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A probabilistic method is presented to analyze the temperature and the maximum frequency for multicore processors based on
consideration of workload variation, in this paper. Firstly, at the microarchitecture level, dynamic powers are modeled as the linear
function of IPCs (instructions per cycle), and leakage powers are approximated as the linear function of temperature. Secondly,
the microarchitecture-level hotspot temperatures of both active cores and inactive cores are derived as the linear functions of IPCs.
The normal probabilistic distribution of hotspot temperatures is derived based on the assumption that IPCs of all cores follow the
same normal distribution. Thirdly and lastly, the probabilistic distribution of the set of discrete frequencies is determined. It can
be seen from the experimental results that hotspot temperatures of multicore processors are not deterministic and have significant
variations, and the number of active cores and running frequency simultaneously determine the probabilistic distribution of hotspot
temperatures. The number of active cores not only results in different probabilistic distribution of frequencies, but also leads to
different probabilities for triggering DFS (dynamic frequency scaling).

1. Introduction

Continuous technology scaling and miniaturization have
escalated the power density and temperature of multicore
processors. In order to decrease manufacturing costs, the
packages of multicore processors are mostly designed based
on average power dissipation instead of the maximum, and
temperature is controlled with dynamic thermal manage-
ment (DTM) techniques such as dynamic voltage and fre-
quency scaling (DVFS) and dynamic frequency scaling (DFS)
[1].When temperature of processor reaches or approaches the
critical point, DVFS orDFS are invoked to ensure the thermal
constraint at the cost of sacrificing the speed of processors.
Therefore, it is crucial for design space exploration to analyze
temperature and running frequency accurately and fast at the
early stage.

1.1. Motivation. To explore the design space of thermal-
aware multicore processors at the early stage, some thermal
models have been proposed to estimate the temperature and
performance of processors [2–5], and most of estimation
approaches are based on transient analysis [6–14]. For tran-
sient analysis, temporal variations of temperature and per-
formance depending on workloads are traced, contributing
to high estimation accuracy. However, transient analysis is
time-consuming, and in particular for multicore processors
time complexity is unacceptable at the early design stage.
Accordingly, to speed up the estimation of temperature and
performance of multicore processors, researchers resort to
steady-state analysis [15, 16]. Nevertheless, to the best of our
knowledge, all previous work related to steady-state analysis
is based on the assumption that every workload has the same
thermal contribution, which greatly hinders the estimation
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accuracy. In fact, temperature of multicore processors has
great variations between different workloads [10, 17]. Our
preliminary work has demonstrated that the dynamic power
of processors is highly correlated with IPCs (instructions per
cycle) and that within a small temperature range, leakage
power linearly depends on temperature [18]. According to the
HotSpot thermal model, temperature can be derived given
the power of processors [3]. Thus processor temperature has
higher correlation with IPC. According to CLT (central limit
theorem), when a large number of instructions are executed
in the processor, the probabilistic distribution of IPC tends
to follow the normal distribution. Accordingly, given both
the probabilistic distribution of IPC and the relationship
between the temperature and IPC, the probabilistic distribu-
tion of processor temperature can be derived and analyzed.
Subsequently, the probabilistic distribution of the maximum
running frequency can be inferred given that the zero-slack
DTM policy is used by the processor, which means that
the speed of the processor is set to a value which makes
the temperature of the hotspot be the maximum threshold
allowed by the processor [7].

1.2. Contributions. In this paper, a probabilistic method
is proposed to analyze the steady-state temperature and
frequency of multicore processors taking into account the
variation of workloads. In order to simplify the analyzing
processes, DFS technique rather than DVFS technique is
adopted to manage the temperatures of processor, where the
voltage is constant and only frequency is adjusted. And the
dynamic power can be modeled as the linear function of the
frequency [12, 16].Themain contributions of this work are as
follows:

(i) At the microarchitecture level, the dynamic power
of processors is modeled as the linear function of
IPC and running frequency, and the leakage power
of processor is approximated as the linear model of
temperature.

(ii) The microarchitecture-level hotspot temperatures of
both active cores and inactive cores are derived as the
linear functions of IPCs of all active cores.

(iii) It is inferred that the hotspot temperatures of both
active cores and inactive cores follow the normal
probabilistic distribution, based on the assumption
that IPCs of all active cores follow the same normal
distribution.

(iv) The probabilistic distribution of the set of frequencies
is determined given the zero-slack DTM policy [7].

The remainder of this paper is organized as follows.
In Section 2, related work is overviewed. In Section 3, the
microarchitecture-level steady-state temperature of a core is
formulated as the linear function of its powers based on the
Hotspot thermalmodel. In Section 4, at themicroarchitecture
level, the dynamic powers of processors are modeled as
the linear function of IPC and the running frequency, and
the leakage powers are approximated as the linear model
of temperature. In Section 5, the microarchitecture-level

hotspot temperatures of both active cores and inactive cores
are derived as the linear function of IPCs of all active cores.
It is inferred that the hotspot temperatures of both active
cores and inactive cores follow the normal probabilistic
distribution, based on the assumption that the IPCs of all
active cores follow the same normal probabilistic distribu-
tion. In Section 6, the probabilistic distribution of the set of
frequencies is determined given the zero-slack DTM policy.
In Section 7, experimental results are presented.This paper is
concluded in Section 8.

2. Related Work

The estimation approach of temperature and performance of
processors can be classified into transient analysis and steady-
state analysis, and so far most researches have been based on
transient analysis.

2.1. Transient Analysis. In order to transiently analyze the
temperature and explore the design space of processors at the
early stage, several thermal models for processors have been
proposed. Skadron et al. and Huang et al. [2, 3] presented
a compact thermal modeling methodology based on the
analogy between thermal and electrical phenomena, namely,
HotSpot. Using HotSpot, the spatial and temporal variations
of processor temperature can be obtained through transient
analysis. To improve the accuracy of thermal simulation, Jang
et al. [11]made an extension to the thermalmodel forHotSpot
by taking into account the different ambient temperature
owing to workload variations. To accelerate thermal analysis
of multicore processors at the architecture level, Wang et al.
[5] presented a composite thermal model, termed Therm-
Comp, to optimize the model for different large processors.
Li et al. [4] proposed a parameterized architecture-level
dynamic thermal model, namely, ParThermPOF, in which
many parameters can be set such as the location of thermal
sensors and the conductivity of different components.

In order to improve the performance of thermal-aware
multicore processors, various DTM techniques have been
investigated based on thermal models such as Hotspot
and analyzed transiently for the estimation of performance.
Hanumaiah et al. [7, 19] presented an online thermal man-
agement algorithm for thermal-aware multicore processors,
in which DVFS and task allocation techniques are simulta-
neously adopted. In the context of hard real-time systems,
the time-varying voltage and frequency of multicores are
computed to satisfy not only the thermal constraint but
also the deadline constraint [6]. Shi et al. [12] presented a
DTM policy under soft thermal constraint, in which the
temperature constraint can be exceeded sometimes.

In order to simulate the thermal behavior fast and
accurately for multicore processors, several researches have
been performed. Wojciechowski et al. [10, 20] analyzed
the transient characteristics of workloads based on a finite
Fourier series expansion to accurately predict the thermal
behavior of multicore processors, and a new DVFS approach
is presented. Liu et al. [13] proposed a transient analysis
method of temperature of multicore processors based on
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moment matching, and it is used to guide the migration
processes of tasks. To account for the nondeterministic
behavior of tasks in terms of executing times and decision
branches, Das et al. [14] formulated thermal analysis as a
hybrid automata reachability verification problem and an
algorithm for constructing the automata was provided.

For transient analysis, temporal variations of temperature
and performance depending onworkload are traced and then
high estimation accuracy is obtained. However, transient
analysis is time-consuming, and in particular for multicore
processors time complexity is unacceptable at the early design
stage.

2.2. Steady-State Analysis. In order to speed up the estima-
tion of temperature and performance at the early design
stage of multicore processors, researchers resort to steady-
state analysis and have carried out a lot of work. Based on
Amdahl’s Law, Lee and Kim [15, 21] introduced variations of
process and workload parallelism into the analyzing model
and optimized the throughput of thermal-aware multicore
processors by exploitingDVFS and the per-core power-gating
(PCPG). Based on HotSpot, Rao et al. [16, 22] described
an approximate thermal model for homogeneous multicore
processors to fast and accurately predict the maximum
steady-state throughput under thermal constraints. In the
context of a hard real-time system of a single-core processor,
Mohaqeqi et al. [23] studied stochastic behavior of the system,
for example, performance, temperature, and reliability, based
on Markovian view.

To the best of our knowledge, all previous work of steady-
state analysis is based on the assumption that every workload
has the same thermal contribution to processors, resulting
in inaccuracy of temperature and performance estimation.
This is the focus of our work. In this paper, the variation of
workloads is taken into account to model the thermal and
frequency more accurately.

3. Thermal Model

In this paper, a microarchitecture-level thermal model for
a multicore processor is created by replication of a single-
core processor based onHotSpot [3].Themulticore processor
is divided into four layers, that is, chip, thermal interface
material (TIM), heat spreader, and heat sink. There are 𝑚

thermal blocks in the chip and TIM, and there are five and
nine thermal blocks in the heat spreader and heat sink,
respectively. Totally, there are 𝑁 = 𝑛𝑚 + 14 thermal blocks
in the multicore processor, where 𝑛 is the number of cores.

The microarchitecture-level thermal model can be repre-
sented by the state-space differential equation as follows [16]:

𝑑T
𝑑𝑡

= AT + BP, (1)

where T and P are𝑁-dimension vectors, respectively, denot-
ing the temperature and power of the multicore processor,
and A and B are constant matrices of 𝑁 × 𝑁 dimension
depending on the thermal conduction and capacitance of the
processor.
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Figure 1:Thermal conductionmatrixG of dual-core processor [16].

When the temperature of the processor is in the steady-
state, 𝑑T/𝑑𝑡 = 0, then

GT = P, (2)

where G = −B−1A isthe thermal conductance matrix of
HotSpot model.

The thermal conductance matrix G can be obtained
from the HotSpot simulation tool. The thermal conductance
matrix of a dual-core processor is as shown in Figure 1, where
the submatrices Gdie, Gint, and Gpkg along the diagonal are
lateral thermal conductance of the chip, TIM, and package,
respectively, the submatrices Gdie-int and Gint-die are the
vertical conductance between die and TIM, and the vectors
Gint-spr and Gspr-int are the vertical conductance between the
TIM and the spreader. Gdie-int is equal to Gint-die, and Gint-spr
is equal to Gspr-int. The detailed conductance matrix of Gpkg
is as shown in Figure 2.

Lemma 1. According to HotSpot thermal model, when the
temperature of the multicore processor is in the steady-state,
there exist 𝑚-dimension matrices R, Q, and Z, such that

T
𝑖

= RP
𝑖

+Q
𝑛

∑

𝑗=1

P
𝑗

+ Z, (3)

where T
𝑖

and P
𝑖

are𝑚-dimension vectors, representing, respec-
tively, temperature and power of the 𝑖th core of the processor.

Proof. According to the arrangement of elements in the
conductance matrix G in HotSpot thermal model, (2) can be
decomposed into the following equations:

GdieT𝑖 + Gdie-intTint,𝑖 = P
𝑖

, (4)

Gdie-intT𝑖 + GintTint,𝑖 + Gint-spr𝑇spr = 0, (5)
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Figure 2: Thermal conduction matrix of the package [16].

Gint-spr
𝑛

∑

𝑗=1

Tint,𝑗 + 𝐺spr𝑇spr + Gspr-otherTother = 0, (6)

Gspr-other𝑇spr + Gother-otherTother = Pambient, (7)

where Tint,𝑖 is𝑚-dimension vector representing the tempera-
ture of TIM layer of the 𝑖th core, 𝑇spr is a scalar representing
the temperature of the central block of the spreader, andTother
is 13-dimension vector representing the temperature of other
blocks of the spreader and the sink.

According to (6) and (7),

𝑇spr = (Gspr-otherG
−1

other-otherGspr-other − 𝐺spr)
−1

⋅ (Gint-spr
𝑛

∑

𝑖=1

Tint,𝑖 + Gspr-otherG
−1

other-otherPambient) .

(8)

Set

GSPRO = (Gspr-otherG
−1

otherGspr-other − 𝐺spr)
−1

Gint-spr,

𝐺spamb = (Gspr-otherG
−1

other-otherGspr-other − 𝐺spr)
−1

⋅ Gspr-otherG
−1

other-otherPambient.

(9)

Equation (8) can be converted into

𝑇spr = GSPRO
𝑛

∑

𝑖=1

Tint,𝑖 + 𝐺spamb. (10)

Substitute (10) into (5) and get

Gdie-intT𝑖 + GintTint,𝑖

+ Gint-spr (GSPRO
𝑛

∑

𝑖=1

Tint,𝑖 + 𝐺spamb) = 0.
(11)

According to (4) and (11), get

(Gdie-int − GintG
−1

die-intGdie)T𝑖

− Gint-sprG


SPROG
−1

die-intGdie

𝑛

∑

𝑗=1

T
𝑗

+ GintG
−1

die-intP𝑖

+ Gint-sprG


SPROG
−1

die-int

𝑛

∑

𝑗=1

P
𝑗

+ Gint-spr𝐺spamb

= 0.

(12)

Set

G
1

= Gdie-int − GintG
−1

die-intGdie,

G
2

= Gint-sprG


SPROG
−1

die-intGdie,

G
3

= GintG
−1

die-int,

G
4

= Gint-sprG


SPROG
−1

die-int,

G
5

= Gint-spr𝐺spamb.

(13)

Then, (12) can be transformed into

G
1

T
𝑖

− G
2

𝑛

∑

𝑗=1

T
𝑗

+ G
3

P
𝑖

+ G
4

𝑛

∑

𝑗=1

P
𝑗

+ G
5

= 0. (14)

According to (14), get

G
1

𝑛

∑

𝑗=1

T
𝑗

− 𝑛G
2

𝑛

∑

𝑗=1

T
𝑗

+ G
3

𝑛

∑

𝑗=1

P
𝑗

+ 𝑛G
4

𝑛

∑

𝑗=1

P
𝑗

+ 𝑛G
5

= 0.

(15)

According to (15), get

𝑛

∑

𝑗=1

T
𝑗

= (𝑛G
2

− G
1

)
−1

(G
3

+ 𝑛G
4

)

𝑛

∑

𝑗=1

P
𝑗

+ 𝑛 (𝑛G
2

− G
1

)
−1G
5

.

(16)

Substitute (16) into (14) and get

Tdie,𝑖

= G−1
1

(G
2

(𝑛G
2

− G
1

)
−1

(G
3

+ 𝑛G
4

) − G
4

)

𝑛

∑

𝑗=1

P
𝑗

− G−1
1

G
3

P
𝑖

+ G−1
1

(𝑛G
2

(𝑛G
2

− G
1

)
−1

− E)G
5

.

(17)

Set

R = −G−1
1

G
3

,

Q = G−1
1

(G
2

(𝑛G
2

− G
1

)
−1

(G
3

+ 𝑛G
4

) − G
4

) ,

Z = G−1
1

(𝑛G
2

(𝑛G
2

− G
1

)
−1

− E)G
5

.

(18)
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Get

T
𝑖

= RP
𝑖

+Q
𝑛

∑

𝑗=1

P
𝑗

+ Z. (19)

This means that in the steady-state of temperature of a
multicore processor, given the powers of all cores, the tem-
perature of any core can be calculated according to Lemma 1
at the microarchitecture level.

4. Power Model

It is assumed thatmulticore processors have two power states,
active mode and inactive mode, and the power state of each
core can be set separately. And global dynamic frequency
scaling (DFS) technique is used where frequencies of all cores
are scaled uniformly.

4.1. Active Mode. When a core is in the active mode, work-
loads are executed and the core dissipates both dynamic
power and leakage power. At the microarchitecture level, the
power of the active core is defined as

Pa,𝑖 = Pdyn,a,𝑖 + Plea,a,𝑖, (20)

wherePa,𝑖,Pdyn,a,𝑖, andPlea,a,𝑖 are, respectively, the total power,
dynamic power, and leakage power of the 𝑖th active core of
size𝑚 × 1.

For the processor using DVFS technique, the dynamic
power is proportional to the product of the square of the
voltage and the frequency [7]; that is, Pdyn ∝ voltage2 ×
f requency. In this paper, the primary purpose is to analyze
the impact of workload variation on the temperatures of
processors. So, in order to simplify the analyzing processes,
DFS technique rather thanDVFS technique is used tomanage
the temperatures of processor, where the voltage is constant
and only frequency is adjusted. Hence, the dynamic power
can be modeled as the linear function of the frequency [12,
16]. In addition, the dynamic power caused by workload
execution has a close linear relationship with IPCs.

Let 𝑋a,𝑖 be the IPC of the 𝑖th core when workloads are
running on it and let 𝑓 be the normalized frequency between
0 and 1, and then the microarchitecture-level dynamic power
Pdyn,a,𝑖 of the 𝑖th active core is defined as

Pdyn,a,𝑖 = (Gdyn𝑋a,𝑖 + G
𝑑0

+ Edyn) 𝑓, (21)

where Gdyn and G
𝑑0

are the linear regression coefficients
when𝑓 is set tomaximum 1 andEdyn is the regression residual
which follows the normal distribution with mean of zero:
namely, Edyn ∼ 𝑁(0,𝜎2

𝐸𝑑

). Gdyn, G𝑑0, Edyn, and 𝜎𝐸𝑑 are
vectors of size 𝑚 × 1, and 𝜎2

𝐸𝑑

is the element-by-element
squares of 𝜎

𝐸𝑑

.
At the microarchitecture level, in order to simplify the

analyzing procedure, the relationship between the leakage
power Plea,a,𝑖 and the temperature Ta,𝑖 of the 𝑖th active core
is approximated by the linear model as follows:

Plea,a,𝑖 = Glea,aTa,𝑖 + G
𝑙0,a + Elea,a, (22)

whereGlea,a andG𝑙0,a are the regression coefficients and Elea,a
is the regression residual which follows the normal distribu-
tion with mean of zero: namely, Elea,a ∼ 𝑁(0,𝜎2

𝐸a). Glea,a is a
diagonal matrix of size 𝑚 × 𝑚. G

𝑙0,a, Elea,a, 𝜇
𝐸a, and 𝜎𝐸a are

vectors of size 𝑚 × 1. 𝜎2
𝐸a is the element-by-element squares

of 𝜎
𝐸a.
According to (20), (21), and (22), the power of the active

core Pa,𝑖 is represented by

Pa,𝑖 = (Gdyn𝑋𝑖 + G
𝑑0

) 𝑓 + Edyn + Glea,aTa,𝑖 + G
𝑙0,a

+ Elea,a.
(23)

4.2. Inactive Mode. When a core is in the inactive mode, it
is powered off using power-gating technique. The inactive
core only dissipates leakage power, which is much lower than
that of the active core. Hence, the power of the 𝑖th inactive
core Pina,𝑖 is the leakage power Plea,ina,𝑖, which depends on the
core’s temperature Tina,𝑖 and it can be approximated by the
linear model at the microarchitecture level as follows:

Pina,𝑖 = Plea,ina,𝑖 = Glea,inaTina,𝑖 + G
𝑙0,ina + Elea,ina, (24)

whereGlea,ina andG𝑙0,ina are regression coefficients andElea,ina
is the regression residuals which follow normal distribution
with mean of zero: namely, Elea,ina ∼ 𝑁(0,𝜎2

𝐸ina). Glea,ina is a
diagonal matrix of size 𝑚 × 𝑚. G

𝑙0,ina, Elea,ina, and 𝜎𝐸ina are
vectors of size𝑚×1. 𝜎2

𝐸ina is the element-by-element squares
of 𝜎
𝐸ina.

5. Thermal Analysis

Lemma 2. When the temperature of a multicore processor is
in the steady-state, the temperatures and the powers of different
inactive cores are same; that is,T

𝑖𝑛𝑎,𝑖

= T
𝑖𝑛𝑎,𝑗

and P
𝑖𝑛𝑎,𝑖

= P
𝑖𝑛𝑎,𝑗

for∀𝑖, 𝑗 (𝑖 ̸= 𝑗), whereT
𝑖𝑛𝑎,𝑖

andP
𝑖𝑛𝑎,𝑖

are the temperatures and
the powers of the 𝑖th inactive core, respectively.

Proof. According to (3), for any inactive cores 𝑖 and 𝑗,

Tina,𝑖 − Tina,𝑗 = R (Pina,𝑖 − Pina,𝑗) . (25)

Substitute (24) into (25), and get

Tina,𝑖 − Tina,𝑗 = RGlea,ina (Tina,𝑖 − Tina,𝑗) . (26)

According to (26), get

(E − RGlea,ina) (Tina,𝑖 − Tina,𝑗) = 0. (27)

The parameters R and Glea,ina are invertible matrices, so
E−RGlea,ina is an invertible matrix.Therefore, Tina,𝑖 −Tina,𝑗 =
0; that is, Tina,𝑖 = Tina,𝑗. And Pina,𝑖 = Pina,𝑗 can also be
obtained according to (24).

To be convenient, set Tina,𝑖 = Tina and Pina,𝑖 = Pina; (24)
can be simplified into

Pina = Glea,inaTina + G
𝑙0,ina + Elea,ina. (28)
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Theorem 3. Assume that all cores of a processor have the
same hotspot. Let H = [ℎ

1

, ℎ
2

, . . . , ℎ
𝑚

] be the selection
vector of the hotspot, where only one element of H can be
set to 1 and the others are 0 s, indicating that the corre-
sponding functional unit is hotspot. There exist functions
𝜓
1

(H, 𝑛, 𝑛
𝑎

, 𝑓), 𝜓
2

(H, 𝑛, 𝑛
𝑎

, 𝑓), 𝜓
3

(H, 𝑛, 𝑛
𝑎

, 𝑓), 𝜓
4

(H, 𝑛, 𝑛
𝑎

,
𝑓), 𝜓
5

(H, 𝑛, 𝑛
𝑎

, 𝑓), and 𝜓
6

(H, 𝑛, 𝑛
𝑎

, 𝑓), such that the hotspot
𝑇
ℎ𝑜𝑡,𝑎,𝑖

of the 𝑖th active core can be formulated by

𝑇hot,𝑎,𝑖 = 𝜓
1

(H, 𝑛, 𝑛
𝑎

, 𝑓)𝑋
𝑎,𝑖

+ 𝜓
2

(H, 𝑛, 𝑛
𝑎

, 𝑓)

𝑛

𝑎

∑

𝑘=1

𝑋
𝑎,𝑘

+ 𝜓
3

(H, 𝑛, 𝑛
𝑎

, 𝑓)E
𝑑𝑦𝑛

+ 𝜓
4

(H, 𝑛, 𝑛
𝑎

, 𝑓)E
𝑙𝑒𝑎,𝑎

+ 𝜓
5

(H, 𝑛, 𝑛
𝑎

, 𝑓)E
𝑙𝑒𝑎,𝑖𝑛𝑎

+ 𝜓
6

(H, 𝑛, 𝑛
𝑎

, 𝑓) .

(29)

There exist functions 𝜉
1

(H, 𝑛, 𝑛
𝑎

, 𝑓), 𝜉
2

(H, 𝑛, 𝑛
𝑎

, 𝑓),
𝜉
3

(H, 𝑛, 𝑛
𝑎

, 𝑓), 𝜉
4

(H, 𝑛, 𝑛
𝑎

, 𝑓), and 𝜉
5

(H, 𝑛, 𝑛
𝑎

, 𝑓), such that
the hotspot 𝑇

ℎ𝑜𝑡,𝑖𝑛𝑎

of the inactive core can be formulated by

𝑇
ℎ𝑜𝑡,𝑠

= 𝜉
1

(H, 𝑛, 𝑛
𝑎

, 𝑓)

𝑛

𝑎

∑

𝑘=1

𝑋
𝑎,𝑘

+ 𝜉
2

(H, 𝑛, 𝑛
𝑎

, 𝑓)E
𝑑𝑦𝑛

+ 𝜉
3

(H, 𝑛, 𝑛
𝑎

, 𝑓)E
𝑙𝑒𝑎,𝑎

+ 𝜉
4

(H, 𝑛, 𝑛
𝑎

, 𝑓)E
𝑙𝑒𝑎,𝑖𝑛𝑎

+ 𝜉
5

(H, 𝑛, 𝑛
𝑎

, 𝑓) .

(30)

Proof. According to (3), (23), and (28), the temperature of the
inactive core Tina can be derived as

Tina = (E − (R + (𝑛 − 𝑛a)Q)Glea,ina)
−1QGlea,a

𝑛a

∑

𝑘=1

Ta,𝑘

+ 𝑓 (E − (R + (𝑛 − 𝑛a)Q)Glea,ina)
−1

⋅QGdyn

𝑛a

∑

𝑘=1

𝑋a,𝑘 + 𝑓𝑛a (E

− (R + (𝑛 − 𝑛a)Q)Glea,ina)
−1QEdyn + 𝑛a (E

− (R + (𝑛 − 𝑛a)Q)Glea,ina)
−1QElea,a + (E

− (R + (𝑛 − 𝑛a)Q)Glea,ina)
−1

(R + (𝑛 − 𝑛a)Q)

⋅ Elea,ina + (E − (R + (𝑛 − 𝑛a)Q)Glea,ina)
−1

⋅ ((R + (𝑛 − 𝑛a)Q)G
𝑙0,ina + 𝑓𝑛aQG

𝑑0

+ 𝑛aQG
𝑙0,a

+ Z) .

(31)

Let

Φ
1

(𝑛, 𝑛a, 𝑓) = (R + (𝑛 − 𝑛a)Q)G
𝑙0,ina + 𝑓𝑛aQG

𝑑0

+ 𝑛aQG
𝑙0,a + Z,

Φ
2

(𝑛, 𝑛a) = (E − (R + (𝑛 − 𝑛a)Q)Glea,ina)
−1

.

(32)

Then, (31) can be transformed into

Tina = Φ
2

(𝑛, 𝑛a)QGlea,a

𝑛a

∑

𝑘=1

Ta,𝑘

+ 𝑓Φ
2

(𝑛, 𝑛a)QGdyn

𝑛a

∑

𝑘=1

𝑋a,𝑘

+ 𝑓𝑛aΦ2 (𝑛, 𝑛a)QEdyn + 𝑛aΦ2 (𝑛, 𝑛a)QElea,a

+Φ
2

(𝑛, 𝑛a) (R + (𝑛 − 𝑛a)Q)Elea,ina

+Φ
2

(𝑛, 𝑛a)Φ1 (𝑛, 𝑛a, 𝑓) .

(33)

According to (3), (23), and (28), the temperature of the 𝑖th
active core Ta,𝑖 can be derived as

Ta,𝑖 = (E − RGlea,a)
−1QGlea,a

𝑛a

∑

𝑘=1

Ta,𝑘 + 𝑓 (E

− RGlea,a)
−1QGdyn

𝑛a

∑

𝑘=1

𝑋a,𝑘 + 𝑓 (E − RGlea,a)
−1

⋅ RGdyn𝑋a,𝑖 + (𝑛 − 𝑛a) (E − RGlea,a)
−1QGlea,inaTina

+ 𝑓 (E − RGlea,a)
−1

(R + 𝑛aQ)Edyn + (E

− RGlea,a)
−1

(R + 𝑛aQ)Elea,a + (𝑛 − 𝑛a) (E

− RGlea,a)
−1QElea,ina + (E − RGlea,a)

−1

(𝑓RG
𝑑0

+ 𝑛a𝑓QG
𝑑0

+ RG
𝑙0,a + 𝑛aQG

𝑙0,a

+ (𝑛 − 𝑛a)QG
𝑙0,ina + Z) .

(34)

Let

Φ
3

(𝑛, 𝑛a, 𝑓) = 𝑓RG
𝑑0

+ 𝑛a𝑓QG
𝑑0

+ RG
𝑙0,a

+ 𝑛aQG
𝑙0,a + (𝑛 − 𝑛a)QG

𝑙0,ina

+ Z,

Φ
4

= (E − RGlea,a)
−1

.

(35)

Then, (34) can be transformed into

Ta,𝑖 = Φ4QGlea,a

𝑛a

∑

𝑘=1

Ta,𝑘 + 𝑓Φ
4

QGdyn

𝑛a

∑

𝑘=1

𝑋a,𝑘

+ 𝑓Φ
4

RGdyn𝑋a,𝑖 + (𝑛 − 𝑛a)Φ4QGlea,inaTina

+ 𝑓Φ
4

(R + 𝑛aQ)Edyn +Φ
4

(R + 𝑛aQ)Elea,a

+ (𝑛 − 𝑛a)Φ4QElea,ina +Φ4Φ3 (𝑛, 𝑛a, 𝑓) .

(36)
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Substitute (33) into (36), and get

Ta,𝑖 = (Φ
4

QGlea,a

+ (𝑛 − 𝑛a)Φ4QGlea,inaΦ2 (𝑛, 𝑛a)QGlea,a)

𝑛a

∑

𝑘=1

Ta,𝑘

+ 𝑓 (Φ
4

QGdyn

+ (𝑛 − 𝑛a)Φ4QGlea,inaΦ2 (𝑛, 𝑛a)QGdyn)

𝑛a

∑

𝑘=1

𝑋a,𝑘

+ 𝑓Φ
4

RGdyn𝑋a,𝑖 + 𝑓 (Φ
4

(R + 𝑛aQ)

+ 𝑛a (𝑛 − 𝑛a)Φ4QGlea,inaΦ2 (𝑛, 𝑛a)Q)Edyn

+ (Φ
4

(R + 𝑛aQ)

+ 𝑛a (𝑛 − 𝑛a)Φ4QGlea,inaΦ2 (𝑛, 𝑛a)Q)Elea,a

+ ((𝑛 − 𝑛a)Φ4Q

+ (𝑛 − 𝑛a)Φ4QGlea,inaΦ2 (𝑛, 𝑛a) (R + (𝑛 − 𝑛a)Q))

⋅ Elea,ina + (𝑛 − 𝑛a)Φ4QGlea,inaΦ2 (𝑛, 𝑛a)

⋅Φ
1

(𝑛, 𝑛a, 𝑓) +Φ
4

Φ
3

(𝑛, 𝑛a, 𝑓) .

(37)

Let
Φ
5

(𝑛, 𝑛a) = (Φ
4

QGlea,a + (𝑛 − 𝑛a)

⋅Φ
4

QGlea,inaΦ2 (𝑛, 𝑛a)QGlea,a) ,

Φ
6

(𝑛, 𝑛a, 𝑓) = 𝑓 (Φ
4

QGdyn + (𝑛 − 𝑛a)

⋅Φ
4

QGlea,inaΦ2 (𝑛, 𝑛a)QGdyn)Φ7 (𝑓)

= 𝑓Φ
4

RGdyn,

Φ
7

(𝑓) = 𝑓Φ
4

RGdyn,

Φ
8

(𝑛, 𝑛a, 𝑓) = 𝑓 (Φ
4

(R + 𝑛aQ) + 𝑛a (𝑛 − 𝑛a)

⋅Φ
4

QGlea,inaΦ2 (𝑛, 𝑛a)Q) ,

Φ
9

(𝑛, 𝑛a) = (Φ
4

(R + 𝑛aQ) + 𝑛a (𝑛 − 𝑛a)

⋅Φ
4

QGlea,inaΦ2 (𝑛, 𝑛a)Q) ,

Φ
10

(𝑛, 𝑛a) = ((𝑛 − 𝑛a)Φ4Q + (𝑛 − 𝑛a)

⋅Φ
4

QGlea,inaΦ2 (𝑛, 𝑛a) (R + (𝑛 − 𝑛a)Q)) ,

Φ
11

(𝑛, 𝑛a, 𝑓) = (𝑛 − 𝑛a)Φ4QGlea,inaΦ2 (𝑛, 𝑛a)

⋅Φ
1

(𝑛, 𝑛a, 𝑓) +Φ
4

Φ
3

(𝑛, 𝑛a, 𝑓) .

(38)

Then, (37) is transformed into

Ta,𝑖 = Φ5 (𝑛, 𝑛a)

𝑛a

∑

𝑘=1

Ta,𝑘 +Φ6 (𝑛, 𝑛a, 𝑓)

𝑛a

∑

𝑘=1

𝑋a,𝑘

+Φ
7

(𝑓)𝑋a,𝑖 +Φ8 (𝑛, 𝑛a, 𝑓)Edyn

+Φ
9

(𝑛, 𝑛a)Elea,a +Φ10 (𝑛, 𝑛a)Elea,ina

+Φ
11

(𝑛, 𝑛a, 𝑓) .

(39)

According to (39), get
𝑛a

∑

𝑘=1

Ta,𝑘 = (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

⋅ (𝑛aΦ6 (𝑛, 𝑛a, 𝑓) +Φ
7

(𝑓))

𝑛a

∑

𝑘=1

𝑋a,𝑘

+ 𝑛a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
8

(𝑛, 𝑛a, 𝑓)Edyn

+ 𝑛a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
9

(𝑛, 𝑛a)Elea,a

+ 𝑛a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
10

(𝑛, 𝑛a)Elea,ina

+ 𝑛a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
11

(𝑛, 𝑛a, 𝑓) .

(40)

Substitute (40) into (39), and get

Ta,𝑖 = Φ7 (𝑓)𝑋a,𝑖

+ (Φ
5

(𝑛, 𝑛a) (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

(𝑛aΦ6 (𝑛, 𝑛a, 𝑓)

+Φ
7

(𝑓)) +Φ
6

(𝑛, 𝑛a, 𝑓))

𝑛a

∑

𝑘=1

𝑋a,𝑘 + (𝑛aΦ5 (𝑛, 𝑛a)

⋅ (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
8

(𝑛, 𝑛a, 𝑓) +Φ
8

(𝑛, 𝑛a, 𝑓))

⋅ Edyn + (𝑛aΦ5 (𝑛, 𝑛a) (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

⋅Φ
9

(𝑛, 𝑛a) +Φ9 (𝑛, 𝑛a))Elea,a + (𝑛aΦ5 (𝑛, 𝑛a) (E

− 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
10

(𝑛, 𝑛a) +Φ10 (𝑛, 𝑛a))Elea,ina

+ 𝑛aΦ5 (𝑛, 𝑛a) (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
11

(𝑛, 𝑛a, 𝑓)

+Φ
11

(𝑛, 𝑛a, 𝑓) .

(41)

The hotspot temperature 𝑇hot,a,𝑖 of the active core can be
given by

𝑇hot,a,𝑖 = HTa,𝑖 = HΦ
7

(𝑓)𝑋a,𝑖 +H (Φ
5

(𝑛, 𝑛a)

⋅ (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

(𝑛aΦ6 (𝑛, 𝑛a, 𝑓) +Φ
7

(𝑓))

+Φ
6

(𝑛, 𝑛a, 𝑓))

𝑛a

∑

𝑘=1

𝑋a,𝑘 +H (𝑛aΦ5 (𝑛, 𝑛a)

⋅ (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
8

(𝑛, 𝑛a, 𝑓)

+Φ
8

(𝑛, 𝑛a, 𝑓))Edyn +H (𝑛aΦ5 (𝑛, 𝑛a)

⋅ (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
9

(𝑛, 𝑛a) +Φ9 (𝑛, 𝑛a))Elea,a

+H (𝑛aΦ5 (𝑛, 𝑛a) (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
10

(𝑛, 𝑛a)

+Φ
10

(𝑛, 𝑛a))Elea,ina +H (𝑛aΦ5 (𝑛, 𝑛a)

⋅ (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
11

(𝑛, 𝑛a, 𝑓)

+Φ
11

(𝑛, 𝑛a, 𝑓)) .

(42)
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Let
𝜓
1

(H, 𝑓) = HΦ
7

(𝑓) ,

𝜓
2

(H, 𝑛, 𝑛a, 𝑓) = H (Φ
5

(𝑛, 𝑛a) (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

⋅ (𝑛aΦ6 (𝑛, 𝑛a, 𝑓) +Φ
7

(𝑓)) +Φ
6

(𝑛, 𝑛a, 𝑓)) ,

𝜓
3

(H, 𝑛, 𝑛a, 𝑓) = H (𝑛aΦ5 (𝑛, 𝑛a)

⋅ (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
8

(𝑛, 𝑛a, 𝑓)

+Φ
8

(𝑛, 𝑛a, 𝑓)) ,

𝜓
4

(H, 𝑛, 𝑛a) = H (𝑛aΦ5 (𝑛, 𝑛a) (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

⋅Φ
9

(𝑛, 𝑛a) +Φ9 (𝑛, 𝑛a)) ,

𝜓
5

(H, 𝑛, 𝑛a, 𝑓) = H (𝑛aΦ5 (𝑛, 𝑛a)

⋅ (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
10

(𝑛, 𝑛a) +Φ10 (𝑛, 𝑛a)) ,

𝜓
6

(H, 𝑛, 𝑛a, 𝑓) = H (𝑛aΦ5 (𝑛, 𝑛a)

⋅ (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
11

(𝑛, 𝑛a, 𝑓)

+Φ
11

(𝑛, 𝑛a, 𝑓)) .

(43)

Then, (42) is transformed into

𝑇hot,a,𝑖 = 𝜓
1

(H, 𝑓)𝑋a,𝑖 + 𝜓
2

(H, 𝑛, 𝑛a, 𝑓)

𝑛a

∑

𝑘=1

𝑋a,𝑘

+ 𝜓
3

(H, 𝑛, 𝑛a, 𝑓)Edyn + 𝜓
4

(H, 𝑛, 𝑛a)Elea,a

+ 𝜓
5

(H, 𝑛, 𝑛a, 𝑓)Elea,ina + 𝜓
6

(H, 𝑛, 𝑛a, 𝑓) .

(44)

Substitute (40) into (33), and get

Tina = (Φ
2

(𝑛, 𝑛a)QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

⋅ (𝑛aΦ6 (𝑛, 𝑛a, 𝑓) +Φ
7

(𝑓)) + 𝑓Φ
2

(𝑛, 𝑛a)QGdyn)

⋅

𝑛a

∑

𝑘=1

𝑋a,𝑘 + (𝑛aΦ2 (𝑛, 𝑛a)

⋅QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
8

(𝑛, 𝑛a, 𝑓)

+ 𝑓𝑛aΦ2 (𝑛, 𝑛a)Q)Edyn + (𝑛aΦ2 (𝑛, 𝑛a)

⋅QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
9

(𝑛, 𝑛a)

+ 𝑛aΦ2 (𝑛, 𝑛a)Q)Elea,a + (𝑛aΦ2 (𝑛, 𝑛a)

⋅QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
10

(𝑛, 𝑛a)

+Φ
2

(𝑛, 𝑛a) (R + (𝑛 − 𝑛a)Q))Elea,ina

+ 𝑛aΦ2 (𝑛, 𝑛a)QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

⋅Φ
11

(𝑛, 𝑛a, 𝑓) +Φ
2

(𝑛, 𝑛a)Φ1 (𝑛, 𝑛a, 𝑓) .

(45)

The hotspot temperature 𝑇hot,ina of the inactive core is
given by

𝑇hot,ina = HTina = H (Φ
2

(𝑛, 𝑛a)

⋅QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

⋅ (𝑛aΦ6 (𝑛, 𝑛a, 𝑓) +Φ
7

(𝑓)) + 𝑓Φ
2

(𝑛, 𝑛a)QGdyn)

⋅

𝑛a

∑

𝑘=1

𝑋a,𝑘 +H (𝑛aΦ2 (𝑛, 𝑛a)

⋅QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
8

(𝑛, 𝑛a, 𝑓)

+ 𝑓𝑛aΦ2 (𝑛, 𝑛a)Q)Edyn +H (𝑛aΦ2 (𝑛, 𝑛a)

⋅QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
9

(𝑛, 𝑛a)

+ 𝑛aΦ2 (𝑛, 𝑛a)Q)Elea,a +H (𝑛aΦ2 (𝑛, 𝑛a)

⋅QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

Φ
10

(𝑛, 𝑛a)

+Φ
2

(𝑛, 𝑛a) (R + (𝑛 − 𝑛a)Q))Elea,ina

+H (𝑛aΦ2 (𝑛, 𝑛a)QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

⋅Φ
11

(𝑛, 𝑛a, 𝑓) +Φ
2

(𝑛, 𝑛a)Φ1 (𝑛, 𝑛a, 𝑓)) .

(46)

Let
𝜉
1

(H, 𝑛, 𝑛a, 𝑓)

= H (Φ
2

(𝑛, 𝑛a)QGlea,a (E − 𝑛aΦ5 (𝑛, 𝑛a))
−1

(𝑛aΦ6 (𝑛,

𝑛a, 𝑓) +Φ
7

(𝑓)) + 𝑓Φ
2

(𝑛, 𝑛a)QGdyn) ,

𝜉
2

(H, 𝑛, 𝑛a, 𝑓) = H (𝑛aΦ2 (𝑛, 𝑛a)QGlea,a (E − 𝑛aΦ5 (𝑛,

𝑛a))
−1

Φ
8

(𝑛, 𝑛a, 𝑓) + 𝑓𝑛aΦ2 (𝑛, 𝑛a)Q) ,

𝜉
3

(H, 𝑛, 𝑛a) = H (𝑛aΦ2 (𝑛, 𝑛a)QGlea,a (E − 𝑛aΦ5 (𝑛,

𝑛a))
−1

Φ
9

(𝑛, 𝑛a) + 𝑛aΦ2 (𝑛, 𝑛a)Q) ,

𝜉
4

(H, 𝑛, 𝑛a, 𝑓) = H (𝑛aΦ2 (𝑛, 𝑛a)QGlea,a (E − 𝑛aΦ5 (𝑛,

𝑛a))
−1

Φ
10

(𝑛, 𝑛a) +Φ2 (𝑛, 𝑛a) (R + (𝑛 − 𝑛a)Q)) ,

𝜉
5

(H, 𝑛, 𝑛a, 𝑓) = H (𝑛aΦ2 (𝑛, 𝑛a)QGlea,a (E − 𝑛aΦ5 (𝑛,

𝑛a))
−1

Φ
11

(𝑛, 𝑛a, 𝑓) +Φ
2

(𝑛, 𝑛a)Φ1 (𝑛, 𝑛a, 𝑓)) .

(47)

Then, (46) is transformed into

𝑇hot,𝑠 = 𝜉1 (H, 𝑛, 𝑛a, 𝑓)

𝑛a

∑

𝑘=1

𝑋a,𝑘 + 𝜉2 (H, 𝑛, 𝑛a, 𝑓)Edyn

+ 𝜉
3

(H, 𝑛, 𝑛a, 𝑓)Elea,a

+ 𝜉
4

(H, 𝑛, 𝑛a, 𝑓)Elea,ina + 𝜉5 (H, 𝑛, 𝑛a, 𝑓) .

(48)
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According toTheorem 3, it can be known that the hotspot
temperature of any core can be expressed as the linear
function of IPCs of all cores.

Theorem 4. Suppose that (a) the random variable 𝑋
𝑎,𝑖

for
the IPC follows normal distribution with the mean 𝜇

𝑋

and
the variance 𝜎

2

𝑋

, that is, 𝑋
𝑎,𝑖

∼ 𝑁(𝜇
𝑋

, 𝜎
2

𝑋

); (b) the tasks
running on different cores are mutually independent; that is,
𝑋
𝑎,𝑖

and 𝑋
𝑎,𝑗

are independent for 1 ≤ ∀𝑖, 𝑗 ≤ 𝑚; and (c)
workload balancing techniques are used in the processor, such
that 𝑋

𝑎,𝑖

and 𝑋
𝑎,𝑗

follow the same normal distribution. Then
there exist functions 𝜇

𝑇,𝑎

(H, 𝑛, 𝑛
𝑎

, 𝑓) and 𝜎
𝑇,𝑎

2

(H, 𝑛, 𝑛
𝑎

, 𝑓),
such that the hotspot temperature 𝑇

ℎ𝑜𝑡,𝑎,𝑖

of the active core
follows the normal distributionwithmean𝜇

𝑇,𝑎

(H, 𝑛, 𝑛
𝑎

, 𝑓) and
variance 𝜎

𝑇,𝑎

2

(H, 𝑛, 𝑛
𝑎

, 𝑓); that is,

𝑇
ℎ𝑜𝑡,𝑎,𝑖

∼ 𝑁(𝜇
𝑇,𝑎

(H, 𝑛, 𝑛
𝑎

, 𝑓) , 𝜎
𝑇,𝑎

2

(H, 𝑛, 𝑛
𝑎

, 𝑓)) . (49)

There exist functions 𝜇
𝑇,𝑖𝑛𝑎

(H, 𝑛, 𝑛
𝑎

, 𝑓) and 𝜎
𝑇,𝑖𝑛𝑎

2

(H, 𝑛, 𝑛
𝑎

, 𝑓),
such that the hotspot temperature 𝑇

ℎ𝑜𝑡,𝑖𝑛𝑎

of the inactive core
follows the normal distribution with mean 𝜇

𝑇,𝑖𝑛𝑎

(H, 𝑛, 𝑛
𝑎

, 𝑓)

and variance 𝜎
𝑇,𝑖𝑛𝑎

2

(H, 𝑛, 𝑛
𝑎

, 𝑓); that is,

𝑇
ℎ𝑜𝑡,𝑖𝑛𝑎

∼ 𝑁(𝜇
𝑇,𝑖𝑛𝑎

(H, 𝑛, 𝑛
𝑎

, 𝑓) , 𝜎
𝑇,𝑖𝑛𝑎

2

(H, 𝑛, 𝑛
𝑎

, 𝑓)) .

(50)

Proof. According to (29), get

𝑇hot,a,𝑖 = (𝜓
1

(H, 𝑛, 𝑛a, 𝑓) + 𝜓
2

(H, 𝑛, 𝑛a, 𝑓))𝑋a,𝑖

+ 𝜓
2

(H, 𝑛, 𝑛a, 𝑓)

𝑛a

∑

𝑘=1

𝑘 ̸=𝑖

𝑋a,𝑘

+ 𝜓
3

(H, 𝑛, 𝑛a, 𝑓)Edyn

+ 𝜓
4

(H, 𝑛, 𝑛a, 𝑓)Elea,a

+ 𝜓
5

(H, 𝑛, 𝑛a, 𝑓)Elea,ina + 𝜓
6

(H, 𝑛, 𝑛a, 𝑓) .

(51)

The norm-distributed random variables 𝑋a,𝑖 and 𝑋a,𝑗 are
independent in the case of 1 ≤ ∀𝑖, 𝑗 ≤ 𝑚, so that the
linear combination (𝜓

1

(H, 𝑛, 𝑛a, 𝑓) + 𝜓
2

(H, 𝑛, 𝑛a, 𝑓))𝑋a,𝑖 +

𝜓
2

(H, 𝑛, 𝑛a, 𝑓)∑
𝑛a
𝑘=1,𝑘 ̸=𝑖

𝑋a,𝑘 of 𝑋a,𝑖 still follows the normal
distribution.

All elements Edyn,𝑘 in the random vector Edyn follow nor-
mal distribution and are independent, so that the linear com-
bination 𝜓

3

(H, 𝑛, 𝑛a, 𝑓)Edyn of all elements in Edyn follows
normal distribution. In the sameway,𝜓

4

(H, 𝑛, 𝑛a, 𝑓)Elea,a and
𝜓
5

(H, 𝑛, 𝑛a, 𝑓)Elea,ina also follow normal distribution.
(𝜓
1

(H, 𝑛, 𝑛a, 𝑓) + 𝜓
2

(H, 𝑛, 𝑛a, 𝑓))𝑋a,𝑖, 𝜓
2

(H, 𝑛, 𝑛a,
𝑓)∑
𝑛a
𝑘=1,𝑘 ̸=𝑖

𝑋a,𝑘, 𝜓
3

(H, 𝑛, 𝑛a, 𝑓)Edyn, 𝜓
4

(H, 𝑛, 𝑛a, 𝑓)Elea,a,
and 𝜓

5

(H, 𝑛, 𝑛a, 𝑓)Elea,ina all follow normal distribution and
are mutually independent, so that 𝑇hot,a,𝑖 follows normal

distribution, where the mean 𝜇
𝑇,ina(H, 𝑛, 𝑛a, 𝑓) is calculated

by

𝜇
𝑇,a (H, 𝑛, 𝑛a, 𝑓)

= (𝜓
1

(H, 𝑓) + 𝑛a𝜓
2

(H, 𝑛, 𝑛a, 𝑓)) 𝜇
𝑋

+ 𝜓
3

(H, 𝑛, 𝑛a, 𝑓)𝜇
𝐸𝑑

+ 𝜓
4

(H, 𝑛, 𝑛a)𝜇
𝐸a

+ 𝜓
5

(H, 𝑛, 𝑛a, 𝑓)𝜇
𝐸ina + 𝜓6 (H, 𝑛, 𝑛a, 𝑓)

(52)

and the variance 𝜎
𝑇,ina
2

(H, 𝑛, 𝑛a, 𝑓) is calculated by

𝜎
𝑇,a
2

(H, 𝑛, 𝑛a, 𝑓)

= (𝜓
1

(H, 𝑓) + 𝜓
2

(H, 𝑛, 𝑛a, 𝑓))
2

𝜎
2

𝑋

+ (𝑛a − 1)𝜓
2

2

(H, 𝑛, 𝑛a, 𝑓) 𝜎
2

𝑋

+ 𝜓
3

2

(H, 𝑛, 𝑛a, 𝑓)𝜎
2

𝐸𝑑

+ 𝜓
4

2

(H, 𝑛, 𝑛a)𝜎
2

𝐸a

+ 𝜓
5

2

(H, 𝑛, 𝑛a, 𝑓)𝜎
2

𝐸ina.

(53)

In the same way, 𝜉
1

(H, 𝑛, 𝑛a, 𝑓)∑
𝑛a
𝑘=1

𝑋a,𝑘, 𝜉2(H, 𝑛, 𝑛a,
𝑓)Edyn, 𝜉3(H, 𝑛, 𝑛a, 𝑓)Elea,a, and 𝜉4(H, 𝑛, 𝑛a, 𝑓)Elea,ina in (30)
all follow the normal distribution and are mutually indepen-
dent, so that 𝑇hot,𝑠 follows the normal distribution, where the
mean 𝜇

𝑇,𝑠

(H, 𝑛, 𝑛a, 𝑓) is calculated by

𝜇
𝑇,𝑠

(H, 𝑛, 𝑛a, 𝑓) = 𝑛a𝜉1 (H, 𝑛, 𝑛a, 𝑓) 𝜇
𝑋

+ 𝜉
2

(H, 𝑛, 𝑛a, 𝑓)𝜇
𝐸𝑑

+ 𝜉
3

(H, 𝑛, 𝑛a)𝜇
𝐸a

+ 𝜉
4

(H, 𝑛, 𝑛a, 𝑓)𝜇
𝐸ina

+ 𝜉
5

(H, 𝑛, 𝑛a, 𝑓)

(54)

and the variation 𝜎
𝑇,𝑠

2

(H, 𝑛, 𝑛a, 𝑓) is calculated by

𝜎
𝑇,𝑠

2

(H, 𝑛, 𝑛a, 𝑓) = 𝑛a𝜉1
2

(H, 𝑛, 𝑛a, 𝑓) 𝜎
2

𝑋

+ 𝜉
2

2

(H, 𝑛, 𝑛a, 𝑓)𝜎
2

𝐸𝑑

+ 𝜉
3

2

(H, 𝑛, 𝑛a)𝜎
2

𝐸a

+ 𝜉
4

2

(H, 𝑛, 𝑛a, 𝑓)𝜎
2

𝐸ina.

(55)

According toTheorem 4, it can be known that the hotspot
temperature of any core follows the normal probabilistic
distribution.

6. Frequency Analysis

The zero-slack policy is used as the DTM strategy of proces-
sors, that is, the speed of processor is set to a value which
makes the temperature of the hotspot be the threshold [7].
However, the frequencies are discrete in this work.Therefore,
in most cases, there is no frequency in the set of frequencies
making the hotspot temperature be the threshold exactly.
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Theorem 5. Let 𝐹𝑆𝑒𝑡 = {𝑓
1

, . . . , 𝑓
𝜋

, 𝑓
𝜋+1

, . . . , 𝑓
𝑓𝑐𝑜𝑢𝑛𝑡

}

be the set of frequencies of multicore processors, where
𝑓
1

< ⋅ ⋅ ⋅ < 𝑓
𝜋

< 𝑓
𝜋+1

< ⋅ ⋅ ⋅ < 𝑓
𝑓𝑐𝑜𝑢𝑛𝑡

; then the probabilistic
distribution of the frequency f follows

𝑃 {𝑓 = 𝑓
𝜋

} =

{

{

{

𝑃 {𝑇
ℎ𝑜𝑡,𝑎

(𝑛
𝑎

, 𝑓
𝜋

) < 𝑇V𝑎𝑙V𝑒} , 𝑓
𝜋

= 𝑓
𝑐𝑜𝑢𝑛𝑡

𝑃 {𝑇
ℎ𝑜𝑡,𝑎

(𝑛
𝑎

, 𝑓
𝜋

) ≤ 𝑇V𝑎𝑙V𝑒} − 𝑃 {𝑇
ℎ𝑜𝑡,𝑎

(𝑛
𝑎

, 𝑓
𝜋+1

) ≤ 𝑇V𝑎𝑙V𝑒} , 𝑓
𝜋

< 𝑓
𝑐𝑜𝑢𝑛𝑡

,

(56)

where𝑇
ℎ𝑜𝑡,𝑎

(𝑛
𝑎

, 𝑓
𝜋

) is the function of the number of active cores
𝑛
𝑎

and the frequency 𝑓
𝜋

, representing the hotspot temperature
of the active core, and 𝑇V𝑎𝑙V𝑒 is the temperature threshold of the
processor.

Proof. When 𝑓
𝜋

= 𝑓count, according to the zero-slack DTM
policy, obviously,

𝑃 {𝑓 = 𝑓
𝜋

} = 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇valve} . (57)

When 𝑓
𝜋

< 𝑓count, then the probabilities of 𝑓 = 𝑓
𝜋

can be
broken into two cases:

(a) if 𝑇hot,a(𝑛a, 𝑓𝜋) > 𝑇hot,a(𝑛a, 𝑓𝜋+1), according to the
zero-slack DTM strategy, the probability of 𝑓 = 𝑓

𝜋

is 0; that is,

𝑃 {𝑓 = 𝑓
𝜋

| 𝑇hot,a (𝑛a, 𝑓𝜋) > 𝑇hot,a (𝑛a, 𝑓𝜋+1)} = 0; (58)

(b) if 𝑇hot,a(𝑛a, 𝑓𝜋) ≤ 𝑇hot,a(𝑛a, 𝑓𝜋+1), the probability of
𝑓 = 𝑓

𝜋

is given by

𝑃 {𝑓 = 𝑓
𝜋

| 𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇hot,a (𝑛a, 𝑓𝜋+1)}

= 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇valve, 𝑇hot,a (𝑛a, 𝑓𝜋+1)

> 𝑇valve | 𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇hot,a (𝑛a, 𝑓𝜋+1)} .

(59)

The right-hand side of (59) can be derived by

𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇valve, 𝑇hot,a (𝑛a, 𝑓𝜋+1)

> 𝑇valve | 𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇hot,a (𝑛a, 𝑓𝜋+1)}

= 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇valve} − 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋)

≤ 𝑇valve, 𝑇hot,a (𝑛a, 𝑓𝜋+1) ≤ 𝑇valve | 𝑇hot,a (𝑛a, 𝑓𝜋)

≤ 𝑇hot,a (𝑛a, 𝑓𝜋+1)} ,

𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇valve, 𝑇hot,a (𝑛a, 𝑓𝜋+1)

≤ 𝑇valve | 𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇hot,a (𝑛a, 𝑓𝜋+1)}

= 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋+1) ≤ 𝑇valve} .

(60)

According to (59) and (60), get

𝑃 {𝑓𝑇hot,a = (𝑛a, 𝑓𝜋) 𝑓𝜋 ≤ 𝑇hot,a (𝑛a, 𝑓𝜋+1)}

= 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇valve}

− 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋+1) ≤ 𝑇valve} .

(61)

Hence, when 𝑓
𝜋

< 𝑓count, according to (58) and (61), get

𝑃 {𝑓 = 𝑓
𝜋

} = 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋) ≤ 𝑇valve}

− 𝑃 {𝑇hot,a (𝑛a, 𝑓𝜋+1) ≤ 𝑇valve} .
(62)

Therefore, according to Theorem 5 the probabilistic dis-
tribution of the set of frequencies can be obtained based on
the assumption that the zero-slack policy is used.

Given the probabilistic distribution of the frequency and
the mean of hotspot temperature of the active core for a
certain frequency, the average hotspot temperature of the
active core 𝑇

aver
hot,a can be obtained by

𝑇
aver
hot,a = ∑

𝑓∈𝐹Set
𝜇
𝑇,a (H, 𝑛, 𝑛a, 𝑓) ⋅ 𝑃 (𝑓) , (63)

where 𝐹Set = {𝑓
1

, . . . , 𝑓
𝜋

, 𝑓
𝜋+1

, . . . , 𝑓
𝑓count} denotes the set

of frequencies of multicore processors and 𝑃(𝑓) denotes the
probability that the frequency is 𝑓; 𝜇

𝑇,a(H, 𝑛, 𝑛a, 𝑓) denotes
the mean of hotspot temperature of the active core given the
frequency 𝑓.

7. Experimental Results

7.1. Experimental Methodology. Amulticore version of Alpha
21264 processor is used as the processor model in our
experiment [24], and there are eight cores in the processor.
The cores have two working states, active state and inac-
tive state, and the working state of each core can be set
separately. The processor employs a global DFS technique,
which means that frequencies of all cores in the processor
are scaled uniformly. There are four discrete frequencies
used by the processor, that is, 1.5 GHz, 2GHz, 2.5 GHz, and
3GHz. To facilitate analysis, the frequencies are normalized
into the interval [0, 1], so that the maximum frequency is
normalized to 1. After normalization, the set of frequencies
is {0.5, 0.67, 0.83, 1}. According to our previous work, the
hotspot of Alpha 21264 processor is the branch predictor
[18]. So the second element of the hotspot selection vector
H, corresponding to the branch predictor, is set to 1, and the
other elements are set to 0 s.The thermal threshold, that is, the
maximum temperature allowed by processor, is set to 100∘C.

TheHotSpot is used as the thermalmodel of themulticore
processor, and the parameters such as thermal conductance
and capacitance are set to default values of HotSpot sim-
ulation tool [3]. In order to construct the linear model of
dynamic power, PTScalar is modified to obtain both the
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dynamic power profiles of each functional unit in Alpha
21264 processor and the IPC profiles [25]. The parameters of
PTScalar are set to default values as well. The mean 𝜇

𝑋

and
variance 𝜎

2

𝑋

of norm-distributed 𝑋a,𝑖 are determined using
IPC profiles based on the maximum likelihood estimation.
Some representative tasks such as mesa, ammp, quake, bzip,
mcf,math, and qsort fromMiBench [26] and SPECCPU2000
[27] are selected as the benchmarks. These selected tasks are
mutually independent; that is, no task takes precedence over
the others, so the tasks can be parallel executed at the task
level. In addition, workload balancing techniques are used in
the processor. A task is not fixed on a core, and the tasks can
be migrated among all cores such that the IPCs of different
cores are equal. The simple linear regression analysis is used
to determine the coefficients Gdyn and G

𝑑0

in (21), and the
variance 𝜎2

𝐸𝑑

of regression residuals Edyn is obtained.
The leakage power is the nonlinear monotonic increasing

function of temperature, which is given by [25]

𝑃
𝑙

= 𝛼 ⋅ 𝑇
2

⋅ 𝑒
𝛾/𝑇

+ 𝛽, (64)

where 𝛼, 𝛽, and 𝛾 are parameters which depend on topology,
size, technology, and design of processors. In order to
construct the linear model of leakage power, (64) is regressed
linearly to determine the coefficients Glea,a and G

𝑙0,a in (22)
and the coefficients Glea,ina and G

𝑙0,ina in (24), as well as
the variance 𝜎2

𝐸a and 𝜎
2

𝐸ina of regression residuals Elea,a and
Elea,ina. The parameters 𝛼, 𝛽, and 𝛾 are set to the default
values of PTScalar. The smaller the range of temperature,
the higher the linear correlation between leakage power and
temperature [7]. The temperature of a processor using DTM
techniques does not exceed the maximum value, and the
lower temperature has no impact on the design optimization
of thermal-aware processors. Therefore, the linear regression
analysis of leakage powers is performed at the temperature
interval between 60∘C and 100∘C, and the regression results
are used to estimate the leakage power at the whole tempera-
ture interval.

7.2. Estimated Accuracy. For the hotspot of the processor,
that is, the branch predictor, Figure 3 shows the comparison
between the actual value and the estimated value of leakage
power for active cores, and Figure 4 shows that for inactive
cores. A higher estimation accuracy of leakage power is
obtained at the temperature interval between 60∘C and 100∘C
at the cost of lower accuracy at the other intervals.

After regression analysis, the dynamic and leakage power
can be estimated with the linear model in (21), (22), and
(24). Figure 5 shows the estimation error rate of the dynamic
power and that of the leakage power for active cores and
inactive cores in thermal range between 60∘C and 100∘C. It
can be seen that the error rates of the dynamic powers for
different functional units have significant variations. For the
decoder, the estimation error rate of dynamic power is only
2.62% but 10.14% for the floating point register (FPReg). The
reason for this fact is that the linear correlations between
the IPC and the dynamic powers for various functional
units are different. Lower error rate results from higher
correlation. Obviously, the IPC and the dynamic power of
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Figure 3: Leakage power estimation of hotspot for active cores.
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Figure 4: Leakage power estimation of hotspot for inactive cores.

the decoder have the highest linear correlation, while the
IPC and that of FPReg have the lowest linear correlation.
It can also be seen from Figure 5 that the estimation error
rates of leakage power for both active cores and inactive
cores are similar. The estimation error rates of leakage power
for active cores are between 3.15% and 3.26%, and those for
inactive cores are between 3.06% and 5.91%. This is because
the temperature and the leakage power of various functional
units have similar linear correlations. In order to consider the
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Table 1: Means (𝜇) and standard deviations (𝜎) of hotspot temperature distribution for active cores.

Number of active cores Frequency of 0.5 Frequency of 0.67 Frequency of 0.83 Frequency of 1
𝜇 (∘C) 𝜎 𝜇 (∘C) 𝜎 𝜇 (∘C) 𝜎 𝜇 (∘C) 𝜎

6 51.93 4.03 61.25 5.40 70.02 6.69 79.35 8.06
7 59.20 4.25 69.73 5.69 79.64 7.05 90.17 8.50
8 66.69 4.48 78.46 6.00 89.54 7.43 101.31 8.95

Table 2: Means (𝜇) and standard deviations (𝜎) of hotspot temperature distribution for inactive cores.

Number of active cores Frequency of 0.5 Frequency of 0.67 Frequency of 0.83 Frequency of 1
𝜇 (∘C) 𝜎 𝜇 (∘C) 𝜎 𝜇 (∘C) 𝜎 𝜇 (∘C) 𝜎

6 40.59 1.71 47.08 2.29 53.19 2.84 59.68 3.42
7 47.78 1.95 55.46 2.61 62.69 3.23 70.37 3.89
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Figure 5: Error rate of the power estimation.

impact of estimation errors on the analysis of temperature
and frequency, the error terms Edyn, Elea,a, and Elea,ina are
introduced into the linear models of dynamic power and
leakage power as expressed in (21), (22), and (24).

7.3. Probabilistic Distribution of Temperature. Based on the
assumption that no DTM techniques are used to control
the temperature of processors, according to Theorem 4,
the probabilistic distribution of the hotspot temperatures
for both active cores and inactive cores can be obtained.
Table 1 presents the means and the standard deviations of
the probabilistic distribution of the hotspot temperature for
active cores, and the corresponding probabilistic density
curves are as shown in Figure 6. It can be seen that the
hotspot temperature of processors is not deterministic and
has significant variations for a certain number of active cores
and a certain frequency. The number of active cores and the
running frequency simultaneously determine the range in
which the temperature lies and the probabilistic distribution
of the hotspot temperature. For the same running frequency,
more active cores will yield higher temperature, and vice
versa. For the same number of active cores, higher frequency
will bring higher temperature, and vice versa. According
to the characteristics of normal distribution curve, it can

be known that the shape of probabilistic density curve
corresponds to the variations of data distribution depending
on the standard deviation of random variables. The curve
with a higher peak implies a smaller standard deviation,
that is, a lower variation of data distribution, whereas the
curve with a lower peak implies a bigger standard deviation,
that is, a larger variation; it can be seen from Figure 6 that
the probabilistic density curves corresponding to various
frequencies have different peaks. This observation implies
that the degree of temperature variation has close correlation
with working frequency, and higher frequency will yield
higher variation of temperature.

Table 2 presents the means and standard deviations of
the probabilistic distribution of the hotspot temperature for
inactive cores, and the corresponding probabilistic density
curves are as shown in Figure 7. When the number of active
cores is eight, inactive core does not exist, so there is no
case where the number of active cores is eight in Table 2
and Figure 7. The effect of the frequency and the number of
active cores at the hotspot temperature for inactive cores is the
same as that for active cores, except that the mean value and
variation of hotspot temperature of inactive cores are lower
than those of active cores under the same frequency and the
number of active cores.

7.4. Probabilistic Distribution of Frequencies. If the power-
gating and the DFS techniques are simultaneously used
to manage the temperature of a processor, according to
Theorem 5, the probabilistic distribution of working frequen-
cies can be determined. Figure 8 presents the probabilistic
distribution of frequencies when the number of active cores is
six, seven, and eight, respectively. When the frequency is less
than 1, it is implied that the hotspot temperature surpasses the
threshold, and the DFS technique is triggered to reduce the
frequency of the processor. So the probability for triggering
DFS can be obtained from the probabilistic distribution of
frequencies. Figure 9 presents the probability for triggering
DFS when the number of active cores is six, seven, and eight,
respectively.
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Figure 6: The probability density of the hotspot temperature for active cores. (a) The number of active cores is six. (b) The number of active
cores is seven. (c) The number of active cores is eight.

If a core is powered off and made inactive using the
power-gating technique, it only dissipates the leakage power
which is much less than that of an active core, so the power
dissipated by the processor is reduced significantly.When the
number of active cores is less than six, that is, more than
two cores are powered off, the decreased power makes it

enough for the rest of active cores of a processor to execute
at the full speed, and the DFS is not necessary to be triggered.
Therefore, when the number of active cores is less than six, the
frequency of the processor is constantly 1, and the probability
for triggering DFS is constantly 0. This situation is not given
in Figures 8 and 9.
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Table 3: Comparisons of temperatures between active cores with and without DFS.

Number of active cores Average hotspot temperature (∘C) Probability for exceeding
temperature threshold (%)

With DFS Without DFS With DFS Without DFS
6 79.30 79.35 0 0.52
7 88.85 90.17 0 12.37
8 93.85 101.31 0 55.84
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Figure 7:The probability density of the hotspot temperature for inactive cores. (a)The number of active cores is six. (b)The number of active
cores is seven.

It can be seen that various numbers of active cores result
in different probabilistic distributions of frequencies and
different probabilities for triggering DFS. When all cores are
powered on, the probability that the processor runs at the
maximum frequency is only 44.16%, and the probability for
triggering DFS is 55.84%.This means that all cores will run at
the full speed only when the IPCs of tasks are less. If the IPCs
increase to an extent, the running frequency will be scaled
down to control the temperature under the threshold. As
the number of active cores decreases, the probability that the
processor runs at the maximum frequency increases, and the
probability for triggering DFS decreases. When the number
of active cores is less than six, no matter what the IPCs are,
the saved power by shutting off more than two cores makes it
deterministic for the active cores to run at the full speed, so
the probability that the processor runs at the maximum fre-
quency is 100%, and the probability for triggering DFS is 0%.

7.5. Comparisons of Temperatures with and without DFS. If
theDFS technique is not used, then the processor always runs

at the full speed, that is, the running frequency is constantly 1.
So the average hotspot temperature of the active core without
the DFS can be obtained according to (52). If both the power-
gating and DFS techniques are used simultaneously for the
dynamic thermal management, then the running frequency
can be scaled to control the temperature of the processor
under the thermal threshold. According to (63), the average
hotspot temperature of the active core with the DFS can
be obtained. In terms of the average hotspot temperature
and the probability that the hotspot temperature exceeds the
threshold, Table 3 presents the comparative results between
the active cores with and without the DFS when the number
of active cores is 6, 7, and 8.

If the DFS technique is used by the processor, the running
frequency will be scaled down to reduce the temperature
once the hotspot temperature reaches the threshold. So the
hotspot temperature will not exceed the threshold; that is,
the probability that the hotspot temperature exceeds the
threshold is 0%. If the DFS technique is not used by the pro-
cessor, the running frequency is always the maximum, and
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Figure 9: Probability for triggering DFS.

the hotspot temperature is possible to exceed the threshold;
that is, the probability that the hotspot temperature exceeds
the threshold is larger than 0%.Therefore, the average hotspot
temperature of the processor with the DFS is lower than that
without the DFS.

As the number of active cores decreases, the saved power
by shutting off cores makes it more possible for the active
cores to execute at the full speed, and the effect of the DFS
on cooling down the processor weakens until it disappears.
Therefore, for the processors with and without the DFS, the

average hotspot temperatures become closer as the number of
active cores decreases, as shown in Table 3. Even though the
DFS is not used, the probability that the hotspot temperature
exceeds the threshold will reduce until 0% when more cores
are powered off.

When the number of active cores is lower than 6, that is,
more than 2 cores are powered off, no matter what speed the
processor runs at, the hotspot temperature will not exceed
the threshold, so all active cores are not necessary to trigger
the DFS for managing the temperature of the processor and
can run at the maximum frequency. Therefore, when the
number of active cores is lower than 6, the probability that
the hotspot temperature exceeds the threshold is 0%, and
the average hotspot temperatures of the processor with and
without theDFS are same.There is no differencewith theDFS
andwithout theDFSwhen the number of active cores is lower
than 6, so the comparisons in this situation are not given in
Table 3.

8. Conclusions

In this paper, a probabilistic analysis method of the tem-
perature and frequency of multicore processors is presented
taking the variation of workloads into account. It is proved
theoretically in this paper that (1) the hotspot temperatures
of both active cores and inactive cores are the linear functions
of the IPC; (2) the hotspot temperature follows the normal
probabilistic distribution based on the assumption that IPCs
of all cores follow the same normal distribution; and (3) the
running frequency follows a probabilistic distribution.

From the experimental results, it can be seen that (1) the
estimation error rates of the dynamic powers for different
functional units have significant variations, indicating that
the linear correlations between the IPC and the dynamic
powers for various functional units are different; (2) the
estimation error rates of leakage powers for both active
cores and inactive cores are similar, showing similar linear
correlations between temperature and leakage power across
various functional units; (3) a higher estimation accuracy of
leakage powers can be obtained at the temperature interval
between 60∘C and 100∘C at the cost of lower accuracy at
other intervals; (4) the hotspot temperature of the proces-
sor is not deterministic and has significant variation for
a certain number of active cores and a certain frequency,
and the number of active cores and the running frequency
determine simultaneously the probabilistic distribution of
hotspot temperature; and (5) various numbers of active cores
result in different probabilistic distributions of frequencies
and different probabilities for triggering DFS.
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