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This paper presents an analytical solution of the simply supported horizontally composite curved I-beam by trigonometric series
considering the effect of partial interaction in the tangential direction. Governing equations and boundary conditions are obtained
by using the Vlasov curved beam theory and the principle of minimum potential energy.The deflection functions and the Lagrange
multiplier functions are expressed as trigonometric series to satisfy the governing equations and the simply supported constraints
at both ends. The numerical results of deflections and forces which are obtained by this method are compared with both FEM
results and experimental results, and the inaccuracy between the analytical solutions in this paper and the FEM results is small and
reasonable.

1. Introduction

A composite beam can be defined as “partially composite
beam” when the number of shear connectors is less than
the required number for fully composite design; therefore,
the interface shear force is limited by the strength of shear
connectors. In contrast to fully composite beam, slip between
layers can be significant and results in a decrease in the
elastic stiffness of partially composite beam. Composite
beam exhibiting partial shear interaction will stand larger
deflection than the beam exhibiting full shear interaction.
By assuming complete shear interaction, the calculation
of deflection for partial shear interaction beam is maybe
underestimated. Because serviceability issues often govern
the structural design of composite section, the accurate
calculation of deflection is critical. The partial interaction is
applied not only in steel-concrete composite beam, but also
in other types of composite beams, such as layered wooden
beams, wood-concrete floor systems, and other multilayered
laminated composite structures [1, 2].

Earlier studies on behavior of the partially composite
beam aremostly focused on the straight composite beam.The
first paper dealing with the analysis of composite beam with

partial interaction has been completed by Newmark et al.
[3]. After that, Goodman and Popkov [4, 5] have conducted
the analytical and numerical research on the relative slip
between layers and found that the relative slip between layers
has a significant effect on the overall characteristics of the
composite beam with the reduction of shear connectors’
stiffness. Girhammar et al. [6, 7] have applied a partial shear
interaction theory for composite beam subjected to static
loads and dynamic loads. Wang [8] has developed a method
to calculate deflection of partially composite beam based
on the stiffness of the shear connectors. Dall’Asta [9] has
developed a three-dimensional theory for composite beam
with partial shear interaction dealing with combination of
bending in the symmetry plane, torsion, and transverse
bending in the plane parallel to the shear connector interface.
Nie and Cai [10] have studied the effects of shear slip on
the deflection of steel-concrete composite beam. Ranzi and
Bradford [11] have presented analytical solutions for time
dependent behavior of partially composite beam. Liu et
al. [12] have found out the solution of shearing slip for
steel-concrete composite beam under the concentrated load.
Campi and Monetto [13] have presented a new formulation
to analyze two-layer linearly elastic Timoshenko beam with
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interlayer slip. In the aspect of numerical simulations studies,
different kinds of numerical and finite element formulations
for the analysis of composite beam with interlayer slip have
been suggested [1, 14–19].

Many significant researches have been accomplished in
regard to the behavior of straight partially composite beam.
In the same time, various scholars have done researches on
the curved beam theory. One of the earliest works dealing
with the stability behaviors of curved beam has been put
forward by Vlasov [20]. After that, scholars covered different
extensions and enhancements to the Vlasov model [21–
26]. These researches are helpful to the development of the
composite beam theory. However, very little literature has
focused on the curved partially composite beam such as
horizontally composite curved steel I-beam bridge. Theven-
dran et al. [27] and Shanmugam et al. [28] have conducted
experiments on the steel-concrete composite curved beam
to investigate the ultimate load behavior. In their study, the
finite element software ABAQUS was used to analyze the
behavior of test specimens. Full composite action between
steel beam and the concrete slab was assumed. The results
of deformations, stress distributions, and ultimate strengths
obtained by finite element analysis were found to be in good
agreement with the experimental results. After that, Topkaya
et al. [29] have conducted experimental and numerical
studies to establish the behavior of composite curved bridge
during construction. In their study, two FEM models were
established by different kinds of software to predict the
behavior of the curved steel trapezoidal box-girder, and the
authors have drawn a conclusion that the reasonable finite
element model is able to accurately capture girder behavior
during construction. Giussani and Mola [30] have developed
an analytical equation for elastic composite beam curved in-
plane with the long term behavior. But the partial interaction
between the steel girder and concrete slab was not considered
in the study. Erkmen and Bradford [31] have solved the
equation of the composite curved beam considering the
two-layer partial interaction by providing a highly efficient
3D beam finite element. The results demonstrate that the
developed formulation is accurate and effective in capturing
the behavior of composite beams curved in-plane.

Even though someprevious researches of these evaluation
methodologies have been accomplished, there is still lack of
the fundamental understanding of the system-level behavior
on the overall performance of composite curved beam with
partial shear interaction. Besides, although exact solutions
can be obtained by the 3D finite element model, it is very
complex and time consuming. Therefore, the FEM analysis
procedures are not suitable for the initial design. This study
aims to provide an analytical theory of the horizontally
composite curved beam considering the partial interaction
in tangential direction. The beam is assumed to be statically
determinatewith a constant radius of curvature along the lon-
gitudinal axis. Governing equations and boundary conditions
are obtained by using both the Vlasov curved beam theory
and the energy variation principle.Theundetermined vertical
deflection, torsional deflection, and Lagrange multipliers will
be approximated by Fourier series to solve the governing
equations of the partial interaction composite beam theory
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Figure 1: Model of a horizontally composite curved I-beam.

in the procedures. The numerical results of deflections and
forces obtained by using proposed theory are presented
and compared with FEM results and experimental results.
Comparison results show that the calculation can be easily
and accurately handled which is a great advantage of this
method.

2. Basic Assumptions and Conditions

This study is on a horizontally composite curved I-beam
where the model is shown as in Figure 1, and the noteworthy
features of this research are shown as follows:

(1) The slab and I-girder are linear-elastic different mate-
rials, and the cross-sections made of both mate-
rials are rigid in their plane. The effects of shear
deformation, warping deformation, and distortion
deformation are neglected in this research. Structural
analysis of the beam is based on the Vlasov curved
beam theory (for each part of the beam).

(2) The interlayer connectors between the slab and I-
girder are flexible, and they are continuous in tan-
gential direction and rigid in radial direction. The
load-slip behavior (per unit length) of connectors in
tangential direction is described in a linear-elastic
range with a constant slip modulus 𝐾[N/m2].

(3) The uplift between the slab and I-girder is neglected.
The radius of curvature is constant along the beam.

The deflections in tangential direction, vertical direc-
tion, and radial direction (𝑧-direction, 𝑦-direction, and 𝑥-
direction) are indicated as 𝑢, 𝑤, and V, respectively. The
I-girder has the same torsional deflection 𝜙 and vertical
deflection 𝑤 as the slab has. In this paper, subscript “1”
refers to the cross-section of the slab and subscript “2” refers
to the cross-section of I-girder, such that the deflections
of the slab and I-girder can be represented as (𝑤, 𝜙, 𝑢1, V1)
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and (𝑤, 𝜙, 𝑢2, V2), respectively. The geometric relationships
between strains and deflections may be written as

𝜀𝑧𝑖 = 𝑢󸀠𝑖 − V𝑖𝑅 ,𝑘𝑦𝑖 = V󸀠󸀠𝑖 + 𝑢󸀠𝑖𝑅 ,
𝑘𝑥𝑖 = 𝑤󸀠󸀠 − 𝜙𝑅,𝑘𝑧𝑖 = 𝜙󸀠 + 𝑤󸀠𝑅 (𝑖 = 1, 2) ,

(1)

where 𝜀𝑧𝑖 is the axial strain, 𝑘𝑦𝑖 is the curvature in𝑦-direction,𝑘𝑥𝑖 is the curvature in 𝑥-direction, and 𝑘𝑧𝑖 is the curvature in𝑧-direction. Where ()󸀠 = 𝑑()/𝑑𝑧, ()󸀠󸀠 = 𝑑2()/𝑑𝑧2.
The constitutive equations are as follows:𝑁𝑖 = 𝐸𝑖𝐴 𝑖𝜀𝑧𝑖,𝑀𝑦𝑖 = 𝐸𝑖𝐼𝑦𝑖𝑘𝑦𝑖,𝑀𝑥𝑖 = 𝐸𝑖𝐼𝑥𝑖𝑘𝑥𝑖,𝑇𝑖 = 𝐺𝑖𝐼𝑇𝑖𝑘𝑧𝑖 (𝑖 = 1, 2) ,

(2)

where 𝑁𝑖, 𝑀𝑦𝑖, 𝑀𝑥𝑖, and 𝑇𝑖 are internal axial force in 𝑧-
direction, internal bending moment in 𝑦-direction, inter-
nal bending moment in 𝑥-direction, and internal torsion
moment in 𝑧-direction, respectively.

The microunit’s force diagram of the horizontally com-
posite curved I-beam is shown in Figure 2, which is under the
external distribution force 𝑞0 and torsion moment 𝑚0. The
balance equations of the slab are𝑑𝑄𝑥1𝑑𝑧 + 𝑁1𝑅 + 𝑞𝑥1 = 0,𝑑𝑁1𝑑𝑧 − 𝑄𝑥1𝑅 + 𝑞𝑧1 = 0,𝑑𝑀𝑦1𝑑𝑧 + 𝑄𝑥1 = 0,𝑑𝑄𝑦1𝑑𝑧 − 𝑞0 + 𝑞𝑦1 = 0,𝑑𝑀𝑥1𝑑𝑧 + 𝑇1𝑅 − 𝑄𝑦1 + 𝑚𝑥1 = 0,𝑑𝑇1𝑑𝑧 − 𝑀𝑥1𝑅 + 𝑚𝑧1 + 𝑚0 = 0.

(3)

The balance equations of the I-girder are𝑑𝑄𝑥2𝑑𝑧 + 𝑁2𝑅 + 𝑞𝑥2 = 0,𝑑𝑁2𝑑𝑧 − 𝑄𝑥2𝑅 + 𝑞𝑧2 = 0,𝑑𝑀𝑦2𝑑𝑧 + 𝑄𝑥2 = 0,𝑑𝑄𝑦2𝑑𝑧 + 𝑞𝑦2 = 0,𝑑𝑀𝑥2𝑑𝑧 + 𝑇2𝑅 − 𝑄𝑦2 + 𝑚𝑥2 = 0,𝑑𝑇2𝑑𝑧 − 𝑀𝑥2𝑅 + 𝑚𝑧2 = 0,

(4)

where𝑚𝑥𝑖 is the distributed bendingmoment caused by shear
force 𝑞𝑧𝑖, 𝑚𝑧𝑖 is distributed torque caused by shear force 𝑞𝑥𝑖,𝑄𝑥𝑖 is the shear force in 𝑥-direction, and𝑄𝑦𝑖 is the shear force
in 𝑦-direction. For the shear forces 𝑞𝑧𝑖, 𝑞𝑥𝑖, and 𝑞𝑦𝑖, there are𝑞𝑧1 + 𝑞𝑧2 = 0,𝑞𝑥1 + 𝑞𝑥2 = 0,𝑞𝑦1 + 𝑞𝑦2 = 0. (5)

By eliminating𝑄𝑥1 and𝑄𝑥2 from the first three equations
of (3) and (4), we can get− (𝑀𝑦1 +𝑀𝑦2)󸀠󸀠 + (𝑁1 + 𝑁2)𝑅 = 0,

(𝑁1 + 𝑁2)󸀠 + (𝑀𝑦1 +𝑀𝑦2)󸀠𝑅 = 0. (6)

When there are no axial force and bending moment in 𝑦-
direction of the I-beam caused by external forces, we can get𝑁1 = −𝑁2,𝑀𝑦1 = −𝑀𝑦2. (7)

3. Equilibrium at the Interface

At the interface, considering the deflections described in
Figure 3, shear force 𝑞𝑧2 described in Figure 2 can be written
as 𝑞𝑧2 = 𝐾Δ𝑢 = 𝐾(𝑢2 − 𝑢1 + 𝑤󸀠𝑏) = −𝑁󸀠1 − 𝑀󸀠𝑦1𝑅= 𝑁󸀠2 + 𝑀󸀠𝑦2𝑅 , (8)

where 𝑏 = 𝑏1 + 𝑏2 and Δ𝑢 is the amount of the deflection at
the interface in the tangential direction. So, the equilibrium
at the interface in the tangential direction can be written as𝐾(𝑢2 − 𝑢1 + 𝑤󸀠𝑏) + 𝑁󸀠1 + 𝑀󸀠𝑦1𝑅 = 0. (9)
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Figure 2: A microunit’s force diagram of the horizontally composite curved I-beam.
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Figure 3: Deflections of differential elements for the beam in 𝑦-𝑧
plane.

Considering deflection described in Figure 4, equilibrium
at the interface in the radial direction can be written as

V2 − V1 + 𝜙𝑏 = 0. (10)

In order to solve the problem under consideration, it
is convenient to rearrange (9) and (10) as detailed in what
follows. Firstly, taking the derivative of (9) one time with
respect to 𝑧 component, then eliminating V2 and 𝑢2 by
inserting the derivative equation and (10) into the first
formula of (1), and at last using the first and second formulas
of (2), one can obtain the following:𝑓𝑧 = 𝐸1𝐴1𝐾 (𝑢󸀠1 − V1𝑅 )󸀠󸀠 + 𝐸1𝐼𝑦1𝐾𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠󸀠

− 𝑆𝐴𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) + 𝑤󸀠󸀠𝑏 − 𝜙𝑏𝑅 = 0. (11)

Analogously, taking the derivative of differential equation
(9) one time and taking the derivative of (10) two times with
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Figure 4: Deflection of the composite curved I-beam in 𝑥-𝑦 plane.

respect to 𝑧 component firstly and then eliminating V2 and 𝑢2
by inserting these two derivative equations into the second
formulas of (1), using (2), one can obtain the following:

𝑓𝑦 = 𝐸1𝐴1𝐾𝑅 (𝑢󸀠1 − V1𝑅 )󸀠󸀠 + 𝐸1𝐼𝑦1𝐾𝑅2 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠󸀠
− 𝑆𝑦𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) + 𝜙󸀠󸀠𝑏 + 𝑤󸀠󸀠𝑏𝑅 = 0, (12)

where 𝑆𝐴 = 1/𝐸2𝐴2 + 1/𝐸1𝐴1 and 𝑆𝑦 = 1/𝐸1𝐼𝑦1 + 1/𝐸2𝐼𝑦2.
4. Problem Formulation

The governing differential equations of the beam will be
derived by the principle of minimum potential energy. The
potential energy of the beam takes the following form:Π = 𝑈𝑀𝑥 + 𝑈𝑇𝑧 + 𝑈𝑀𝑦 + 𝑈𝑎 + 𝑈𝑠 −𝑊. (13)
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𝑈𝑀𝑥 is the bending strain energy due to the internal
bending moments𝑀𝑥1 and𝑀𝑥2.

𝑈𝑀𝑥 = 12 ∫𝑅𝜃0 (𝑀𝑥1𝑘𝑥1 +𝑀𝑥2𝑘𝑥2) 𝑑𝑧
= 12𝐸𝐼𝑥 ∫𝑅𝜃0 (𝑤󸀠󸀠 − 𝜙𝑅)2 𝑑𝑧, (14)

where 𝐸𝐼𝑥 = 𝐸1𝐼𝑥1 + 𝐸2𝐼𝑥2.𝑈𝑇 is the torsional strain energy due to the internal
torsion moments 𝑇1 and 𝑇2.

𝑈𝑇 = 12 ∫𝑅𝜃0 (𝑇1𝑘𝑧1 + 𝑇2𝑘𝑧2) 𝑑𝑧
= 12𝐺𝐼𝑇∫𝑅𝜃0 (𝜙󸀠 + 𝑤󸀠𝑅 )2 𝑑𝑧, (15)

where 𝐺𝐼𝑇 = 𝐺1𝐼𝑇1 + 𝐺2𝐼𝑇2.𝑈𝑎 is the axial strain energy due to the internal axial forces𝑁1 and𝑁2.
𝑈𝑎 = 12 ∫𝑅𝜃0 (𝑁1𝜀1 + 𝑁2𝜀2) 𝑑𝑧

= 12 ∫𝑅𝜃0 𝑆𝐴 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )]2 𝑑𝑧. (16)

𝑈𝑀𝑦 is the bending strain energy due to the internal
bending moments𝑀𝑦1 and𝑀𝑦2.

𝑈𝑀𝑦 = 12 ∫𝑅𝜃0 (𝑀𝑦1𝑘𝑦1 +𝑀𝑦2𝑘𝑦2) 𝑑𝑧
= 12 ∫𝑅𝜃0 𝑆𝑦 [𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠󸀠1𝑅 )]2 𝑑𝑧. (17)

𝑈𝑠 is the strain energy due to the connector deflections.

𝑈𝑠 = 12 ∫𝑅𝜃0 𝑞𝑧1 ⋅ Δ𝑢 𝑑𝑧 = 12 ∫𝑅𝜃0 1𝐾 (𝑁󸀠1 + 𝑀󸀠𝑦1𝑅 )2 𝑑𝑧
= 12 ∫𝑅𝜃0 1𝐾 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )󸀠
+ 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠]2 𝑑𝑧.

(18)

𝑊 is the potential energy due to the external loading.

𝑊 = ∫𝑅𝜃
0

𝑚0𝜙𝑑𝑧 + ∫𝑅𝜃
0

𝑞0𝑤𝑑𝑧 + (𝑀𝑥𝑤󸀠)󵄨󵄨󵄨󵄨󵄨𝑅𝜃0+ (𝑄𝑦𝑤)󵄨󵄨󵄨󵄨󵄨𝑅𝜃0 + (𝑇𝑧𝜙)󵄨󵄨󵄨󵄨𝑅𝜃0 , (19)

where 𝑀𝑥, 𝑄𝑦, and 𝑇𝑧 are the bending moment, shear
force, and torsion moment of the beam, respectively. Using
the Lagrange multiplier method, the principle of minimum
potential energy in augmented form now may be written
as

minΠ∗ = Π + ∫𝑅𝜃
0

(𝜆𝑧 ⋅ 𝑓𝑧) 𝑑𝑧 + ∫𝑅𝜃
0

(𝜆𝑦 ⋅ 𝑓𝑦) 𝑑𝑧, (20)

where the parameters 𝜆𝑧 and 𝜆𝑦 are the Lagrange multipliers
and 𝑓𝑧 and 𝑓𝑦 are the equilibrium conditions at the interface
corresponding to (11) and (12), respectively. In (20), 𝜙, 𝑤, V1,𝑢1, 𝜆𝑧, and 𝜆𝑧 are all independent variables. The variation ofΠ∗ is
𝛿Π∗ = ∫𝑅𝜃

0
Γ1𝛿𝑤𝑑𝑧 + ∫𝑅𝜃

0
Γ2𝛿𝜙 𝑑𝑧 + ∫𝑅𝜃

0
Γ3𝛿𝜆𝑧𝑑𝑧

+ ∫𝑅𝜃
0

Γ4𝛿𝜆𝑦𝑑𝑧 + ∫𝑅𝜃
0

Γ5𝛿V1𝑑𝑧 + ∫𝑅𝜃
0

Γ6𝛿𝑢1𝑑𝑧
+ 𝐻1𝛿𝑤󵄨󵄨󵄨󵄨𝑅𝜃0 + 𝐻2𝛿𝑤󸀠󵄨󵄨󵄨󵄨󵄨𝑅𝜃0 + 𝐻3𝛿𝜙󵄨󵄨󵄨󵄨𝑅𝜃0 + 𝐻4𝛿𝜙󸀠󵄨󵄨󵄨󵄨󵄨𝑅𝜃0+ 𝐻5𝛿𝑢1󵄨󵄨󵄨󵄨𝑅𝜃0 + 𝐻6𝛿𝑢󸀠1󵄨󵄨󵄨󵄨󵄨𝑅𝜃0 + 𝐻7𝛿V1󵄨󵄨󵄨󵄨𝑅𝜃0 + 𝐻8𝛿V󸀠1󵄨󵄨󵄨󵄨󵄨𝑅𝜃0+ 𝐻9𝛿V󸀠󸀠1 󵄨󵄨󵄨󵄨󵄨𝑅𝜃0
+ 𝐻10𝛿 [[[[

𝐸1𝐼𝑦1𝑅𝐾 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠 + 𝐸1𝐴1𝐾 (𝑢󸀠1 − V󸀠1𝑅 )󸀠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Δ𝑢

]]]]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑅𝜃

0

,

(21)

where Γ𝑖 (𝑖 = 1∼6) and𝐻𝑖 (𝑖 = 1∼10) are calculated from the
variation ofΠ∗, which are given in Appendix A. Each term in
(21) must be identically zero. It makes Γ5 = 0, Γ6 = 0,𝐻5 = 0,𝐻6 = 0,𝐻7 = 0,𝐻8 = 0, and𝐻9 = 0; that is, the undermined
Lagrange multipliers 𝜆𝑧 and 𝜆𝑦 are

𝜆𝑧 = 𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) = 𝑁1,
𝜆𝑦 = 𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) = 𝑀𝑦1. (22)

Equation (22) notes that the Lagrange multipliers and the
deflections (𝑢1 and V1) are related. So, there will be four rather
than six independent variables in this problem.We can take𝜙,𝑤, 𝜆𝑧, and 𝜆𝑦 as independent variables.The rest of governing
equations are Γ1 = 0, Γ2 = 0, Γ3 = 0, and Γ4 = 0, which can be
rearranged and rendered in terms of matrix form, as shown
below.
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[[[[[[[[[[[[[

𝐸𝐼𝑥 𝑑4𝑑𝑧4 − 𝐺𝐼𝑇𝑅2 𝑑2𝑑𝑧2 −𝐸𝐼𝑥 + 𝐺𝐼𝑇𝑅 𝑑2𝑑𝑧2 𝑏 𝑑2𝑑𝑧2 𝑏𝑅 𝑑2𝑑𝑧2−𝐸𝐼𝑥 + 𝐺𝐼𝑇𝑅 𝑑2𝑑𝑧2 −𝐺𝐼𝑑 𝑑2𝑑𝑧2 + 𝐸𝐼𝑥𝑅2 − 𝑏𝑅 𝑏 𝑑2𝑑𝑧2𝑏 𝑑2𝑑𝑧2 − 𝑏𝑅 1𝐾 𝑑2𝑑𝑧2 − 𝑆𝐴 1𝑅𝐾 𝑑2𝑑𝑧2𝑏𝑅 𝑑2𝑑𝑧2 𝑏 𝑑2𝑑𝑧2 1𝑅𝐾 𝑑2𝑑𝑧2 1𝑅2𝐾 𝑑2𝑑𝑧2 − 𝑆𝑦

]]]]]]]]]]]]]
(𝑤𝜙𝜆𝑧𝜆𝑦)=(𝑞0𝑚000 ). (23)

We can get the pertaining boundary conditions:[−𝐸𝐼𝑥 (𝑤󸀠󸀠󸀠 − 𝜙󸀠𝑅 ) − 𝑏𝜆󸀠𝑧 − 𝑏𝑅𝜆󸀠𝑦 + 𝐺𝐼𝑇(𝜙󸀠𝑅 + 𝑤󸀠𝑅2)− 𝑄𝑦] 𝛿𝑤󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅𝜃0 = 0,
[𝐸𝐼𝑥 (𝑤󸀠󸀠 − 𝜙𝑅) + 𝑏𝜆𝑧 + 𝑏𝑅𝜆𝑦 −𝑀𝑥] 𝛿𝑤󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅𝜃0 = 0,
[𝐺𝐼𝑇(𝜙󸀠 + 𝑤󸀠𝑅 ) − 𝑏𝜆󸀠𝑦 − 𝑇𝑧] 𝛿𝜙󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅𝜃0 = 0,
(𝑏𝜆𝑦) 𝛿𝜙󸀠󵄨󵄨󵄨󵄨󵄨𝑅𝜃0 = 0,
(𝜆𝑧 + 𝜆𝑦𝑅 )𝛿 (Δ𝑢)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅𝜃0 = 0.

(24)

It is evident that (23) is tenth-order ordinary differential
equation.Wehave ten boundary conditions for the beam, that
is, five boundary conditions for each end. For the boundary
conditions (see (24)) to hold, the following alternatives at
each end shown as in Table 1 are conducted.

5. Analytical Solution by Trigonometric Series

In this section, a closed form solution of the simply sup-
ported horizontally composite curved I-beam is obtained.
The deflection functions and the Lagrange multiplier func-
tions are expressed as undetermined coefficients and known
trigonometric series to satisfy the governing equations and
the rigid torsion constraints at each end. The deflection and
the Lagrangemultiplier are assumed to be the following form:𝑤 = 𝑛∑

𝑖=1

𝑤𝑖 sin(𝑖𝜋𝑧𝐿 ) ,
𝜙 = 𝑛∑
𝑖=1

𝜙𝑖 sin(𝑖𝜋𝑧𝐿 ) ,
𝜆𝑧 = 𝑛∑
𝑖=1

𝜆𝑧𝑖 sin(𝑖𝜋𝑧𝐿 ) ,
𝜆𝑦 = 𝑛∑
𝑖=1

𝜆𝑦𝑖 sin(𝑖𝜋𝑧𝐿 ) ,
(25)

where𝑤𝑖, 𝜙𝑖, 𝜆𝑧𝑖, and 𝜆𝑦𝑖 are unknown Fourier coefficients to
be determined for each 𝑖 (𝑖 = 1, . . . , 𝑛) and 𝐿 is span length.
The applied distributed load 𝑞0 and𝑚0 are expanded in single
trigonometric series as

𝑞0 = 𝑛∑
𝑖=1

𝑞𝑖 sin(𝑖𝜋𝑧𝐿 ) ,
𝑚0 = 𝑛∑

𝑖=1

𝑚𝑖 sin(𝑖𝜋𝑧𝐿 ) , (26)

where 𝑞𝑖 and𝑚𝑖 are the Fourier coefficients. Multiplying both
sides of (26) by each trigonometric series and then integrating
them over (0, 𝐿), finally, the trigonometric coefficients 𝑞𝑖 and𝑚𝑖 can be readily determined with the orthogonality prop-
erties. Substituting (25)-(26) into (23) and solving (23), the
unknown parameters 𝑤𝑖, 𝜙𝑖, 𝜆𝑧𝑖, and 𝜆𝑦𝑖 can be determined.
The unknown Fourier coefficients are given as follows:𝑤𝑖 = 𝑞𝑖 𝛾𝑞1 + 𝛾𝑞2𝛾 + 𝑚𝑖 𝛾𝑚1𝛾 ,

𝜙𝑖 = 𝑞𝑖 𝛾𝑞3𝛾 + 𝑚𝑖 𝛾𝑚2 + 𝛾𝑚3𝛾 ,
𝜆𝑧𝑖 = 𝑞𝑖 𝛾𝑞4𝛾 + 𝑚𝑖 𝛾𝑚4𝛾 ,
𝜆𝑦𝑖 = 𝑞𝑖 𝛾𝑞5𝛾 + 𝑚𝑖 𝛾𝑚5𝛾 ,

(27)

where 𝛾, 𝛾𝑞𝑖, and 𝛾𝑚𝑖 (𝑖 = 1, . . . , 5) are the relevant coefficients
which are given in Appendix B.

6. Numerical Example

A steel-concrete composite curved I-beam calculated by
Thevendran et al. [27] is taken as a numerical example in
order to show the accuracy and reliability of the present
trigonometric solution of the beam. The beam is simply
supported at both ends as shown in Figure 1. And the beam is
subjected to 𝐹 = 150KN vertical load at themidspan section.
Thematerial properties and dimensions of the curved I-beam
(SP4 beam) are shown in Table 2.

The finite element software ANSYS is used to model the
described structure (Figure 5). In the FEM model, both the
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Table 1: Common support conditions.

Type The boundary conditions

R

Free end 

𝑄𝑦 = 0𝑀𝑥 = 0𝑇𝑧 = 0𝜆𝑧 = 0𝜆𝑦 = 0
R

Fixed end 

𝑤 = 0𝜙 = 0𝑤󸀠 = 0𝜙󸀠 = 0Δ𝑢 = 0
R

Rigid torsion constraints 
end 

𝑤 = 0𝜙 = 0𝑀𝑥 = 0𝜆𝑧 = 0𝜆𝑦 = 0
R

Hinged end 

𝑤 = 0𝑇𝑧 = 0𝑀𝑥 = 0𝜆𝑧 = 0𝜆𝑦 = 0
Space

beam element Rigid link

Interface node and shear connector

Figure 5: Finite element model diagram of the composite curved
I-beam.

concrete slab and the steel I-girder are modeled as space
beam elements and the connection between the slab and
I-girder is simulated by multiple-point constraints (MPC)
which are modeled by two rigid links connected through
interface nodes between the slab and I-girder. The spring
elements are used in the tangential direction to allow for the
possibility of movement. Coupling degrees of freedom 𝑤 are
used to prevent the uplifting issue.

The vertical deflection 𝑤, the tangential deflection 𝑢,
the radial deflection V, and the torsional deflection 𝜙 are
restrained to satisfy the simply supported constraints at
both ends. Although the BEAM4 element in ANSYS cannot
consider the warping effect, the element meets the theory of
this paper quite well. So, 120 BEAM4 elements are selected as
the spatial beam elements. The element of MPC 184 with the
number of 122 is modeled as the multiple-point constraints
element. In addition, the element of COMBIN 14 with the
number of 61 is used when tangential slip is considered.

For the full interaction case, the slip parameters are taken
as 𝐾 = 1010N/m2. Figure 6 shows the vertical deflection𝑤 based on the FEM, the solution calculated by this paper,
and Thevendran et al. experimental results, respectively. For
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Figure 6: Vertical deflection of the beam.
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Figure 7: Torsional angle of the beam.

this paper solution, the number of Fourier coefficients 𝑛 (in
(25)) can be chosen as large as we can to achieve a required
accuracy. As an illustration of convergence of the results, we
show the results from this paper by taking the number 𝑛 as 1,
5, and 10 terms, respectively. It can be seen in Figure 6 that the
vertical deflections results solved from this paper and from
Thevendran et al. experiment are in reasonable agreement
(the difference is within 12%), and the solved results from this
paper and from FEM are in good agreement.

Considering only vertical deflections are available from
the experiments of Thevendran et al., the other results of
the solution calculated by this paper and by the FEM are
compared in Figures 7–12. The results are the torsional angle𝜙, the bending moment𝑀𝑦1 (𝑀𝑦1 = 𝜆𝑦), the axial force 𝑁1
(𝑁1 = 𝜆𝑧), the bending moment𝑀𝑥, the shear force 𝑄𝑦, and
the torsion moment 𝑇𝑧, respectively.
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Table 2: Material properties and dimensions of the curved I-beam.

Young’s modulus
(GPa)

Poisson’s
ratio

Density
(kg/m3)

Width
(mm)

Thickness
(mm)

Central
angle

Radius of curvature
(m)

Steel girder 206 0.3 7850 Flange: 332
Web: 172

Flange: 13
Web: 8 𝜃 = 14.3∘ 24

Concrete slab 26 0.27 2400 1500 100
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Figure 8: Bending moment𝑀𝑦1 of the beam.

FEM
n10

n5

n1

10 20 30 40 50 600
Distance along the tangential direction (dm)

−700

−600

−500

−400

−300

−200

−100

0

Th
e a

xi
al

 fo
rc

eN
1

(K
N

)

Figure 9: Axial force𝑁1 of the beam.

It can be seen from Figures 7–12 that the results solved by
this paper can be quickly convergent, and one can get very
good results by taking more than 5 terms. When the stiffness
of the shear connectors is changed, the vertical deflection
and torsional angle at midspan section are shown in Figures
13 and 14, respectively. In Figure 13, it can be seen that
the vertical deflections converge to the minimum when the
slip parameter 𝐾 is greater than 1010N/m2. Moreover, the
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Figure 10: Bending moment𝑀𝑥 of the beam.
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Figure 11: Shear force 𝑄𝑦 of the beam.

changes with slip parameter 𝐾 indicate the shear connecter’s
stiffness in experimental model of Thevendran et al. with
the range from 109N/m2 to 1010N/m2. As it can be seen
from Figures 13 and 14, the performance of the curved
composite I-beam becomes significantly rigid when the shear
connecter’s stiffness is increased from 107 to 109N/m2. The
reduction of shear connectors’ stiffness between layers has a
significant effect on the vertical deflection and torsional angle
at midspan section.
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Figure 12: Torsion moment 𝑇𝑧 of the beam.
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Figure 13: Vertical deflection at midspan section when the stiffness
of the shear connecter is changed.

The inaccuracy of the vertical deflection and torsional
angle between analytical solutions in this paper and the FEM
results in Figures 6–14 is small and reasonable. Thus, the
model created in this paper can be applied sufficiently for
practical purposes.

7. Conclusions

In this paper, an analytical solution has been developed and
presented for the simply supported horizontally composite
curved I-beam. It is primarily used to solve a static problem
of a two-layered composite curved beam with flexible shear
connection in the tangential direction. The trigonomet-
ric series are adopted in solution expression in terms of
span coordinate. Both governing equations and boundary
conditions are obtained by using the Vlasov curved beam
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Figure 14: Torsional angle atmidspanwhen the stiffness of the shear
connecter is changed.

theory and the principle of minimum potential energy. The
accuracy of calculation results based on the theory presented
in this paper is verified by comparing with the FEM and
the Thevendran et al. experimental results. Therefore, the
analytical expression and model established in this paper
possess certain actual engineering significance.

Appendix

A. Component of Γ𝑖 (𝑖 = 1∼6) and 𝐻𝑖 (𝑖 = 1∼10)
ConsiderΓ1 = 𝐸𝐼𝑥𝑤󸀠󸀠󸀠󸀠 − 𝐺𝐼𝑇𝑤󸀠󸀠𝑅2 − 𝐸𝐼𝑥 + 𝐺𝐼𝑇𝑅 𝜙󸀠󸀠 + 𝑏𝜆󸀠󸀠𝑧

+ 𝑏𝜆󸀠󸀠𝑦𝑅 − 𝑞0,Γ2 = −𝐸𝐼𝑥 + 𝐺𝐼𝑇𝑅 𝑤󸀠󸀠 − 𝐺𝐼𝑑𝜙󸀠󸀠 + 𝐸𝐼𝑥𝑅2 𝜙 − 𝑏𝜆𝑧𝑅 + 𝑏𝜆󸀠󸀠𝑦− 𝑚0,Γ3 = [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )󸀠󸀠 + 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠󸀠] 1𝐾− 𝑆𝐴𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) + 𝑤󸀠󸀠𝑏 − 𝜙𝑏𝑅 ,
Γ4 = [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )󸀠󸀠 + 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠󸀠] 1𝑅𝐾

− 𝑆𝑦𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) + 𝜙󸀠󸀠𝑏 + 𝑤󸀠󸀠𝑏𝑅 ,
Γ5 = 𝐸1𝐼𝑦1𝑆𝑦 [𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) − 𝜆𝑦]󸀠󸀠 − 𝐸1𝐴1𝑆𝐴
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⋅ 1𝑅 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) − 𝜆𝑧]
+ 𝐸1𝐴1𝐾𝑅 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) + 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )
− 𝜆𝑧 − 𝜆𝑦𝑅 ]󸀠󸀠 − 𝐸1𝐼𝑦1𝐾𝑅 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )
+ 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) − 𝜆𝑧 − 𝜆𝑦𝑅 ]󸀠󸀠󸀠󸀠 ,

Γ6 = 1𝐾 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) + 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) − 𝜆𝑧
− 𝜆𝑦𝑅 ]󸀠󸀠󸀠 (𝐸1𝐴1 + 𝐸1𝐼𝑦1𝑅2 )
− 𝐸1𝐴1𝑆𝐴 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) − 𝜆𝑧]󸀠
− 𝑆𝑦𝐸1𝐼𝑦1𝑅 [𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) − 𝜆𝑦]󸀠 ,

𝐻1 = −𝐸𝐼𝑥 (𝑤󸀠󸀠󸀠 − 𝜙󸀠𝑅 ) − 𝑏𝜆󸀠𝑧 − 𝑏𝑅𝜆󸀠𝑦 + 𝐺𝐼𝑇(𝜙󸀠𝑅+ 𝑤󸀠𝑅2) − 𝑄𝑦,
𝐻2 = 𝐸𝐼𝑥 (𝑤󸀠󸀠 − 𝜙𝑅) + 𝑏𝜆𝑧 + 𝑏𝑅𝜆𝑦 −𝑀𝑥,𝐻3 = 𝐺𝐼𝑇(𝜙󸀠 + 𝑤󸀠𝑅 ) − 𝑏𝜆󸀠𝑦 − 𝑇𝑧,𝐻4 = 𝑏𝜆𝑦,𝐻5 = 𝐸1𝐴1𝑆𝐴 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) − 𝜆𝑧]

+ 𝑆𝑦𝐸1𝐼𝑦1𝑅 [𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) − 𝜆𝑦]
− 1𝐾 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) + 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) − 𝜆𝑧

− 𝜆𝑦𝑅 ]󸀠󸀠 (𝐸1𝐴1 + 𝐸1𝐼𝑦1𝑅2 ) ,
𝐻6 = 1𝐾 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 ) + 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )

− 𝜆𝑧 − 𝜆𝑦𝑅 ]󸀠 (𝐸1𝐴1 + 𝐸1𝐼𝑦1𝑅2 ) ,
𝐻7 = −𝐸1𝐼𝑦1𝑆𝑦 [𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) − 𝜆𝑦]󸀠

− 𝐸1𝐴1𝐾𝑅 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )󸀠 + 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠
− 𝜆󸀠𝑧 − 𝜆󸀠𝑦𝑅 ] + 𝐸1𝐼𝑦1𝐾𝑅 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )󸀠
+ 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠 − 𝜆󸀠𝑧 − 𝜆󸀠𝑦𝑅 ]󸀠󸀠 ,

𝐻8 = 𝐸1𝐼𝑦1𝑆𝑦 [𝐸1𝐼𝑦1 (V󸀠󸀠1 + 𝑢󸀠1𝑅 ) − 𝜆𝑦]
− 𝐸1𝐼𝑦1𝐾𝑅 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )󸀠 + 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠
− 𝜆󸀠𝑧 − 𝜆󸀠𝑦𝑅 ]󸀠 ,

𝐻9 = 𝐸1𝐼𝑦1𝐾𝑅 [𝐸1𝐴1 (𝑢󸀠1 − V1𝑅 )󸀠
+ 𝐸1𝐼𝑦1𝑅 (V󸀠󸀠1 + 𝑢󸀠1𝑅 )󸀠 − 𝜆󸀠𝑧 − 𝜆󸀠𝑦𝑅 ] ,

𝐻10 = 𝜆𝑧 + 𝜆𝑦𝑅 .
(A.1)

B. Component of 𝛾, 𝛾𝑞𝑖, and 𝛾𝑚𝑖 (𝑖 = 1∼5)
Consider

𝛾 = (𝐾𝐿2𝑅2 (𝑏2𝑖2𝜋2 + 𝐿2𝐸𝐼𝑇𝑆𝑦) (𝑏2 + 𝐸𝐼𝑥𝑆𝐴) + 𝑖2𝜋2 (𝑏2𝑖2𝜋2𝑅2𝐸𝐼𝑥 + 𝐿2𝐸𝐼𝑇 (𝑏2 + 𝐸𝐼𝑥 (𝑅2𝑆𝑦 + 𝑆𝐴)))) ,
𝛾𝑞1 = 𝐿4𝑅2 (𝑏2 (𝐿2 − 𝑖2𝜋2𝑅2)2 + 𝐿2 (𝑏2𝑖2𝐾𝜋2𝑅4 + 𝑖2𝜋2𝑅2𝐸𝐼𝑇 + 𝐿2𝐸𝐼𝑥) 𝑆𝐴)(𝐿2 − 𝑖2𝜋2𝑅2)2 ,
𝛾𝑞2 = 𝐿6𝑅4𝑆𝑦 (𝑏2𝐾𝐿4 + 𝑖2𝜋2𝑅2𝐸𝐼𝑇 (𝑖2𝜋2 + 𝐾𝐿2𝑆𝐴) + 𝐸𝐼𝑥 (𝑖2𝐿2𝜋2 + 𝐾𝐿4𝑆𝐴))(𝑖𝐿2𝜋 − 𝑖3𝜋3𝑅2)2 ,
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𝛾𝑞3 = −𝐿6𝑅3 (𝑖2𝜋2 (𝑏2𝐾𝑅2 + 𝐸𝐼𝑇 + 𝐸𝐼𝑥) 𝑆𝐴 + 𝑅2𝑆𝑦 (𝑖2𝜋2 (𝐸𝐼𝑇 + 𝐸𝐼𝑥) + 𝐾𝐿2 (𝑏2 + (𝐸𝐼𝑇 + 𝐸𝐼𝑥) 𝑆𝐴)))(𝐿2 − 𝑖2𝜋2𝑅2)2 ,
𝛾𝑞4 = 𝑏𝐿4𝑅2 (𝑖2𝜋2 (𝑏2𝐾𝑅2 + 𝐸𝐼𝑥) + 𝐸𝐼𝑇 (𝑖2𝜋2 + 𝐾𝐿2𝑅2𝑆𝑦))𝐿2 − 𝑖2𝜋2𝑅2 ,
𝛾𝑞5 = 𝑏𝐿4𝑅3 (𝑖2𝜋2 (𝐸𝐼𝑇 + 𝐸𝐼𝑥) + 𝐾𝐿2 (𝑏2 + 𝐸𝐼𝑥𝑆𝐴))(−𝐿2 + 𝑖2𝜋2𝑅2) ,
𝛾𝑚1 = −𝐿6𝑅3 (𝑖2𝜋2 (𝑏2𝐾𝑅2 + 𝐸𝐼𝑇 + 𝐸𝐼𝑥) 𝑆𝐴 + 𝑅2𝑆𝑦 (𝑖2𝜋2 (𝐸𝐼𝑇 + 𝐸𝐼𝑥) + 𝐾𝐿2 (𝑏2 + (𝐸𝐼𝑇 + 𝐸𝐼𝑥) 𝑆𝐴)))(𝐿2 − 𝑖2𝜋2𝑅2)2 ,
𝛾𝑚2 = 𝑖2𝐿4𝜋2𝑅2 (𝐿2𝐸𝐼𝑇 + 𝑅2 (𝑏2𝐾𝐿2 + 𝑖2𝜋2𝐸𝐼𝑥)) 𝑆𝐴(𝐿2 − 𝑖2𝜋2𝑅2)2 ,
𝛾𝑚3 = 𝐿4𝑅4𝑆𝑦 (𝐸𝐼𝑇 (𝑖2𝐿2𝜋2 + 𝐾𝐿4𝑆𝐴) + 𝑖2𝜋2𝑅2 (𝑏2𝐾𝐿2 + 𝐸𝐼𝑥 (𝑖2𝜋2 + 𝐾𝐿2𝑆𝐴)))(𝐿2 − 𝑖2𝜋2𝑅2)2 ,
𝛾𝑚4 = −𝑏𝐿2𝑅 (𝑖2𝜋2𝑅2 (𝑏2𝐾𝐿2 + 𝑖2𝜋2𝐸𝐼𝑥) + 𝐸𝐼𝑇 (𝑖2𝐿2𝜋2 + 𝐾𝐿4𝑅2𝑆𝑦))𝐿2 − 𝑖2𝜋2𝑅2 ,
𝛾𝑚5 = 𝑏𝑖2𝐿2𝜋2𝑅2 (𝐿2𝐸𝐼𝑇 + 𝑖2𝜋2𝑅2𝐸𝐼𝑥 + 𝐾𝐿2𝑅2 (𝑏2 + 𝐸𝐼𝑥𝑆𝐴))𝐿2 − 𝑖2𝜋2𝑅2 .
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