ(𝜃), and
have square integrable first-order derivatives with the norm
‖Φ‖𝑊 = max𝜃∈[𝑎,𝑏]|Φ(𝜃)| + [∫𝑏

𝑎
|Φ̇(𝑠)|2𝑑𝑠]1/2. Furthermore,

if 𝑧(𝑎) = 0, then for any 𝑛 × 𝑛 matrix 𝑅 > 0, the following
inequality holds: 𝜋2 ∫𝑏

𝑎
𝑧𝑇(𝑠)𝑅𝑧(𝑠)𝑑𝑠 ≤ ∫𝑏

𝑎
�̇�𝑇(𝑠)𝑅�̇�(𝑠)𝑑𝑠.

3. Main Results

3.1. Condition of the Invariant Set. Two cases for the system
with different performances are studied as follows.
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3.1.1. The Sufficient Condition of the Invariant Set for the
Closed-Loop Failure System with 𝛼-Safety Degree

Theorem 6. Based on the event-triggered condition (6) of the
DETCS, there exist some matrices 𝑃 = 𝑃𝑇 > 0, 𝑄 = 𝑄𝑇 > 0,𝑅 = 𝑅𝑇 > 0, 𝑆 = 𝑆𝑇 > 0, 𝑇 = 𝑇𝑇 > 0, 𝑊 = 𝑊𝑇 >0, 𝑈, and 𝑉 for the given values 𝜎, ℎ𝜏, and 𝛼, the known
matrices 𝐾𝑗 (𝑗 = 1, 2, . . . , 𝑟), and Φ. If all the given values
and the matrix variables satisfy 𝜀(𝑃) ⊂ ℓ(𝐹) and the matrix
inequalities

[𝑅 𝑈
∗ 𝑅] ≥ 0, (23)

[Π0𝑖𝑗 ℎ𝜏�̂�∗ −ℎ𝜏𝑆] < 0, (24)

[Π0𝑖𝑗 ℎ𝜏Λ𝑖𝑗
0∗ −ℎ𝜏𝑆−1] < 0 (25)

then system (17) remains asymptotically stable in the domain
of attraction 𝜀(𝑃) and possesses 𝛼-safety degree. That is, (15)
is a nonuniform transmission robust fault-tolerant control law
which can enable the system (17) to possess 𝛼-safety degree and
a lower occupancy rate of network resource, where

Π0𝑖𝑗
11 = 𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 − 𝑅 + 𝑉1 + 𝑉𝑇

1 − 𝜋2

4 𝑊,
Π0𝑖𝑗

12 = 𝑃𝐵 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗} + 𝑅 − 𝑈 − 𝑉1 + 𝑉𝑇

2

+ 𝜋2

4 𝑊,
Π0𝑖𝑗

13 = 𝑈 + 𝑉𝑇
3 ,

Π0𝑖𝑗
15 = ℎ𝜏𝐴𝑇,

Π0𝑖𝑗
22 = −2𝑅 + 𝑈 + 𝑈𝑇 − 𝑉2 − 𝑉𝑇

2 + ℎ𝜏𝑇 − 𝜋2

4 𝑊
+ 𝜎 exp (2𝛼𝜏 (𝑡)) Φ,

Π0𝑖𝑗
23 = 𝑅 − 𝑈 − 𝑉𝑇

3 ,
Π0𝑖𝑗

25 = ℎ𝜏 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗}𝑇 𝐵𝑇,

Π0𝑖𝑗
33 = −𝑄 − 𝑅,

Π0𝑖𝑗
44 = −Φ,

Π0𝑖𝑗
55 = − (𝑅 + 𝑊)−1 ,

Λ𝑖𝑗𝑇
0 = [𝐴 𝐵 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} 0 0 0] ,
�̂�𝑇 = [𝑉𝑇

1 𝑉𝑇
2 𝑉𝑇

3 0 0] .
(26)

Proof. The state transition 𝑥(𝑡) = exp(−𝛼𝑡)𝜂(𝑡) must be
introduced into the proof course for system (17) to obtain 𝛼-
safety degree. Based on Lemma 5 [25], when 𝜀(𝑃) ⊂ ℓ(𝐹) and𝑤(𝑡) = 0, then

�̇� (𝑡) = 𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖 (𝜃 (𝑡)) ℎ𝑗 (𝜃 (𝑡 − 𝜏 (𝑡)))
⋅ [𝐴𝜂 (𝑡) + 𝐵𝑐𝑜 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} 𝜂 (𝑡 − 𝜏 (𝑡))] ,
𝑧𝛼1 (𝑡) = 𝑟∑

𝑖=1

ℎ𝑖 (𝜃 (𝑡)) 𝐶𝑖1𝜂 (𝑡) ,

𝑧𝛼2 (𝑡) = 𝑟∑
𝑖=1

ℎ𝑖 (𝜃 (𝑡)) 𝐶𝑖2𝜂 (𝑡) ,

(27)

where𝐴 = 𝐴 𝑖+Δ𝐴 𝑖+𝛼𝐼, 𝐵 = exp(𝛼𝜏(𝑡))(𝐵𝑖+Δ𝐵𝑖)𝐿, 𝑧𝛼1(𝑡) =
exp(𝛼𝑡)𝑧1(𝑡), and 𝑧𝛼2(𝑡) = exp(𝛼𝑡)𝑧2(𝑡).

Based on definition 2 of [25], if system (27) is asymp-
totically stable, thereafter, system (17) will possess 𝛼-safety
degree.

A discontinuous Lyapunov-Krasovskii functional candi-
date is constructed to reduce the conservatism and capture
the sampling variable characteristic of a saw tooth time-delay�̇�(𝑡) = 1, 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ 𝑁 as follows:

𝑉 (𝜂 (𝑡)) = 𝑉1 (𝜂 (𝑡)) + 𝑉2 (𝜂 (𝑡)) + 𝑉3 (𝜂 (𝑡))
+ 𝑉4 (𝜂 (𝑡)) + 𝑉5 (𝜂 (𝑡)) , (28)

where

𝑉1 (𝜂 (𝑡)) = 𝜂𝑇 (𝑡) 𝑃𝜂 (𝑡) + ∫𝑡

𝑡−ℎ𝜏

𝜂𝑇 (𝑠) 𝑄𝜂 (𝑠) 𝑑𝑠,
𝑉2 (𝜂 (𝑡)) = ℎ𝜏 ∫0

−ℎ𝜏

∫𝑡

𝑡+𝑠
�̇�𝑇 (𝛿) 𝑅�̇� (𝛿) 𝑑𝛿 𝑑𝑠,

𝑉3 (𝜂 (𝑡)) = (ℎ𝜏 − 𝜏 (𝑡)) ∫𝑡

𝑡−𝜏(𝑡)
�̇�𝑇 (𝛿) 𝑆�̇� (𝛿) 𝑑𝛿,

𝑉4 (𝜂 (𝑡)) = (ℎ𝜏 − 𝜏 (𝑡)) 𝜏 (𝑡) 𝜂𝑇 (𝑡 − 𝜏 (𝑡)) 𝑇𝜂 (𝑡 − 𝜏 (𝑡)) ,
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𝑉5 (𝜂 (𝑡)) = ℎ2
𝜏 ∫𝑡

𝑡−𝜏(𝑡)
�̇�𝑇 (𝛿) 𝑊�̇� (𝛿) 𝑑𝛿 − 𝜋2

4 ∫𝑡

𝑡−𝜏(𝑡)
[𝜂 (𝛿) − 𝜂 (𝑡 − 𝜏 (𝑡))]𝑇 𝑊 [𝜂 (𝛿) − 𝜂 (𝑡 − 𝜏 (𝑡))] 𝑑𝛿,

𝑃 = 𝑃𝑇 > 0, 𝑄 = 𝑄𝑇 > 0, 𝑅 = 𝑅𝑇 > 0, 𝑆 = 𝑆𝑇 > 0, 𝑇 = 𝑇𝑇 > 0, 𝑊 = 𝑊𝑇 > 0.
(29)

It is not difficult to understand that �̂�(𝜂(𝑡)) = (ℎ𝜏 −𝜏(𝑡)) ∫𝑡

𝑡−𝜏(𝑡)
�̇�𝑇(𝛿)𝑆�̇�(𝛿)𝑑𝛿 is discontinuous at the transmission

instants 𝑡𝑘, 𝑘 ∈ 𝑁. �̂�(𝜂(𝑡)) is nonnegative only before the
jumps 𝑡𝑘 and vanishes just after the jumps, such as �̂�(𝜂(𝑡−𝑘 )) ≥0, �̂�(𝜂(𝑡+𝑘 )) = 0. �̃�(𝜂(𝑡)) = (ℎ𝜏−𝜏(𝑡))𝜏(𝑡)𝜂𝑇(𝑡−𝜏(𝑡))𝑇𝜂(𝑡−𝜏(𝑡))
is continuous on [0, ∞) and �̃�(𝜂(𝑡𝑘)) = 0. It is easy to verify
that 𝑉(𝜂(𝑡)) = ℎ2

𝜏 ∫𝑡

𝑡−𝜏(𝑡)
�̇�𝑇(𝛿)𝑊�̇�(𝛿)𝑑𝛿 − (𝜋2/4) ∫𝑡

𝑡−𝜏(𝑡)
[𝜂(𝛿) −

𝜂(𝑡 − 𝜏(𝑡))]𝑇𝑊[𝜂(𝛿) − 𝜂(𝑡 − 𝜏(𝑡))]𝑑𝛿 ≥ 0 from Lemma 5.
Furthermore, it is correct that 𝑉(𝜂(𝑡−𝑘 )) ≥ 0, 𝑉(𝜂(𝑡+𝑘 )) = 0.
Therefore, 𝑉(𝜂(𝑡−𝑘 )) ≥ 𝑉(𝜂(𝑡+𝑘 )) is concluded.

For 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ 𝑁, taking the derivative of 𝑉(𝑡)
along the trajectory of (27), we can obtain

�̇� (𝜂 (𝑡)) ≤ max
𝑞∈[1,2,...,2𝑚]

𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖 (𝜃 (𝑡)) ℎ𝑗 (𝜃 (𝑡 − 𝜏 (𝑡)))
⋅ [�̇�1 (𝜂 (𝑡)) + �̇�2 (𝜂 (𝑡)) + �̇�3 (𝜂 (𝑡)) + �̇�4 (𝜂 (𝑡)) + �̇�5 (𝜂 (𝑡))]
+ 𝑒𝑇𝛼 (𝑖𝑘) Φ𝑒𝛼 (𝑖𝑘) − 𝑒𝑇𝛼 (𝑖𝑘) Φ𝑒𝛼 (𝑖𝑘) ,

(30)

where
�̇�1 (𝜂 (𝑡)) = 2𝜂𝑇 (𝑡) 𝑃𝐴𝜂 (𝑡) + 2𝜂𝑇 (𝑡) 𝑃𝐵 {𝛾𝑞𝐾𝑗

+ 𝛾−𝑞 𝐹𝑗} 𝜂 (𝑡 − 𝜏 (𝑡)) + 𝜂𝑇 (𝑡) 𝑄𝜂 (𝑡) − 𝜂𝑇 (𝑡 − ℎ𝜏)
⋅ 𝑄𝜂 (𝑡 − ℎ𝜏) ,

�̇�2 (𝜂 (𝑡)) = ℎ2
𝜏�̇�𝑇 (𝑡) 𝑅�̇� (𝑡) − ℎ𝜏 ∫𝑡

𝑡−ℎ𝜏

�̇�𝑇 (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠,
�̇�3 (𝜂 (𝑡)) = − ∫𝑡

𝑡−𝜏(𝑡)
�̇�𝑇 (𝛿) 𝑆�̇� (𝛿) 𝑑𝛿

+ (ℎ𝜏 − 𝜏 (𝑡)) �̇�𝑇 (𝑡) 𝑆�̇� (𝑡) ,
�̇�4 (𝜂 (𝑡)) = ℎ𝜏𝜂𝑇 (𝑡 − 𝜏 (𝑡)) 𝑇𝜂 (𝑡 − 𝜏 (𝑡)) + 2 (ℎ𝜏

− 𝜏 (𝑡)) 𝜂𝑇 (𝑡 − 𝜏 (𝑡)) 𝑇𝜂 (𝑡 − 𝜏 (𝑡)) ,
�̇�5 (𝜂 (𝑡)) = ℎ2

𝜏�̇�𝑇 (𝑡) 𝑊�̇� (𝑡) − 𝜋2

4 [𝜂 (𝑡)
− 𝜂 (𝑡 − 𝜏 (𝑡))]𝑇 𝑊 [𝜂 (𝑡) − 𝜂 (𝑡 − 𝜏 (𝑡))] .

(31)

Based on (27), we can obtain the quadratic term of the state
derivative, which is estimated as follows:

ℎ2
𝜏�̇�𝑇 (𝑡) 𝑅�̇� (𝑡) + ℎ2

𝜏�̇�𝑇 (𝑡) 𝑊�̇� (𝑡)
≤ max

𝑞∈[1,2,...,2𝑚]

𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖 (𝜃 (𝑡)) ℎ𝑗 (𝜃 (𝑡 − 𝜏 (𝑡))) ℎ2
𝜏𝜁𝑇 (𝑡)

⋅ Λ𝑖𝑗
1 (𝑅 + 𝑊) Λ𝑖𝑗𝑇

1 𝜁 (𝑡) ,

(ℎ𝜏 − 𝜏 (𝑡)) �̇�𝑇 (𝑡) 𝑆�̇� (𝑡) ≤ max
𝑞∈[1,2,...,2𝑚]

𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖 (𝜃 (𝑡))
⋅ ℎ𝑗 (𝜃 (𝑡 − 𝜏 (𝑡))) (ℎ𝜏 − 𝜏 (𝑡)) 𝜁𝑇 (𝑡) Λ𝑖𝑗

1𝑆Λ𝑖𝑗𝑇
1 𝜁 (𝑡) ,

(32)

where 𝜁𝑇(𝑡) = [𝜂𝑇(𝑡) 𝜂𝑇(𝑡 − 𝜏(𝑡)) 𝜂𝑇(𝑡 − ℎ𝜏)], Λ𝑖𝑗𝑇
1 =

[𝐴 𝐵{Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗} 0].

Based on Lemma 2, we can obtain

− ℎ𝜏 ∫𝑡

𝑡−ℎ𝜏

�̇�𝑇 (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠

≤ 𝜁𝑇 (𝑡) [[[
[

−𝑅 𝑅 − 𝑈 𝑈
∗ −2𝑅 + 𝑈 + 𝑈𝑇 𝑅 − 𝑈
∗ ∗ −𝑅

]]]
]

𝜁 (𝑡)
(33)

subject to [𝑅 𝑈
∗ 𝑅] ≥ 0 (34)

and (34) is equal to (23).
Based on Lemma 3, we have

− ∫𝑡

𝑡−𝜏(𝑡)
�̇�𝑇 (𝛿) 𝑆�̇� (𝛿) 𝑑𝛿

≤ 𝜏 (𝑡) 𝜁𝑇 (𝑡) 𝑉𝑇𝑆−1𝑉𝜁 (𝑡) + 𝜁𝑇 (𝑡) [𝑉 −𝑉 0] 𝜁 (𝑡)
+ 𝜁𝑇 (𝑡) [𝑉 −𝑉 0]𝑇 𝜁 (𝑡) ,

(35)

where 𝑉𝑇 = [𝑉𝑇
1 𝑉𝑇

2 𝑉𝑇
3 ].

When 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1), according to (14) and 𝑒𝛼(𝑖𝑘) =
exp(𝛼𝑡)𝑒(𝑖𝑘), we have

𝑒𝑇𝛼 (𝑖𝑘) Φ𝑒𝛼 (𝑖𝑘)
≤ 𝜎 exp (2𝛼𝜏 (𝑡)) 𝜂𝑇 (𝑡 − 𝜏 (𝑡)) Φ𝜂 (𝑡 − 𝜏 (𝑡)) . (36)

Based on (32)–(36), we have

�̇� (𝜂 (𝑡)) ≤ max
𝑞∈[1,2,...,2𝑚]

𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖 (𝜃 (𝑡)) ℎ𝑗 (𝜃 (𝑡 − 𝜏 (𝑡)))
⋅ {𝜍𝑇 (𝑡) [Π1𝑖𝑗 + 𝜏 (𝑡) Ω𝑖𝑗

1 + (ℎ𝜏 − 𝜏 (𝑡)) Θ𝑖𝑗
1 ] 𝜍 (𝑡)} ,

(37)
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where
𝜍𝑇 (𝑡) = [𝜉𝑇 (𝑡) 𝑒𝑇 (𝑖𝑘)] ,
Π1𝑖𝑗 = Π0𝑖𝑗,
Ω𝑖𝑗

1 = �̃�𝑆−1�̃�𝑇,
Θ𝑖𝑗

1 = Λ𝑖𝑗
2𝑆Λ𝑖𝑗𝑇

2 + 2Δ 0𝑇Δ𝑇
0,

Λ𝑖𝑗𝑇
2 = [𝐴 𝐵 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} 0 0 ] ,
�̃�𝑇 = [𝑉𝑇

1 𝑉𝑇
2 𝑉𝑇

3 0] ,
Δ𝑇

0 = [0 𝐼 0 0] .

(38)

Based on Lemma 4, we have

Π1𝑖𝑗 + ℎ𝜏Ω𝑖𝑗
1 < 0

Π1𝑖𝑗 + ℎ𝜏Θ𝑖𝑗
1 < 0. (39)

Thereafter, we obtain (24) and (25) by applying the Schur
Complement Lemma into (39). Therefore, if (23), (24), (25),
and 𝜀(𝑃) ⊂ ℓ(𝐹) are satisfied, then (17) possesses 𝛼-safety
degree. Moreover, the ellipsoid 𝜀(𝑃) is the invariant set for
system (17). In addition, the system possesses less occupancy
of the network resource. The proof is hereby completed.

3.1.2. Sufficient Condition of Invariant Set for Closed-Loop Fail-
ure System with Multiobjective Constraint Performance Index.
People also expect that the failure networked fuzzy system
possesses several additional performances, such as 𝛼-safety
degree, 𝐻∞ performance index, and 𝐻2 performance index
excluding stability in the field of fault-tolerant control. All
the indexes are described in Section 2.4 in detail. Therefore,
the multiobjective constraint fault-tolerant control problem
for nonuniform transmission nonlinear NCS (17) under the
DETCS should be studied as follows.

Theorem 7. Based on the event-triggered condition (6) of the
DETCS, there exist some matrices 𝑃 = 𝑃𝑇 > 0, 𝑄 = 𝑄𝑇 > 0,𝑅 = 𝑅𝑇 > 0, 𝑆 = 𝑆𝑇 > 0, 𝑇 = 𝑇𝑇 > 0, 𝑊 = 𝑊𝑇 > 0,𝑈 and 𝑉 for the given values 𝜎, ℎ𝜏, 𝛼, 𝛾1, and 𝛾2, the known
matrices 𝐾𝑗 (𝑗 = 1, 2, . . . , 𝑟), and Φ. If all the given values
and the matrix variables satisfy 𝜀(𝑃) ⊂ ℓ(𝐹) and the matrix
inequalities

[𝑅 𝑈
∗ 𝑅] ≥ 0, (40)

[Π2𝑖𝑗 ℎ𝜏�̆�∗ −ℎ𝜏𝑆] < 0, (41)

[Π2𝑖𝑗 ℎ𝜏Λ𝑖𝑗
3∗ −ℎ𝜏𝑆−1] < 0, (42)

[𝑃 𝐶𝑇
𝑖2

∗ 𝛾22𝐼] ≥ 0 (43)

then system (17) remains asymptotically stable in the domain
of attraction 𝜀(𝑃) and possesses 𝛼-safety degree, 𝛾1-disturbance
rejection level and 𝛾2-out-peak rejection level. That is, (15)
denotes the nonuniform transmission multiobjective constraint
robust fault-tolerant control law which can allow system (17)
to possess the multiobjective constraint performance and less
possible network communication occupancy, where

Π2𝑖𝑗
11 = 𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 − 𝑅 + 𝑉1 + 𝑉𝑇

1 − 𝜋2

4 𝑊,
Π2𝑖𝑗

12 = 𝑃𝐵 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗} + 𝑅 − 𝑈 − 𝑉1 + 𝑉𝑇

2

+ 𝜋2

4 𝑊,
Π2𝑖𝑗

13 = 𝑈 + 𝑉𝑇
3 ,

Π2𝑖𝑗
15 = 𝑃𝐵𝑤𝑖,

Π2𝑖𝑗
16 = 𝐶𝑇

𝑖1,
Π2𝑖𝑗

17 = ℎ𝜏𝐴𝑇,
Π2𝑖𝑗

23 = 𝑅 − 𝑈 − 𝑉𝑇
3 ,

Π2𝑖𝑗
27 = ℎ𝜏 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗}𝑇 𝐵𝑇,
Π2𝑖𝑗

22 = −2𝑅 + 𝑈 + 𝑈𝑇 − 𝑉2 − 𝑉𝑇
2 + ℎ𝜏𝑇 − 𝜋2

4 𝑊
+ 𝜎 exp (2𝛼𝜏 (𝑡)) Φ,

Π2𝑖𝑗
33 = −𝑄 − 𝑅,

Π2𝑖𝑗
44 = −Φ,

Π2𝑖𝑗
55 = −𝛾21𝐼,

Π2𝑖𝑗
57 = ℎ𝜏𝐵𝑇

𝑤𝑖,
Π2𝑖𝑗

66 = −𝑒𝑖𝐼,
Π2𝑖𝑗

77 = − (𝑅 + 𝑊)−1 ,
𝑉 = [𝑉1 𝑉2 𝑉3 0 0 0 0]𝑇 ,

Λ𝑖𝑗
3 = [𝐴𝑇 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗}𝑇 𝐵𝑇 0 0 𝐵𝑇
𝑤𝑖 0 0]𝑇 .

(44)

Proof. Under the zero initial condition and 𝑤(𝑡) ̸= 0, when𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1), the following function of 𝐻∞ performance
index is considered:

𝐽𝑧𝛼1𝑤 = ∫𝑡

0
(𝑧𝑇𝛼1 (𝑠) 𝑧𝑎1 (𝑠) − 𝛾21𝑤𝑇 (𝑠) 𝑤 (𝑠)) 𝑑𝑠

= ∫𝑡

0
(𝑧𝑇𝛼1 (𝑠) 𝑧𝑎1 (𝑠) − 𝛾21𝑤𝑇 (𝑠) 𝑤 (𝑠)

+ �̇� (𝜂 (𝑠))) 𝑑𝑠 − 𝑉 (𝜂 (𝑡))
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≤ ∫𝑡

0
(𝑧𝑇𝛼1 (𝑠) 𝑧𝑎1 (𝑠) − 𝛾21𝑤𝑇 (𝑠) 𝑤 (𝑠)

+ �̇� (𝜂 (𝑠))) 𝑑𝑠.
(45)

Similar to the proof procedure of Theorem 6, if we consider
the uncertain disturbance (𝑤(𝑡) ̸= 0), we can obtain

�̇� (𝜂 (𝑡)) ≤ max
𝑞∈[1,2,...,2𝑚]

𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖 (𝜃 (𝑡)) ℎ𝑗 (𝜃 (𝑡 − 𝜏 (𝑡)))
⋅ {𝜁𝑇 (𝑡) [Π3𝑖𝑗 + 𝜏 (𝑡) Ω𝑖𝑗

2 + (ℎ𝜏 − 𝜏 (𝑡)) Θ𝑖𝑗
2 ] 𝜁 (𝑡)}

− 𝑧𝑇𝛼1 (𝑡) 𝑧𝛼1 (𝑡) + 𝛾21𝑤𝑇 (𝑡) 𝑤 (𝑡) ,
(46)

where

𝜁𝑇 (𝑡) = [𝜉𝑇 (𝑡) 𝑒𝑇 (𝑖𝑘) 𝑤𝑇 (𝑡)] ,
Π3𝑖𝑗 = Π2𝑖𝑗,
Ω𝑖𝑗

2 = 𝑉𝑆−1𝑉𝑇,
Θ𝑖𝑗

2 = Λ𝑖𝑗
4𝑆Λ𝑖𝑗𝑇

4 + 2Δ 1𝑇Δ𝑇
1,

Λ𝑖𝑗𝑇
4 = [𝐴𝑇 𝐵 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} 0 0 𝐵𝑤𝑖] ,
𝑉𝑇 = [𝑉𝑇

1 𝑉𝑇
2 𝑉𝑇

3 0 0] ,
Δ𝑇

1 = [0 𝐼 0 0 0] .

(47)

If Π3𝑖𝑗 + 𝜏(𝑡)Ω𝑖𝑗
2 + (ℎ𝜏 − 𝜏(𝑡))Θ𝑖𝑗

2 < 0, then 𝑧𝑇𝛼1(𝑡)𝑧𝑎1(𝑡) −𝛾21𝑤𝑇(𝑡)𝑤(𝑠) + �̇�(𝜂(𝑡)) < 0.
Combining Π3𝑖𝑗 + 𝜏(𝑡)Ω𝑖𝑗

2 + (ℎ𝜏 − 𝜏(𝑡))Θ𝑖𝑗
2 with Lemma 4,

we can obtain

Π3𝑖𝑗 + ℎ𝜏Ω𝑖𝑗
2 < 0

Π3𝑖𝑗 + ℎ𝜏Θ𝑖𝑗
2 < 0 (48)

Combining (48) with Schur Complement, we can obtain
(41) and (42).

Similarly, suppose the zero initial condition; then𝑉(𝜂(𝑡))|𝑡=0 = 0. The following generalized function of 𝐻2

performance index is considered:

𝐽𝑧𝛼2𝑤 = 𝑉 (𝜂 (𝑡)) − ∫𝑡

0
𝑤𝑇 (𝑠) 𝑤 (𝑠) 𝑑𝑠. (49)

For any nonzero𝑤(𝑡) ∈ 𝐿2[0, ∞) and 𝑡 ≥ 0, we can obtain
𝐽𝑧𝛼2𝑤 = 𝑉 (𝜂 (𝑡)) − 𝑉 (𝜂 (𝑡))𝑡=0 − ∫𝑡

0
𝑤𝑇 (𝑠) 𝑤 (𝑠) 𝑑𝑠. (50)

From the definition of Lyapunov function and the expres-
sion of 𝐽𝑧𝛼2𝑤, we can obtain

𝜂𝑇 (𝑡) 𝑃𝜂 (𝑡) ≤ 𝑉 (𝜂 (𝑡)) ≤ ∫𝑡

0
𝑤𝑇 (𝑠) 𝑤 (𝑠) 𝑑𝑠. (51)

Combining (43) with Schur Complement, we can obtain

[𝑃 𝐶𝑇
𝑖2

∗ 𝛾22𝐼] ≥ 0 ⇐⇒ 𝑃 − ( 1𝛾22 ) 𝐶𝑇
𝑖2𝐶𝑖2 > 0 ⇐⇒ 𝐶𝑇

𝑖2𝐶𝑖2 < 𝛾22𝑃 (52)

Based on (27), (51), and (52), we can obtain

𝑧𝑇𝛼2 (𝑡) 𝑧𝛼2 (𝑡) = 𝜂𝑇 (𝑡) 𝐶𝑇
𝑖2𝐶𝑖2𝜂 (𝑡) < 𝛾22𝜂𝑇 (𝑡) 𝑃𝜂 (𝑡)

≤ 𝛾22 ∫𝑡

0
𝑤𝑇 (𝑠) 𝑤 (𝑠) 𝑑𝑠

≤ 𝛾22 ∫∞

0
𝑤𝑇 (𝑠) 𝑤 (𝑠) 𝑑𝑠.

(53)

From (53), for any 𝑤(𝑡) ∈ 𝐿2[0, ∞) and 𝑡 > 0, the
generalized 𝐻2 performance index ‖𝑧𝛼2(𝑡)‖∞ ≤ 𝛾2‖𝑤(𝑡)‖2 is
satisfied; that is, system (17) has an 𝐻2 performance index.

Therefore, if matrix inequalities (40)–(43) are simul-
taneously satisfied, system (17) possesses 𝛼-safety degree,‖𝑧𝛼1(𝑡)‖2 ≤ 𝛾1‖𝑤(𝑡)‖2, ‖𝑧𝛼2(𝑡)‖∞ ≤ 𝛾2‖𝑤(𝑡)‖2, and fewer
transmission data. The ellipsoid 𝜀(𝑃) is the invariant set
of system (17). Particularly, the feedback control law (15)
can make the nonuniform transmission nonlinear NCS (17)
remain inside the domain of attraction 𝜀(𝑃) and possess
some multiobjective constraint performances index under
the DETCS. The proof is completed.

3.2. The Codesign Method. The codesign in this paper is
between the multiobjective constraint fault-tolerant control
and the network communication for system (17)with nonuni-
form transmission period. Codesign refers to simultaneously
obtaining the multiobjective constraint fault-tolerant con-
troller and the event-triggered weight matrix by solving a
set of linear matrix inequalities. However, only by providing
the controller in advance can we obtain the event-triggered
weight matrix in the previous study result [31]. Simultane-
ously obtaining the controller and the event-triggered weight
matrix is emphasized in the proposed codesignmethod in the
present study. The balance between the quality of control for
the system and the quality of service for the network can be
obtained by adjusting the related parameter.

3.2.1. The Codesign Method between Fault-Tolerance and
Communication for Closed-Loop Failure System with 𝛼-Safety
Degree. The goal of system codesign is to obtain the appro-
priate fault-tolerant control gain and event-triggered weight
matrix for system (17), thereby making the system asymptot-
ically stable and obtaining other performance indexes such
as 𝛼-stability and less occupancy of network communication
resource.
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Theorem 8. Based on the event-triggered condition (6) of the
DETCS, there exist some matrices 𝑋 = 𝑋𝑇 > 0, Φ = Φ𝑇 > 0,𝑄,𝑅, 𝑆,𝑇,𝑊,𝐾𝑗 (𝑗 = 1, 2, . . . , 𝑟),𝑈 and𝑉 for the given values𝜎, ℎ𝜏, and 𝛼. If all the given values and the matrix variables
satisfy 𝜀(𝑃) ⊂ ℓ(𝐹) and the matrix inequalities

[𝑅 𝑈
∗ 𝑅] ≥ 0, (54)

[[[
[

Π4𝑖𝑗 ℎ𝜏𝑉 Γ𝑖𝑗0
∗ −ℎ𝜏𝑆 0
∗ ∗ Ξ𝑖𝑗

0

]]]
]

< 0, (55)

[[[
[

Π4𝑖𝑗 ℎ𝜏Λ𝑖𝑗
5 Γ̂𝑖𝑗0

∗ ℎ𝜏𝑆 − 2ℎ𝜏𝑋 0
∗ ∗ Ξ𝑖𝑗

0

]]]
]

< 0, (56)

[ 1 �̃�𝑙∗ 𝑋] ≥ 0, 𝑙 ∈ [1, 𝑚] , (57)

Π4𝑖𝑗
11

= 𝑋 (𝐴 𝑖 + 𝛼𝐼) + (𝐴 𝑖 + 𝛼𝐼)𝑇 𝑋 + 𝑄 − 𝑅 + 𝑉1

+ 𝑉𝑇

1 − 𝜋2

4 𝑊,
Π4𝑖𝑗

12

= exp (𝛼𝜏 (𝑡)) 𝑃𝐵𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗} + 𝑅 − 𝑈 − 𝑉1

+ 𝑉𝑇

2 + 𝜋2

4 𝑊,
Π4𝑖𝑗

13 = 𝑈 + 𝑉𝑇

3 ,
Π4𝑖𝑗

15 = ℎ𝜏𝑋 (𝐴 𝑖 + 𝛼𝐼) ,
Π4𝑖𝑗

22

= −2𝑅 + 𝑈 + 𝑈𝑇 − 𝑉2 − 𝑉𝑇

2 − ℎ𝜏𝑇 − 𝜋2

4 𝑊
+ 𝜎 exp (2𝛼𝜏 (𝑡)) Φ,

Π4𝑖𝑗
23 = 𝑅 − 𝑈 − 𝑉𝑇

3 ,
Π4𝑖𝑗

25 = ℎ𝜏 exp (𝛼𝜏 (𝑡)) {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗}𝑇 𝐿𝑇𝐵𝑇

𝑖 ,
Π4𝑖𝑗

33 = −𝑄 − 𝑅,
Π4𝑖𝑗

44 = −Φ,
Π4𝑖𝑗

55 = 𝑅 + 𝑊 − 2𝑋,
𝑉 = [𝑉1 𝑉2 𝑉3 0 0]𝑇 ,

Λ𝑖𝑗
5 = [𝑋 (𝐴 𝑖 + 𝛼𝐼)𝑇 𝜆1 0 0 0] ,

Γ𝑖𝑗0 = [ 𝑀𝑇 0 0 0 ℎ𝜏𝑀𝑇

𝐸𝑎𝑖𝑋 𝜆2 0 0 0 ]
𝑇

,

Γ𝑖𝑗0 = [ 𝑀𝑇 0 0 ℎ𝜏𝑀𝑇 ℎ𝜏𝑀𝑇

𝐸𝑎𝑖𝑋 𝜆2 0 0 0 ]
𝑇

,
Ξ𝑖𝑗
0 = diag {−𝜀𝑖𝑗𝐼 −𝜀−1𝑖𝑗 𝐼} ,

𝜆1 = exp (𝛼𝜏 (𝑡)) {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗}𝑇 𝐿𝑇𝐵𝑇

𝑖 ,
𝜆2 = exp (𝛼𝜏 (𝑡)) 𝐸𝑏𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗}
(58)

then the nonuniform transmission nonlinear NCS (17) remains
asymptotically stable in the domain of attraction 𝜀(𝑃) and
possesses 𝛼-safety degree. 𝐾 and Φ are the group of the
fault-tolerant controller and the event-triggered weight matrix.
Furthermore, we can obtain the fault-tolerant controller and
the event-triggeredmatrix by𝐾𝑗 = 𝐾𝑗𝑋−1 andΦ = 𝑋−1Φ𝑋−1,
respectively.

Proof. We replace𝐴,𝐵with𝐴 𝑖+Δ𝐴 𝑖+𝛼𝐼 and exp(𝛼𝜏(𝑡))(𝐵𝑖+Δ𝐵𝑖)𝐿 in (24), respectively. Based on (3) and Lemma 9 of [25],
we can obtain

[Π5𝑖𝑗 ℎ𝜏�̂�∗ −ℎ𝜏𝑆] + 𝜀−1𝑖𝑗 Γ𝑖𝑗1 Γ𝑖𝑗𝑇1 + 𝜀𝑖𝑗Ψ𝑖𝑗
1 Ψ𝑖𝑗𝑇

1 < 0, (59)

where
Π5𝑖𝑗

11

= 𝑃 (𝐴 𝑖 + 𝛼𝐼) + (𝐴 𝑖 + 𝛼𝐼)𝑇 𝑃 + 𝑄 − 𝜋2

4 𝑊 − 𝑅
+ 𝑉1 + 𝑉𝑇

1 ,
Π5𝑖𝑗

12

= exp (𝛼𝜏 (𝑡)) 𝑃𝐵𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗} + 𝜋2

4 𝑊 + 𝑅
− 𝑈 − 𝑉1 + 𝑉𝑇

2 ,
Π5𝑖𝑗

13 = 𝑈 + 𝑉𝑇
3 ,

Π5𝑖𝑗
14 = ℎ𝜏 (𝐴 𝑖 + 𝛼𝐼)𝑇 ,

Π5𝑖𝑗
22 = −ℎ𝜏𝑇 − 𝜋2

4 𝑊 − 2𝑅 + 𝑈 + 𝑈𝑇 − 𝑉2 − 𝑉𝑇
2 ,

Π5𝑖𝑗
23 = 𝑅 − 𝑈 − 𝑉𝑇

3 ,
Π5𝑖𝑗

24 = exp (𝛼𝜏 (𝑡)) ℎ𝜏 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗}𝑇 𝐿𝑇𝐵𝑇

𝑖 ,
Π5𝑖𝑗

33 = −𝑄 − 𝑅1,
Π5𝑖𝑗

44 = − (𝑅 + 𝑊)−1 ,
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Γ𝑖𝑗𝑇1

= [𝐸𝑎𝑖 exp (𝛼𝜏 (𝑡)) 𝐸𝑏𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗} 0 0 0] ,

Ψ𝑖𝑗𝑇
1 = [𝑀𝑇𝑃 0 0 ℎ𝜏𝑀𝑇 0]

(60)

𝜀𝑖𝑗 is some scalar, and 𝜀𝑖𝑗9 > 0.
With regard to the Schur Complement Lemma, (59) is

equivalent to

[[[
[

Π6𝑖𝑗 ℎ𝜏�̂� Γ𝑖𝑗2∗ −ℎ𝜏𝑆 0
∗ ∗ Ξ𝑖𝑗

1

]]]
]

< 0, (61)

where

Π6𝑖𝑗 = Π5𝑖𝑗,
Ξ𝑖𝑗
1 = Ξ𝑖𝑗

0 ,
Γ𝑖𝑗2
= [

[
𝑀𝑇𝑃 0 0 ℎ𝜏𝑀𝑇 0
𝐸𝑎𝑖 exp (𝛼𝜏 (𝑡)) 𝐸𝑏𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} 0 0 0]
]
𝑇

.
(62)

Transforming matrix inequality (61) into the corresponding
linear matrix inequality through congruent transformation is
necessary to conveniently solve matrix inequality. Pre- and
postmultiplying [ 𝑅 𝑈

∗ 𝑅 ] ≥ 0 with 𝐽1 = diag{𝑃−1, 𝑃−1} result in
(54) when we define 𝑅 = 𝑋𝑅𝑋, 𝑈 = 𝑋𝑈𝑋.

Pre- and postmultiplying (61) with 𝐽1 = diag{𝑃−1, 𝑃−1,𝑃−1, 𝐼, 𝑃−1, 𝐼, 𝐼}, we can obtain

[[[
[

Π7𝑖𝑗 ℎ𝜏𝑃−1�̂�𝑃−1 Γ𝑖𝑗3∗ −ℎ𝜏𝑃−1𝑆𝑃−1 0
∗ ∗ Ξ𝑖𝑗

1

]]]
]

< 0, (63)

where

Π7𝑖𝑗
11 = (𝐴 𝑖 + 𝛼𝐼) 𝑃−1 + 𝑃−1 (𝐴 𝑖 + 𝛼𝐼)𝑇 + 𝑃−1𝑄𝑃−1

− 𝜋2

4 𝑃−1𝑊𝑃−1 − 𝑃−1𝑅𝑃−1 + 𝑃−1𝑉1𝑃−1,
Π7𝑖𝑗

12 = exp (𝛼𝜏 (𝑡)) 𝐵𝑖𝐿 {Υ𝑞𝐾𝑗𝑃−1 + Υ−
𝑞 𝐹𝑗𝑃−1}

+ 𝜋2

4 𝑃−1𝑊𝑃−1 + 𝑃−1𝑅𝑃−1 − 𝑃−1𝑈𝑃−1

− 𝑃−1𝑉1𝑃−1 + 𝑃−1𝑉𝑇
2 𝑃−1,

Π7𝑖𝑗
13 = 𝑃−1𝑈𝑃−1 + 𝑃−1𝑉𝑇

3 𝑃−1,
Π7𝑖𝑗

14 = ℎ𝜏𝑃−1 (𝐴 𝑖 + 𝛼𝐼)𝑇 ,

Π7𝑖𝑗
22 = −ℎ𝜏𝑃−1𝑇𝑃−1 − 𝜋2

4 𝑃−1𝑊𝑃−1 − 2𝑃−1𝑅𝑃−1

+ 𝑃−1𝑈𝑃−1 − 𝑃−1𝑈𝑇𝑃−1 − 𝑃−1𝑉1𝑃−1

− 𝑃−1𝑉𝑇
2 𝑃−1,

Π7𝑖𝑗
23 = 𝑃−1𝑅𝑃−1 − 𝑃−1𝑈𝑃−1 − 𝑃−1𝑉𝑇

3 𝑃−1,
Π7𝑖𝑗

24 = exp (𝛼𝜏 (𝑡)) ℎ𝜏𝑃−1 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗}𝑇 𝐿𝑇𝐵𝑇

𝑖 ,
Π7𝑖𝑗

33 = −𝑃−1𝑄𝑃−1 − 𝑃−1𝑅𝑃−1,
Π7𝑖𝑗

44 = − (𝑅 + 𝑊)−1 ,
Γ𝑖𝑗3 = [ 𝑀𝑇 0 0 ℎ𝜏𝑀𝑇 0

𝐸𝑎𝑖𝑃−1 𝜆3 0 0 0]
𝑇

,
𝜆3 = exp (𝛼𝜏 (𝑡)) 𝐸𝑏𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} 𝑃−1.
(64)

Define 𝑃−1 = 𝑋, 𝑅 = 𝑋𝑅𝑋, 𝑄 = 𝑋𝑄𝑋, 𝑆 = 𝑋𝑆𝑋, 𝑇 =𝑋𝑇𝑋, 𝑊 = 𝑋𝑊𝑋, 𝐾𝑗 = 𝐾𝑗𝑋, 𝐹𝑗 = 𝐹𝑗𝑋 (𝑗 = 1, 2, . . . , 𝑟),𝑉 = 𝑋�̂�𝑋, and Φ = 𝑋Φ𝑋.
For the matrix 𝑁 with appropriate dimension, if (𝑁−1 −𝑃−1)𝑁(𝑁−1 − 𝑃−1) ≥ 0 for 𝑁−1 > 0, then −𝑃−1𝑁𝑃−1 ≤ 𝑁−1 −2𝑃−1. We obtain −(𝑅 + 𝑊)−1 ≤ 𝑅 + 𝑊 − 2𝑋, −𝑆−1 ≤ 𝑆 − 2𝑋.

Therefore, we can obtain (55). Similarly, we can obtain (56)
using a series of processing methods.

When the actuator has saturation constraint, we make
some mathematical transitions to the linear domain condi-
tion.

𝜀 (𝑃) ⊂ ℓ (𝐹) ⇐⇒ 𝑓𝑙𝑋 ≤ 1, ∀𝑥 ∈ 𝜀 (𝑃) , (65)

where𝑓𝑙 is the 𝑙th row of the matrix 𝐹 for 𝑙 ∈ [1, 𝑚]. Equation
(65) is equivalent to

𝑓𝑙𝑃−1𝑓𝑇
𝑙 ≤ 1. (66)

In addition, applying the Schur Complement into (66),
we can obtain

[ 1 𝑓𝑙𝑃−1

∗ 𝑃−1
] ≥ 0, 𝑙 ∈ [1, 𝑚] . (67)

As 𝑃−1 = 𝑋, 𝐹𝑗 = 𝐹𝑗𝑋 are defined as above, (67) is
equivalent to (57). Namely, when the system parameters
satisfy (54)–(57), the control law (15) can make the state
trajectories of the nonlinear NCS (17) remain inside the
ellipsoid 𝜀(𝑃) and possess a 𝛼-safety degree. Meanwhile, we
can get the nonuniform transmission robust fault-tolerant
controller gainmatrix and event-triggeredweightmatrices by𝐾𝑗 = 𝐾𝑗𝑋−1 and Φ = 𝑋−1Φ𝑋−1. The proof is completed.

3.2.2. The Codesign Method between Fault-Tolerance and
Communication for Closed-Loop Failure System (17) withMul-
tiobjective Constraint. The codesign goal of multiobjective
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constraint fault-tolerant control underDETCS is to obtain the
appropriate multiobjective constraint fault-tolerant control
gain and the event-triggered weight matrix for system (17),
thereby making the system asymptotically stable and obtain-
ing some other performance indexes such as 𝛼-safety degree,𝐻∞-performance, 𝐻2-performance, and fewer occupancy of
network communication resource.

Theorem 9. Based on the event-triggered condition (6) of the
DETCS, there exist some matrices 𝑋 = 𝑋𝑇 > 0, Φ̆ = Φ̆𝑇 >0, �̆�, �̆�, �̆�, �̆�, �̆�, �̆�𝑗 (𝑗 = 1, 2, . . . , 𝑟), �̆� and �̆� for the given
values 𝜎, ℎ𝜏, 𝛼, 𝛾1, and 𝛾2. If all the given values and the matrix
variables satisfy 𝜀(𝑃) ⊂ ℓ(𝐹) and the matrix inequalities

[�̆� �̆�
∗ �̆�] ≥ 0, (68)

[[[
[

Π8𝑖𝑗 ℎ𝜏�̆� Γ𝑖𝑗3
∗ −ℎ𝜏�̆� 0
∗ ∗ Ξ𝑖𝑗

2

]]]
]

< 0, (69)

[[[
[

Π8𝑖𝑗 ℎ𝜏Λ𝑖𝑗
6 Γ𝑖𝑗3

∗ ℎ𝜏�̆� − 2ℎ𝜏𝑋 0
∗ ∗ Ξ𝑖𝑗

2

]]]
]

< 0, (70)

[𝑋 𝑋𝐶𝑇
𝑖2

∗ 𝛾22𝐼 ] > 0, (71)

[ 1 �̆�𝑙∗ 𝑋] ≥ 0, 𝑓𝑜𝑟 𝑙 ∈ [1, 𝑚] (72)

the nonuniform transmission nonlinear NCS (17) can remain
asymptotically stable in the domain of attraction 𝜀(𝑃) and
possesses 𝛼-safety degree, 𝛾1-disturbance rejection level, 𝛾2-out-
peak rejection level, and less data transmission occupancy rate.𝐾 and Φ are the group of the fault-tolerant controller and
the event-triggered weight matrix. Furthermore, we can obtain
the fault-tolerant controller and the event-triggered matrix by𝐾𝑗 = 𝐾𝑗𝑋−1 and Φ = 𝑋−1Φ𝑋−1, respectively, where

Π8𝑖𝑗
11 = (𝐴 𝑖 + 𝛼𝐼) 𝑋 + 𝑋 (𝐴 𝑖 + 𝛼𝐼)𝑇 + �̆� − �̆� + �̆�1

+ �̆�𝑇

1 − 𝜋2

4 �̆�,
Π8𝑖𝑗

12 = exp (𝛼𝜏 (𝑡)) 𝐵𝑖𝐿 {Υ𝑞�̆�𝑗 + Υ−
𝑞 �̆�𝑗} + �̆� − �̆� − �̆�1

+ �̆�𝑇

2 + 𝜋2

4 �̆�,
Π8𝑖𝑗

13 = �̆� + �̆�𝑇

3 ,
Π8𝑖𝑗

15 = 𝐵𝑤𝑖,
Π8𝑖𝑗

16 = 𝑋𝐶𝑇
𝑖1,

Π8𝑖𝑗
17 = ℎ𝜏𝑋 (𝐴 𝑖 + 𝛼𝐼)𝑇 ,

Π8𝑖𝑗
22 = −2�̆� + �̆� + �̆�𝑇 − �̆�2 − �̆�𝑇

2 + ℎ𝜏�̆� − 𝜋2

4 �̆�
+ 𝜎 exp (2𝛼𝜏 (𝑡)) Φ̆,

Π8𝑖𝑗
23 = �̆� − �̆� − �̆�𝑇

3 ,
Π8𝑖𝑗

27 = ℎ𝜏 exp (𝛼𝜏 (𝑡)) {Υ𝑞�̆�𝑗 + Υ−
𝑞 �̆�𝑗}𝑇 𝐵𝑇

𝑖 𝐿,
Π8𝑖𝑗

33 = −�̆� − �̆�,
Π8𝑖𝑗

44 = −Φ̆,
Π8𝑖𝑗

55 = −𝛾21𝐼,
Π8𝑖𝑗

57 = ℎ𝜏𝐵𝑇
𝑤𝑖,

Π8𝑖𝑗
66 = −𝑒𝑖𝐼,

Π8𝑖𝑗
77 = 𝑅 + 𝑊 − 2𝑋,
�̆� = [𝑉1 𝑉2 𝑉3 0 0 0 0]𝑇 ,

Λ𝑖𝑗
6 = [�̆�𝑇

𝑖 {Υ𝑞�̆�𝑗 + Υ−
𝑞 �̆�𝑗}𝑇 𝐿𝐵𝑇

𝑖 0 0 𝐵𝑇
𝑤𝑖 0 0]𝑇 ,

Γ𝑖𝑗3 = [ 𝑀 0 0 0 0 ℎ𝜏𝑀 ℎ𝜏𝑀
𝑋𝐸𝑇

𝑎𝑖 𝜆3 0 0 0 0 0 ]
𝑇

,
Ξ𝑖𝑗
2 = diag {−𝜀𝑖𝑗𝐼, −𝜀−1𝑖𝑗 𝐼} ,

𝜆3 = exp (𝛼𝜏 (𝑡)) 𝐵𝑖𝐿 {Υ𝑞�̆�𝑗 + Υ−
𝑞 �̆�𝑗}𝑇 𝐿𝐸𝑇

𝑏𝑖.
(73)

The proof process is similar to Theorem 8. The proof detail
is omitted herein because of the limited space, and the proof
process is detailed in Appendix.

Remark 10. There are four theorems. Theorems 6 and 7 are
two stability criterions. Suppose that the fault-tolerant con-
troller and the event-triggered weight matrix are previously
provided and determine if the closed-loop failure system (17)
with nonuniform transmission period satisfies the related
performance index simultaneously, such as 𝛼-safety degree,𝐻∞-performance, 𝐻2-performance, and less data transmis-
sion. Furthermore,Theorems 8 and 9 are the related codesign
method between control and communication. Particularly,
the multiobjective constraint fault-tolerant controller and
event-triggered weight matrix are simultaneously obtained
by solving the related linear matrix inequalities in Theorems
8 and 9, which can make system (17) possess some desired
performance indexes. Therefore, Theorems 6 and 7 are the
criterions of judgment andTheorems 8 and 9 are themethods
of solving controller and event-triggeredweightmatrix. From
the point of the theoremproof process, the proof ofTheorems
6 and 7 are the bases of Theorems 8 and 9.
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If the parameters 𝛼, 𝜎, 𝛾1, and 𝛾2 are provided in
advance, the satisfactory fault-tolerant controller and the
event-triggered weight matrix which are solved through

Theorem 9 are only 𝛾𝑖-suboptimal solutions for system (17)
under the DETCS. 𝛾𝑗 (𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗) can be optimized by
(74) for 𝛼, 𝜎, and 𝛾𝑖 provided in advance

min
ℎ𝜏,𝜎,𝛼,𝛾𝑖

𝛾𝑗
s.t. (69) ∼ (73) , 𝑋 > 0

�̆� > 0, �̆� > 0, �̆� > 0, �̆� > 0, �̆� > 0, �̆� > 0, �̆� > 0 .
(74)

In addition, we can obtain the optimal fault-tolerant con-
troller and event-triggered weight matrix for system (17)
with nonuniform transmission period. If some parameters
are provided in advance, the corresponding optimal fault-
tolerant controller and the event-triggered weight matrix
under the responding optimal performance by a similar
method can be obtained along with other optimal perfor-
mance indexes.

4. Simulation Experiment

Considering the uncertain nonlinear NCS model [32], if we
choose 𝑀1(𝑥2) = sin2𝑥2 and 𝑀2(𝑥2) = cos2𝑥2 as fuzzy
membership function, then the fuzzy system with two rules
is expressed as follows.

Rule i. If 𝑥2 is 𝑀𝑖, 𝑖 = 1, 2, then
�̇� (𝑡) = (𝐴 𝑖 + Δ𝐴 𝑖) 𝑥 (𝑡) + (𝐵𝑖 + Δ𝐵𝑖) sat (𝑢 (𝑡))

+ 𝐵𝑤𝑖𝑤 (𝑡) ,
𝑧1 (𝑡) = 𝐶𝑖1𝑥 (𝑡) ,
𝑧2 (𝑡) = 𝐶𝑖2𝑥 (𝑡) ,

𝐴1 = [−3 1
1 −1] ,

𝐴2 = [−2 1
1 0] ,

𝐵1 = [1 0
0 −0.5] ,

𝐵2 = [1 0
0 0.5] ,

𝐵𝑤1 = [ 1
0.2] ,

𝐵𝑤2 = [−1
0.1] ,

𝐶11 = [1 0
0 −0.5] ,

𝐶21 = [1 0
0 0.5] ,

𝐶12 = [0.9 0
0 −0.5] ,

𝐶22 = [0.9 0
0 0.8] ,

𝑤 (𝑡) = {{{
sin (2𝜋𝑡) exp (−0.2𝑡) , 10 ≤ 𝑡 ≤ 20
0 other.

(75)

The uncertain parameter matrix Δ𝐴 𝑖, Δ𝐵𝑖 (𝑖 = 1, 2) satisfy
condition (3), and the related parameters in (3) are

𝑀 = [0.31 0.1
0 0 ] ,

𝐹 (𝑡) = [sin 𝑡 0
0 cos 𝑡] ,

𝐸𝑎𝑖 = [0 0.2
0 0 ] ,

𝐸𝑏𝑖 = [0 0.2
0 0 ] .

(76)

The eigenvalues of system matrices 𝐴1 and 𝐴2 are −3.4142,−0.5858, −2.4142, and 0.4142. The system is unstable if the
control input is not placed in the system. The values of
actuator failure matrix are 𝐿0 = diag{1, 1}, 𝐿1 = diag{0, 1},𝐿2 = diag{0.8, 0.5}, and 𝐿3 = diag{0.4, 0.9}. We select 𝑥0 =[1, −1]𝑇, ℏ = 0.1, ℎmax 𝑘 = 0.6, 𝜏(𝑡) = 0.07 + 0.03| sin 𝑡|,𝜏 = 0.1 s, ℎ𝜏 = ℎmax 𝑘 +𝜏 = 0.7 s, and 𝜎 = 0.05.The simulation
experiment was conducted in three cases to completely verify
the effectiveness of the obtained theory result. Case 1 is the
circumstance of system (17) only with 𝛼-safety degree. Case
2 is the circumstance of system (17) with 𝛼-safety degree and𝐻∞ performance index. Case 3 is the circumstance of system
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(17) with 𝛼-safety degree, 𝐻∞ performance index, and 𝐻2

performance index.

Case 1. Based on a discrete event-triggered condition (6),
if 𝛼 = 0.1, we can obtain the fault-tolerant control gain
matrix 𝐾11, 𝐾21, and the event-triggered weight matrix Φ1 by
Theorem 8.

𝐾11 = [ 0.0327 −0.3774
−0.5578 0.0906 ] ,

𝐾21 = [ 0.0514 −0.3217
−0.4697 0.0763 ] ,

Φ1 = [ 0.9631 −0.2581
−0.2581 0.4761 ] .

(77)

Case 2. Based on the discrete event-triggered condition (6), if𝛼 = 0.1 and 𝛾1 = 1.3, we can obtain the fault-tolerant control
gain matrix 𝐾12, 𝐾22, and the event-triggered weight matrixΦ2 byTheorem 9 (without considering (69)).

𝐾12 = [−0.5753 −1.9147
−1.0985 −0.8791] ,

𝐾22 = [−0.5758 −1.9097
−1.0944 −0.8758] ,

Φ2 = [ 2.3374 −1.3976
−1.3976 1.2947 ] .

(78)

Case 3. Based on the discrete event-triggered condition (6),
if 𝛼 = 0.1, 𝛾1 = 1.3, and, 𝛾2 = 1.3, we can obtain the fault-
tolerant control gainmatrix𝐾13,𝐾23, and the event-triggered
weight matrix Φ3 byTheorem 9.

𝐾13 = [−0.5437 −1.8642
−1.1723 −0.7733] ,

𝐾23 = [−0.5451 −1.8623
−1.1701 −0.7719] ,

Φ3 = [ 2.4196 −1.4267
−1.4267 1.1817 ] .

(79)

There are system state response and control input variety for
the three preceding cases which are shown in Figures 3, 4, and
5.

The codesign method presented in this study is between
fault-tolerant control and network communication for the
closed-loop failure system (17) with actuator saturation and
actuator failure. From Figures 3(a), 4(a), and 5(a), the code-
sign method under nonuniform transmission can guarantee
that the closed-loop failure system (17) is asymptotically sta-
ble with some related performance indexes in the three cases.
The related performance indexes include 𝛼-safety degree,
disturbance rejection performance, and out-peak rejection

Table 1: The system data transmission circumstance in three cases.

ℎ𝜏 𝑛 ℎ ℎmax 𝑟𝑒/𝑡
Case 1 0.7 156 0.1721 0.4000 52%
Case 2 0.7 219 0.1397 0.5000 73%
Case 3 0.7 229 0.1367 0.7000 76.3%
ℎ𝜏 is the upper bound of 𝜏(𝑡). 𝑛 is the quantity of data transmission; 𝑟𝑒/𝑡 is
the ratio between the quantity of data transmission in the DETCS and the
corresponding quantity in the PTTCS; ℎ is the average release period; ℎmax
is the maximum release period.

performance. Simultaneously, from Figures 3(b), 4(b), and
5(b), although the system has actuator saturation constraint,
the system performance does not deteriorate.

Under the discrete event-triggered condition (6), there
are corresponding instant distribution of system data trans-
mission and data transmission interval for the three cases, as
shown in Figure 6.

Comparing with PTTCS (300 data transmission), the
quantity of data transmission has been significantly reduced
in the closed-loop failure system. Based on DETCS, the fault-
tolerant control for nonuniform transmission nonlinear NCS
(17) can save some network communication resource. In
addition, the data quantity for transmission becomes sub-
stantial with the increase in performance index constraints.
Furthermore, the data transmission circumstances of the
three cases are shown in Table 1.

Table 1 shows that, with the increase in performance
index constraints, the data transmission quantity 𝑛, the aver-
age transmission period ℎ, and the maximum transmission
period ℎmax become substantial while the saving ratio of data
transmission (1 − 𝑟𝑒/𝑡) becomes small.

With regard to (74), the optimal 𝛾1 or 𝛾2 for the multi-
objective constraint fault-tolerant control of Case 3 can be
obtained. If 𝛾1 = 1.3, the optimal 𝛾2min = 0.9222 and
the corresponding optimal multiobjective constraint fault-
tolerant controller 𝐾opt11, 𝐾opt21, and the event-triggered
weight matrix Φopt1 can be obtained

𝐾opt11 = [−0.6372 −2.3240
−1.4235 −1.1725] ,

𝐾opt21 = [−0.6373 −2.3237
−1.4232 −1.1722] ,

Φopt1 = [ 0.0909 −0.0344
−0.0344 0.0751 ] .

(80)

If 𝛾2 = 1.3, the optimal 𝛾1min = 1.1554 and the
corresponding optimal fault-tolerant controller𝐾opt12,𝐾opt22,
and the event-triggered weight matrix Φopt2 can be obtained.

𝐾opt12 = [−0.6114 −1.8763
−1.2709 −0.9540] ,

𝐾opt22 = [−0.6145 −1.8722
−1.2652 −0.9497] ,
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Figure 3: (a) The state response of the system in Case 1. (b) The control input under the actuator saturation in Case 1.

Φopt2 = [ 0.9209 −0.5980
−0.5980 0.4789 ] .

(81)
In Case 3, the correlation for 𝛼-safety degree and𝛾1min-optimal disturbance rejection level, 𝛼-safety degree

and 𝛾2min-optimal out-peak rejection level, 𝛾1-disturbance
rejection level and 𝛾2min-optimal out-peak rejection level,

𝛾2-out-peak rejection level, and 𝛾1min-optimal disturbance
rejection level can be obtained. The related result of the
simulation experiment is shown in Table 2.

Table 2 shows the correlation between 𝛼 and 𝛾𝑖min (𝑖 =1, 2). 𝛾𝑖 and 𝛾𝑗min (𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2) also have a mutually
restricted relationship. Namely, a few compromise balances
principles should be regarded in the design process. Sacrific-
ing one kind of performance because of the excessive pursuit
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Figure 4: (a) The state response of the system in Case 2. (b) The control input under the actuator saturation in Case 2.

of the other performance is not necessary. In addition, the
distribution circumstance of the feasible solution is obtained,
as shown in Figure 7.

Comparing with [25, 30], the codesign method provided
in the paper under nonuniform transmission can ensure
that the closed-loop failure system has a larger maximum
allowable time-delay by adopting a discontinuous Lyapunov
function (Table 3).

5. Conclusions

Considering the circumstance of nonuniform data transmis-
sion under DETCS, the codesign problem between multi-
objective constraint fault-tolerant control and network com-
munication is investigated for closed-loop failure system
with actuator saturation. By doing the comparative analysis
between the nonuniform transmission control system and
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Figure 5: (a) The state response of the system in Case 3. (b) The control input under the actuator saturation in Case 3.

the nonuniform sample-data control system,we can conclude
that a similar uncertainty of data updating period at the
holder end for these two classes systems exists.The establish-
ment of the closed-loop failure system model was completed
based on the related method of sample-data control system.
Based on a discontinuous Lyapunov function and the mixed

convex combination theory, the stability criterion and the
related codesign method are provided by matrix inequalities.
The simulation in which the closed-loop failure system
satisfies different performance indexes is conducted for the
three cases. The simulation result shows that the codesign
method does not only guarantee the closed-loop failure
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Table 2: The relation among 𝛼, 𝛾1, 𝛾2, 𝛾1min, and 𝛾2min.

𝛼 (given) 0 0.1 0.2 —
𝛾1min 0.5468 1.1554 2.6041 —𝛼 (given) 0 0.1 0.2 —𝛾2min 0.7033 0.9222 1.4760 —𝛾1 (given) 0.9 1.0 1.1 1.2𝛾2min 1.4522 1.2325 1.1028 1.0028𝛾2 (given) 0.7 0.8 0.9 1.0𝛾1min 2.1127 1.8060 1.5930 1.1359

Table 3: The comparison of allowable time-delay under different
methods.

Method
presented in
the paper

Reference [30] Reference [25]

The
maximum
value of
time-delay

0.7 0.25 0.2

system with some related performance indexes but also saves
certain network transmission communication resource. In
addition, the codesign method can enable the system with
a larger maximum allowable time-delay comparing with the
existing results. The research content of the paper belongs to
the field of passive fault-tolerant control, whereas the active
fault-tolerant control problem will be studied for closed-
loop failure system in the next step under the nonuniform
transmission period of DETCS.

Appendix

Proof of Theorem 9

Proof. We replace𝐴,𝐵with𝐴 𝑖+Δ𝐴 𝑖+𝛼𝐼 and exp(𝛼𝜏(𝑡))(𝐵𝑖+Δ𝐵𝑖)𝐿 in (41), respectively. Based on (3) and Lemma 9 of [25],
we can obtain

[Π9𝑖𝑗 ℎ𝜏�̂�∗ −ℎ𝜏𝑆] + 𝜀−1𝑖𝑗9Γ𝑖𝑗9 Γ𝑖𝑗𝑇9 + 𝜀𝑖𝑗9Ψ𝑖𝑗
9 Ψ𝑖𝑗𝑇

9 < 0, (A.1)

where

Π9𝑖𝑗
11 = 𝑃 (𝐴 𝑖 + 𝛼𝐼) + (𝐴 𝑖 + 𝛼𝐼)𝑇 𝑃 + 𝑄 − 𝜋2

4 𝑊 − 𝑅
+ 𝑉1 + 𝑉𝑇

1 ,
Π9𝑖𝑗

12 = exp (𝛼𝜏 (𝑡)) 𝑃𝐵𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗} + 𝜋2

4 𝑊 + 𝑅
− 𝑈 − 𝑉1 + 𝑉𝑇

2 ,
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Figure 6: The data transmission circumstance of the three cases.

Safety degree

Disturbance rejection level

3

2

1

0 0
0.05

0.1
0.15

0.2

0.5

1

1.5

2

2.5

O
ut

-p
ea

k 
re

je
ct

io
n 

le
ve

l

Figure 7: The area distribution of the feasible solution in Case 3.

Π9𝑖𝑗
13 = 𝑈 + 𝑉𝑇

3 ,
Π9𝑖𝑗

15 = 𝑃𝐵𝑤𝑖,
Π9𝑖𝑗

16 = 𝐶𝑇
𝑖1,

Π9𝑖𝑗
17 = ℎ𝜏 (𝐴 𝑖 + 𝛼𝐼)𝑇 ,

Π9𝑖𝑗
22 = −ℎ𝜏𝑇 − 𝜋2

4 𝑊 − 2𝑅 + 𝑈 + 𝑈𝑇 − 𝑉2 − 𝑉𝑇
2

+ 𝜎 exp (𝛼𝜏 (𝑡)) ,
Π9𝑖𝑗

23 = 𝑅 − 𝑈 − 𝑉𝑇
3 ,

Π9𝑖𝑗
27 = exp (𝛼𝜏 (𝑡)) ℎ𝜏 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗}𝑇 𝐵𝑇
𝑖 𝐿𝑇,

Π9𝑖𝑗
33 = −𝑄 − 𝑅,

Π9𝑖𝑗
44 = −Φ,

Π9𝑖𝑗
55 = −𝛾21𝐼,
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Π9𝑖𝑗
57 = ℎ𝜏𝐵𝑇

𝑤𝑖,
Π9𝑖𝑗

66 = −𝑒𝑖𝐼,
Π9𝑖𝑗

77 = − (𝑅 + 𝑊)−1 ,
𝑉 = [𝑉1 𝑉2 𝑉3 0 0 0 0]𝑇 ,
Γ𝑖𝑗𝑇9 = [𝐸𝑎𝑖 𝜆9 0 0 0 0 0 0] ,
Ψ𝑖𝑗𝑇
9 = [𝑀𝑇𝑃 0 0 0 0 0 ℎ𝜏𝑀𝑇 0] ,

𝜆9 = exp (𝛼𝜏 (𝑡)) 𝐸𝑏𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗} ,

𝜀𝑖𝑗9 is a scalar, 𝜀𝑖𝑗9 > 0.
(A.2)

With regard to the Schur Complement Lemma, (A.1) is
equivalent to

[[[
[

Π10𝑖𝑗 ℎ𝜏�̂� Γ𝑖𝑗10∗ −ℎ𝜏𝑆 0
∗ ∗ Ξ𝑖𝑗

10

]]]
]

< 0, (A.3)

where

Π10𝑖𝑗 = Π9𝑖𝑗,
Ξ𝑖𝑗
10 = Ξ𝑖𝑗

0 ,
Γ𝑖𝑗10 = [𝑀𝑇𝑃 0 0 0 0 ℎ𝜏𝑀𝑇 0

𝐸𝑎𝑖 𝜆10 0 0 0 0 0]
𝑇

,
𝜆10 = exp (𝛼𝜏 (𝑡)) 𝐸𝑏𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} .

(A.4)

Transforming the matrix inequality (A.3) into the corre-
sponding linear matrix inequality through congruent trans-
formation is necessary to conveniently solve matrix inequal-
ity (A.3). Pre- and postmultiplying [ 𝑅 𝑈

∗ 𝑅 ] ≥ 0 with 𝐽1 =
diag{𝑃−1, 𝑃−1}, we obtain (68) when we define �̆� = 𝑋𝑅𝑋,�̆� = 𝑋𝑈𝑋.

Pre- and postmultiplying (A.3) with 𝐽1 =
diag{𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝐼, 𝐼, 𝐼, 𝑃−1, 𝐼, 𝐼}, we obtain

[[[
[

Π11𝑖𝑗 ℎ𝜏𝑃−1�̂�𝑃−1 Γ𝑖𝑗11∗ −ℎ𝜏𝑃−1𝑆𝑃−1 0
∗ ∗ Ξ𝑖𝑗

11

]]]
]

< 0, (A.5)

where

Π11𝑖𝑗
11 = (𝐴 𝑖 + 𝛼𝐼) 𝑃−1 + 𝑃−1 (𝐴 𝑖 + 𝛼𝐼)𝑇 + 𝑃−1𝑄𝑃−1

− 𝜋2

4 𝑃−1𝑊𝑃−1 − 𝑃−1𝑅𝑃−1 + 𝑃−1𝑉1𝑃−1

+ 𝑃−1𝑉𝑇
1 𝑃−1,

Π11𝑖𝑗
12 = exp (𝛼𝜏 (𝑡)) 𝐵𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} 𝑃−1

+ 𝜋2

4 𝑃−1𝑊𝑃−1 + 𝑃−1𝑅𝑃−1 − 𝑃−1𝑈𝑃−1

− 𝑃−1𝑉1𝑃−1 + 𝑃−1𝑉𝑇
2 𝑃−1,

Π11𝑖𝑗
13 = 𝑃−1𝑈𝑃−1 + 𝑃−1𝑉𝑇

3 𝑃−1,
Π11𝑖𝑗

15 = 𝐵𝑤𝑖,
Π11𝑖𝑗

16 = 𝑃−1𝐶𝑇
𝑖1,

Π11𝑖𝑗
17 = ℎ𝜏𝑃−1 (𝐴 𝑖 + 𝛼𝐼)𝑇 ,

Π11𝑖𝑗
22 = ℎ𝜏𝑃−1𝑇𝑃−1 − 𝜋2

4 𝑃−1𝑊𝑃−1 − 2𝑃−1𝑅𝑃−1

+ 𝑃−1𝑈𝑃−1 + 𝑃−1𝑈𝑇𝑃−1 − 𝑃−1𝑉2𝑃−1

− 𝑃−1𝑉𝑇
2 𝑃−1 + 𝜎 exp (𝛼𝜏 (𝑡)) 𝑃−1Φ𝑃−1,

Π11𝑖𝑗
23 = 𝑃−1𝑅𝑃−1 − 𝑃−1𝑈𝑃−1 − 𝑃−1𝑉𝑇

3 𝑃−1,
Π11𝑖𝑗

27 = exp (𝛼𝜏 (𝑡)) ℎ𝜏𝑃−1 {Υ𝑞𝐾𝑗 + Υ−
𝑞 𝐹𝑗}𝑇 𝐵𝑇

𝑖 𝐿𝑇,
Π11𝑖𝑗

33 = −𝑃−1𝑄𝑃−1 − 𝑃−1𝑅𝑃−1,
Π11𝑖𝑗

44 = −𝑃−1Φ𝑃−1,
Π11𝑖𝑗

55 = −𝛾2𝑖 𝐼,
Π11𝑖𝑗

57 = ℎ𝜏𝐵𝑇
𝑤𝑖,

Π11𝑖𝑗
66 = −𝑒𝑖𝐼,

Π11𝑖𝑗
77 = − (𝑅 + 𝑊)−1 ,
Γ𝑖𝑗11 = [ 𝑀𝑇 0 0 0 0 0 ℎ𝜏𝑀𝑇

𝐸𝑎𝑖𝑃−1 𝜆11 0 0 0 0 0 ]
𝑇

,
𝜆11 = exp (𝛼𝜏 (𝑡)) 𝐸𝑏𝑖𝐿 {Υ𝑞𝐾𝑗 + Υ−

𝑞 𝐹𝑗} 𝑃−1,
Ξ𝑖𝑗
11 = Ξ𝑖𝑗

10.
(A.6)

Define 𝑃−1 = 𝑋, �̆� = 𝑋𝑅𝑋, �̆� = 𝑋𝑄𝑋, �̆� = 𝑋𝑆𝑋, �̆� =𝑋𝑇𝑋, �̆� = 𝑋𝑈𝑋, �̆� = 𝑋𝑊𝑋, �̆�𝑗 = 𝐾𝑗𝑋, �̆�𝑗 = 𝐹𝑗𝑋 (𝑗 =
1, 2, . . . , 𝑟), and Φ̆ = 𝑋Φ𝑋.

For the matrix 𝑁 with the appropriate dimension, if(𝑁−1 −𝑃−1)𝑁(𝑁−1 −𝑃−1) ≥ 0 for 𝑁−1 > 0, then −𝑃−1𝑁𝑃−1 ≤𝑁−1 − 2𝑃−1. We can obtain −(𝑅 + 𝑊)−1 ≤ 𝑅 + 𝑊 − 2𝑋,−𝑆−1 ≤ 𝑆 − 2𝑋. Therefore, we can obtain (69). Similarly, we
can obtain (70) by a series of processing methods.

Pre- and postmultiplying (43) with 𝐽1 = diag{𝑃−1, 𝐼}, we
obtain

[𝑃−1 𝑃−1𝐶𝑇
𝑖2

∗ 𝛾22𝐼 ] > 0. (A.7)
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With regard to 𝑃−1 = 𝑋, �̆� = 𝑋𝑅𝑋, and �̆� = 𝑋𝑈𝑋, we can
obtain (71).

When the actuator has saturation constraint, we make
somemathematical transition to the linear domain condition

𝜀 (𝑃) ⊂ ℓ (𝐹) ⇐⇒ 𝑓𝑙𝑋 ≤ 1, ∀𝑥 ∈ 𝜀 (𝑃) , (A.8)

where𝑓𝑙 is the 𝑙th row of the matrix 𝐹 for 𝑙 ∈ [1, 𝑚]. Equation
(A.8) is equivalent to

𝑓𝑙𝑃−1𝑓𝑇
𝑙 ≤ 1. (A.9)

In addition, applying the Schur Complement into (A.9),
we obtain

[ 1 𝑓𝑙𝑃−1

∗ 𝑃−1
] ≥ 0, 𝑙 ∈ [1, 𝑚] . (A.10)

As 𝑃−1 = 𝑋 and 𝐹𝑗 = 𝐹𝑗𝑋 are defined above, (A.10)
is equivalent to (72). Namely, when the system parameters
satisfy (68)–(72), the control law (15) can make the state
trajectories of the nonlinear NCS (17) remain inside the
ellipsoid 𝜀(𝑃) and possess a 𝛼-safety degree, 𝐻2-performance
index, and 𝐻∞-performance index. Meanwhile, the nonuni-
form transmission multiobjective constraint fault-tolerant
controller gain matrix and event-triggered weight matrices
are obtained by 𝐾𝑗 = �̆�𝑗𝑋−1 and Φ = 𝑋−1Φ̆𝑋−1. The proof is
completed.
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