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A numerical study that uses detrended fluctuation analysis (DFA) algorithm of time series obtained from linear and nonlinear
dynamical systems is presented.TheDFA algorithmbehavior toward periodic and chaotic signals is investigated and the effect of the
time scale under analysis is discussed.The displayed results prove that theDFA algorithm response is invariant (stable performance)
to initial condition and chaotic system parameters. An initial idea of DFA algorithm implementation for fine spectrum sensing
(SS) is proposed under two-stage spectrum sensor approach with test statistics based on the scaling exponent value. The outcomes
demonstrate a promising new SS technique that can alleviate several imperfections such as noise power uncertainty and spatial
correlation between the adjacent antenna array elements.

1. Introduction

Detrended fluctuation analysis (DFA) is an effective numeri-
cal tool used to measure the persistency (or antipersistency)
of data series with nonstationarities. DFA characterizes their
complex behavior by identifying the long-range power law
correlations. The DFA algorithm has several advantages over
the conventional analysis methods such as power spectrum
and correlation analysis owing to that it avoids false detec-
tions originated from artifacts of spurious or not precise
measured observations from real systems. Besides, DFA is
widely used to detect and/or characterize if a time series is
random or not. DFA algorithm has been applied in different
areas, for example, weather, economy, biology, meteorology,
and climate [1, 2]. According to the new research trends,
the DFA algorithm is implemented to analyze the WEB [3],
to estimate synchrophasor measurements [4], to analyze oil
reservoirs [5], to study volcano seismicity [6], and to study
earthquakes [7].

Chaotic systems (CSs) are nonlinear deterministic sys-
tems that generate random and unpredictable time series
which have statistical properties similar to random processes
[8]. CSs generate time series with chaotic behavior that can
be observed in data from observations [9]. It is important to
study the effects of the DFA algorithm on the chaotic series
because many noisy data observations are extracted from
physical, biological, and social systems.These systems exhibit
scale-invariant features and contain hidden long-range power
law correlations that can be detected using DFA algorithm
and can provide interesting and useful information about the
structure and evolution of any dynamic system. There are
few articles that can be categorized in this research direction,
like in [10] where the authors studied and characterized time
series from a Chua System.

The DFA algorithm is investigated in many research
articles [11, 12] and applied to solve some problems in many
engineering areas. Furthermore, the DFA algorithm is com-
pared with other well-known and effective algorithms such
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as power spectral density analysis [13], correlation dimension
[14], and wavelet [15].

A very big set of tools have been developed to analyze the
deterministic and predictable signals such as periodic, tran-
sient, and stochastic signals. Chaotic signals are deterministic
signals with unpredictable related time series. In many cases,
chaotic signals appear like noise (deterministic but not pre-
dictable) and could be analyzed using conventional stochastic
tools. In [16], a numerical study of the DFA algorithm
response under data series from discrete chaotic systems is
presented. It is shown that the DFA algorithm detects, in low
scale intervals, the short range correlations in chaotic data
series that are very similar to noise.The last characteristic can
have important applications in telecommunication systems.
The moving DFA (MDFA) algorithm in [17] could detect
time-instants of abrupt changes in dynamic structures where
the analyzed chaotic system parameters are changed. The
MDFA performance is independent of the length of subseries
and has a perfect capability to resist the effects of noise.
Unfortunately, no direct applications were mentioned in [16,
17] for the presented work. Besides, there is no statistical
analysis about the robustness of the DFA algorithm under the
variation of the parameters and the initial conditions of the
chaotic systems.Themissed statistical analysis is presented in
this paper (the initial conditions of chaotic data series from
real systems are usually unknown).

An interesting analysis is presented by [18] in the field of
signal processing when the DFA algorithm is employed as a
denoising technique. The DFA algorithm in [18] is used to
select the band limited intrinsicmode functions (IMFs) of the
broken down noisy signal and to define the relevant modes in
order to construct the filtered signal.The proposedmethod is
valid only under the use of variational mode decomposition
(VMD) and for white Gaussian noise. In [19], the authors
proposed a metric based on DFA to define a robust threshold
that determines which oscillations (called IMFs) are noise
components or noise free signal components under empir-
ical mode decomposition (EMD). The presented results are
promising and significant around 0 dB range of signal-to-
noise ratio (SNR), limited SNR region, and for the white
Gaussian noise as in the case of [18]. The multifractal DFA
(MF-DFA) algorithm is proposed as a detection approach of
ionospheric irregularities for global navigation satellite sys-
tem (GNSS) receivers [20] (GNSS signal detection).TheMF-
DFAwas combined with complementary ensemble empirical
mode decomposition (CEEMD) to analyze nonlinear and
nonstationary signals (positive and negative white noises
are added to the data). This combination increases the
complexity of the detection technique and, in some cases,
leads to generate a different number of modes that contain
new components not related to the signal at the receiver input
(the inclusion of white noise with inappropriate amplitudes).

Since many physical signals are noisy and heterogeneous
and exhibit different types of nonstationarities which can
affect the correlation properties of these signals and based on
the previous review of the related literature, it is evident that
the DFA algorithm can be applied in different engineering
areas and helps to alleviate some specific problems.

In this paper, with the purpose to extend and observe the
DFA algorithm response to data from well-known chaotic
systems, the Lorenz, the Rossler, and multistable systems
are considered. The main properties of the DFA algorithm
that could be used to characterize nonlinear systems time
series are presented. The output of this analysis leads us
to propose the employment of the DFA algorithm in new
engineering area, namely, spectrum sensing in cognitive
radio (CR) systems.

It is evidently confirmed that the available licensed spec-
trum is not efficiently and fully utilized by the related wireless
technologies in time and spatial domains. Cognitive radio
(CR) introduces a futuristic concept that helps to dynamically
use the spectrum in an opportunistic manner. The spectrum
sensing (SS) in CR defines accurately the vacant frequency
bands (frequency holes) by detecting the existence of the
primary user (PU) signals in the spectrum of interest. Up
to this day, plenty of SS techniques and approaches were
presented under different initial practical conditions such as
low signal-to-noise ratio (SNR), spatially correlated multiple
antennas, and noise power uncertainty. In [21], a wide review
of SS algorithms and some other important topics in CR are
discussed.

Owing to its simplicity when no prior knowledge about
the PU signal is required, the energy detector (ED) is
commonly used as a coarse spectrum sensor [22]. The ED
suffers from performance degradation at low SNR with
noise variance uncertainty (SNR wall problem) and spatial
correlation of multiple antennas (between the antenna array
elements) [23, 24].

The two stages sensing architecture that combines two
detectors was proposed by the IEEE 802.22 working group
(standards). In this work, we consider two-stage SS scheme
for CR systems. The coarse (fast, several tens of micro
seconds) sensing stage is performed by the ED and the fine
sensing (several tens of milliseconds) stage is based on the
DFA algorithm. The topology of two stages SS is proposed
with the purpose to maximize the probability of detection
under practical imperfections like noise power uncertainty
and spatially correlated antenna array elements. The main
motivation of using the DFA algorithm for fine SS is that DFA
shareswith ED the sameproperty of no information about the
PU signal is needed and the SS can be effectively performed
based on the input data samples. The final decision about
the PU signal presence or absence is made by combining
the decisions of the two stages using “OR” rule (other types
of rules can be applied such as “And” or “Majority”). The
implementation of DFA algorithm for fine SS demonstrates
promising results and gives insight about the possibility of
using DFA in CR systems as a new signal detection scheme
and also for other applications in telecommunication and
sensor systems. All the presented numerical results in this
paper are generated using MATLAB.

The remainder of this paper is organized as follows.
Section 2 contains the DFA algorithm main steps. In Sec-
tion 3, the DFA is applied in periodic systems (sinusoidal
signals) under different parameter values. In Section 4,
various numerical experiments are performed for three
different chaotic systems, namely, Lorenz, Rossler, and the
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Step 1. Random walk calculation:
for 𝑖 = 1 : 𝑁 (1 ≤ 𝑖 ≤ 𝑁)
⟨𝑠⟩ = (1/𝑁)∑

𝑁

𝑖=1
𝑠(𝑖) (the mean of the data series);

𝑦(𝑖) = ∑
𝑖

𝑘=1
[𝑠(𝑘) − ⟨𝑠⟩];

end for
Step 2. Using the interval size 𝑛, 𝑦(𝑖) is divided to ⌊𝑁/𝑛⌋ intervals
Step 3. for 𝑗 = 1 : 𝑁/𝑛

The fitting process is performed using polynomial function of order 𝑙 ⇒ 𝑦
𝑙
(𝑖);

end for
Step 4. for 𝑗 = 1 : 𝑁/𝑛

for 𝑖 = 1 : 𝑛
𝑌
𝑙
(𝑖) = 𝑦(𝑖) − 𝑦

𝑙
(𝑖); (detrended fluctuation signal)

end for
end for

Step 5. Root mean square (rms) calculation:
for 𝑖 = 1 : 𝑁 (1 ≤ 𝑖 ≤ 𝑁)

𝐹
𝑙
(𝑛) = √

1

𝑁

𝑁

∑

𝑖=1

[𝑌
𝑙
(𝑖)]
2;

end for
Step 6. Finding the relation between the fluctuation and the scale:

for 𝑛 = 4 : 𝑁/4 (4 ≤ 𝑛 ≤ 𝑁/4)
repeat the steps from 1 to 5 (1∼5)

end for
The power law relation: 𝐹

𝑙
(𝑛) ∼ 𝑛

𝛼 where

𝛼 =

log
𝑝
(𝐹
𝑙
(𝑛))

log
𝑝
(𝑛)

Algorithm 1: The DFA algorithm steps.

multistable system. The DFA algorithm implementation for
fine spectrum sensing is presented in Section 5. Finally, the
conclusion remarks are given in Section 6.

2. DFA Main Steps

Define 𝑠(𝑖), the data series to be analyzed by DFA where 1 ≤
𝑖 ≤ 𝑁 and 𝑁 is the data series size. The DFA algorithm can
be applied using the following standard steps:

(i) Calculate the randomwalk of the data series 𝑠(𝑖) using

𝑦 (𝑖) =

𝑖

∑

𝑘=1

[𝑠 (𝑘) − ⟨𝑠⟩] , (1)

where ⟨𝑠⟩ is the mean of the data series 𝑠(𝑖) given by

⟨𝑠⟩ =
1

𝑁

𝑁

∑

𝑖=1

𝑠 (𝑖) . (2)

(ii) The series 𝑦(𝑖) is divided into ⌊𝑁/𝑛⌋ data intervals of
equal size 𝑛where the notation ⌊⋅⌋ represents the floor
function.

(iii) In each data interval, the data is fitted by using a
polynomial function of order 𝑙 to obtain 𝑦

𝑙
(𝑖) which

is called the local trend (order-𝑙 DFA). In previous
studies [25–27], the value 𝑙 = 1 is commonly used,
that is, the linear detrended fluctuation of the signal.
Nevertheless, any polynomial function of grade 𝑙 ̸= 1

could be used for the data fitting step.
(iv) The integrated signal 𝑦(𝑖) is detrended by subtracting

the local trend 𝑦
𝑙
(𝑖) in each data interval generating

the detrended fluctuation signal:

𝑌
𝑙 (𝑖) = 𝑦 (𝑖) − 𝑦𝑙 (𝑖) . (3)

(v) For an interval size 𝑛, the root mean square (rms) of
the detrended fluctuation signal is calculated:

𝐹
𝑙 (𝑛) =

√
1

𝑁

𝑁

∑

𝑖=1

[𝑌
𝑙 (𝑖)]
2
. (4)

(vi) In order to find the relation between the scaling
exponent and the data fluctuation, the previous steps
are repeated for different data interval sizes 4 ≤ 𝑛 ≤

𝑁/4. The power law relation

𝐹
𝑙 (𝑛) ∼ 𝑛

𝛼 (5)

indicates the scaling presence where 𝛼 is the scaling
or the correlation exponent. Algorithm 1 gives a brief
summary about the main DFA steps.
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Figure 1: (a)The sinusoidal signal amplitude as a function of the scale (for the cases: 𝑓 = 1 dashed-dotted line, 𝑓 = 8 dashed line, and 𝑓 = 16

continuous line), (b) DFA analysis for the sinusoidal signal (𝑓 = 1 points line, 𝑓 = 8 dashed line, and 𝑓 = 16 continuous line).

In this paper, the polynomial functions of grade 𝑙 = 1

are used. Thus, 𝐹
1
(𝑛) is referred to as 𝐹(𝑛). The correlation

properties of a signal are characterized based on the scaling
exponent 𝛼. For the linear case (𝑙 = 1), if 𝛼 = 0.5, then
the signal under analysis is uncorrelated (random process).
In the case when 𝛼 < 0.5, the signal is anticorrelated, and for
𝛼 > 0.5 the signal contains positive correlations. The scaling
exponent 𝛼 can be determined using (5) as follows:

𝛼 =

log
𝑝 (𝐹 (𝑛))

log
𝑝 (𝑛)

, (6)

where 𝑝 is a positive integer. The value of 𝛼 is defined from
the slope of the straight line that is adjusted from the points
(log
𝑝
(𝐹(𝑛)), log

𝑝
(𝑛)). For the presented numerical analysis in

this paper, the value 𝑝 = 2 is used.

3. Periodic (Sinusoidal) Signals

The DFA algorithm response to periodic signals by using
sinusoidal sequences is investigated.The periodic signal used
in this section is defined as:

𝑠 (𝑡) = 𝐴 sin (2𝜋𝑓𝑡 + 𝜑) , (7)

when the amplitude 𝐴 = 1, the frequency 𝑓 = {1, 8, 16},
and the phase 𝜑 = 0. Figure 1(a) shows the amplitude of
the sinusoidal signal as a function of the time scale, and
Figure 1(b) contains the respective 𝐹 fluctuations. The slope
of the graphs that correspond to the fluctuation of sinusoidal
signals with frequencies 𝑓 = 8 and 𝑓 = 16 approaches zero
at scale values equal to 212 and 213, respectively. These values
correspond to one period of their related sinusoidal signals.
If one cycle or period of the sinusoidal signal with the slow
frequency 𝑓 = 1 (period 𝑇

1
= 1) has 216 = 65536 samples

by cycle, then the period of the signal with 𝑓 = 16 is equal to
𝑇
16
= 2
16
/16 = 2

16
/2
4
= 2
12, and for the signal with 𝑓 = 8 we

have 𝑇
8
= 2
16
/8 = 2

16
/2
3
= 2
13. Thus, for sinusoidal signal,

the DFA algorithm gives a saturation value of the scaling
exponent 𝛼 = 0 which corresponds to a signal that oscillates
between two values. The dents positioned at scale values 211

and 212 correspond to the time at which the signal flows from
positive to negative values (see Figure 1(b)).

After analyzing the DFA algorithm for a periodic signal
with only one harmonic component, a numerical analysis of
the DFA response for signals with more harmonic compo-
nents is conducted. Figure 2(a) shows the compound signal
defined as𝐴

1
sin(2𝜋𝑓

2
𝑡)+𝐴
2
sin(2𝜋𝑓

16
𝑡) case at𝐴

1
= 𝐴
2
= 1,

𝑓
2
= 2, and 𝑓

16
= 16 (with periods 𝑇

2
= 1/2 and 𝑇

16
=

1/16, resp.) under sampling time 𝑡
𝑠
= 2
−12. Furthermore, the

respective DFA response is presented in Figure 2(b).
As shown in the previous case, the dents in Figure 2 are

positioned at (𝑇
16
/2)/𝑡
𝑠
= 2
12
/2
5
= 2
7 and (𝑇

2
/2)/𝑡
𝑠
=

2
12
/2
2

= 2
10 that are placed at the instants where each

sinusoidal signal crosses the horizontal axes towards the neg-
ative values. The case when the amplitudes of the sinusoidal
signals are not equal (𝐴

1
̸= 𝐴
2
) is presented in Figure 2(c)

when the component with the higher frequency 𝑓 = 16

has greater amplitude 𝐴
2

= 1 in comparison with the
amplitude of sinusoidal component with lower frequency. As
the amplitude 𝐴

1
becomes smaller, the DFA algorithm does

not detect the component 𝐴
1
sin(2𝜋𝑓

2
𝑡). It is inferred that

the fluctuation graphs 𝐹 calculated with the small𝐴
1
become

horizontal when the period of the component𝐴
2
sin(2𝜋𝑓

16
𝑡)

is completed; that is, at the scale value 𝑡−1
𝑠
/16 = 2

12
/2
4
= 2
8.

On the other hand, Figure 2(d) contains the DFA results for a
constant 𝐴

1
= 1 and for 𝐴

2
< 𝐴
1
. Analogous to the previous

results, theDFAalgorithm is not able to detect the component
𝐴
2
sin(2𝜋𝑓

16
𝑡). Besides, it is inferred that the deviation at the

scale value 27 vanishes as 𝐴
2
becomes smaller.

4. Chaotic Signals

In this section, we are interested in processing time series of
chaotic systems arising from differential equation that can be
presented using the following form:

𝑑𝑋

𝑑𝑡
= 𝐴𝑋 + 𝐺 (𝑋) , (8)

where 𝑋 = [𝑥, 𝑦, 𝑧] ∈ R𝑘 is the state variable (in our case
𝑘 = 3),𝐺(𝑋) is a functionwith domain and range space⊂ R3,



Mathematical Problems in Engineering 5

26 28 210 21224

Scale

−2

−1.5

−1

−0.5

0
0.5

1
1.5

2
A

m
pl

itu
de

(a)

26 28 210 21224

Scale

−4

0

4

8

F

(b)

−6

−4

−2

0

2

4

6

8

F

26 28 210 21224

Scale
(c)

−6

−4

−2

0

2

4

6

8

F

26 28 210 21224

Scale
(d)

Figure 2: (a) The compound sinusoidal signal amplitude as a function of the scale. (b, c, d) The DFA analysis for the cases: 𝐴
1
= 𝐴
2
= 1,

𝐴
1

̸= 𝐴
2
, and 𝐴

2
< 𝐴
1
, respectively.

and 𝐴 = [𝛼
𝑖𝑗
] ∈ R3 × 3 denotes a linear operator. Two main

cases are analyzed, namely,

(i) when 𝐺(⋅) is a nonlinear function;
(ii) when 𝐺(⋅) is a piecewise linear function.

The DFA algorithm numerical results are presented for time
series of differential systems (8) when the related initial
conditions are varied and for various parameter values (such
that their orbits conserve a chaotic regime).

4.1. Lorenz System. The Lorenz system is a very well-known
third-order chaotic system [28] and can be defined as follows:

𝐴 =
[
[

[

−𝜎 𝜎 0

𝜌 −1 0

0 0 −𝛽

]
]

]

,

𝐺 (𝑋) =
[
[

[

0

−𝑥𝑦

𝑦𝑧

]
]

]

,

(9)

where 𝑥, 𝑦, and 𝑧 make up the system state; 𝜎, 𝜌, and 𝛽 are
the system parameters. Figures 3(a), 3(b), and 3(c) show the
time series of the Lorenz system’s state variables 𝑥, 𝑦, and 𝑧,
respectively. To generate these time series, the fourth-order
Runge-Kutta method is used with a step of 0.01 (this step
size is used for all numerical experiments related to Lorenz

system) and main parameter values 𝜎 = 10.0, 𝜌 = 28.0, and
𝛽 = 2.66. Figure 3(d) presents the DFA response for these
time series. In this figure it is observed that the fluctuations
for 𝑥 and 𝑦 are very similar and that the general behavior
of the fluctuation has three states, two fixed states and a
transition between them:

(i) The first fixed fluctuation state for the scale interval
2
4.75

≤ scale < 2
7 where the values of the scaling

exponent are 1.57, 1.437, and 1.437 for the variables 𝑥,
𝑦, and 𝑧, respectively.

(ii) The secondfixed fluctuation state for the scale interval
2
7.5

≤ scale < 2
12 where the corresponding scaling

exponent values are approximately 0.75, 0.72, and 0.3
for 𝑥, 𝑦, and 𝑧, respectively.

(iii) The transition between the previous states.

It is well known that the chaotic systems are very sensitive to
initial conditions. In other words, regardless of the closeness
to the initial conditions, the chaotic systems orbits will flow
for different ways. To describe the response of the DFA
algorithm under different initial conditions, a set of time
series is considered with the same parameter values (𝜎, 𝜌, 𝛽)
and initial conditions 𝑋(0) = (𝑘

1
, 𝑘
2
, 10) where the initial

values 𝑘
1
and 𝑘

2
are taken in the intervals −25 ≤ 𝑘

1
≤ 25

and 5 ≤ 𝑘
2
≤ 40 with steps 1.0 (𝑘

1
, 𝑘
2
∈ Z). In Figures 4(a)

and 4(b) corresponding to DFA graphs from time series of
variables 𝑥 and𝑦, it can be seen that the areas covered by their
respective set of curves are very similar. To define the way
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Figure 3: Lorenz time series: (a) the variable 𝑥, (b) the variable 𝑦, (c) the variable 𝑧, and (d) the fluctuation graphs for 𝑥, 𝑦, 𝑧 (dots, crosses,
and dotted line with circles, resp.).
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standard deviation of the DFA graphs in (a) dotted line, (b) circles line, and (c) continuous line.
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of displaying a set of curves with respect to the average, the
standard deviation is calculated using the following formula:

𝑆
𝑓
(𝑗) = √

1

𝑚 − 1

𝑚

∑

𝑖=1

(𝐹𝑖 (𝑗) − ⟨𝐹𝑖 (𝑗)⟩)
2
, (10)

where 𝑚 is the total number of curves in the set (generated
by varying the system initial conditions or by varying the
system parameter values), 𝐹𝑖(𝑗) is the value of 𝐹 of the curve 𝑖
and the scale 𝑗, and ⟨𝐹𝑖(𝑗)⟩ = (1/𝑚)∑

𝑚

𝑖=1
𝐹
𝑖
(𝑗) (the average).

Figure 4(d) shows that from the scale axis of value 25 onward,
the standard deviation for 𝐹 curves from the times series 𝑥
and 𝑦 is identical. For not so large scale values, the graphs are
near to the average for time series in the case of all the three
variables. Approximately, starting from 2

9, the value of 𝑆
𝑓
(𝑗)

begins to grow for the three cases.
To illustrate the response of the DFA algorithm to the

parameters of the system presented by (3), the main parame-
ters are varied as follows:

6 ≤ 𝜎 ≤ 20 (in steps of 0.5),
23 ≤ 𝜌 ≤ 100 (in steps of 1.0),
0.8 ≤ 𝛽 ≤ 3.7 (in steps of 0.1).

In these parameters’ variation, the system stability evolves
to one of two equilibrium point attractors with two scrolls.
Figure 5 shows the DFA curves for time series when the three
parameters are varied. Figures 5(a), 5(b), and 5(c) present the
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Figure 6: The average of the differences between the DFA of time
series 𝑥(𝑡) and the DFA of time series 𝑦(𝑡) from the Lorenz system at
different parameters values: 𝜎 is varied (continuous line), 𝜌 is varied
(dashed line), and 𝛽 is varied (circles line).

curves for the three variation cases. Figure 5(d) shows the
standard deviation of the three cases where it is noticeable
that the forms of all curves are similar.

A comparison of DFA graphs under different parameter
values for times series of variable 𝑦 and time series of variable
𝑥 is shown in Figure 6. Thus, it contains the average of
the difference between detrended fluctuations of time series
𝑥 and detrended fluctuation of time series 𝑦 for the three
Lorenz main parameters.

The results for the time series of the variable 𝑧 are
presented in Figure 7. It is shown in Figure 7(a) that the
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Figure 7: The DFA of the variable 𝑧 (Lorenz system) at different parameter values; in (a) the dashed line and the dotted line correspond to
the DFA curves when the parameters 𝜌 and 𝛽 are varied, respectively; in (b), (c), and (d) the dotted line corresponds to the parameter 𝜎, the
dashed line with circles corresponds to the parameter 𝜌, and the dashed line with diamonds corresponds to the parameter 𝛽. The average
over the DFA graphs when all Lorenz parameters are varied is presented in (b). The standard deviation as a function of the scale and the
parameters value range are presented in (c) and (d), respectively.

DFA curves that correspond to variations of parameter 𝜌 are
above the DFA curves that correspond to the parameter 𝛽.
Furthermore, they have approximately similar shapes with
different vertical positions. Thus, when the parameter 𝜌 or 𝛽
varies, it causes a change in the vertical position of the DFA
curve. Figure 7(b) includes the average of each set of the DFA
curves determined when the parameter value is varied. The
average curves which correspond to every Lorenz parameters
begin to be closer when the scale value increases. Meanwhile

the standard deviations of the time series fluctuations trend
to be the same for the three parameters in large scales
(Figure 7(c)), and for larger parameter 𝛽 values, the standard
deviation tends to be bigger than the standard deviation
values from the other parameters (Figure 7(d)).

To find the relation between the DFA curves, the correla-
tion coefficient (𝑅) between each pair of DFA curves obtained
from time series of an arbitrary variable but at different
parameter is defined.The correlation between DFA curves 𝐹𝑖
and 𝐹𝑗 can be defined as

𝐶
𝐹
𝑖
𝐹
𝑗 =

𝑛∑
𝑘=𝑛

𝑘=1
(𝐹
𝑖
(𝑘) 𝐹
𝑗
(𝑘)) − (∑

𝑘=𝑛

𝑘=1
𝐹
𝑖
(𝑘)) (∑

𝑘=𝑛

𝑘=1
𝐹
𝑗
(𝑘))

√𝑛∑
𝑘=𝑛

𝑘=1
𝐹𝑖 (𝑘) − (∑

𝑘=𝑛

𝑘=1
𝐹𝑗 (𝑘))

2
√𝑛∑
𝑘=𝑛

𝑘=1
𝐹𝑗 (𝑘) − (∑

𝑘=𝑛

𝑘=1
𝐹𝑗 (𝑘))

2

, (11)

where 𝑛 is the number of data in the scale. The relationship
between 𝑖th curvewith the rest of other𝑚−1 curves generated
at different values of a specific parameter is defined as follows:

𝑅 =
1

𝑚 (𝑚 − 1)

𝑚

∑

𝑗=1

𝑚

∑

𝑖=1

𝐶
𝐹
𝑖
𝐹
𝑗 , for 𝑖 ̸= 𝑗. (12)

The correlation coefficient is calculated for DFA curves from
time series of the variables 𝑥 and 𝑧. For the variable 𝑥 the
results are 0.9976, 0.9910, and 0.9958 when the parameters
𝜎, 𝜌, and 𝛽 are varied, respectively. For the time series 𝑧
we have 0.9903, 0.9927, and 0.9907 corresponding to the
parameters 𝜎, 𝜌, and 𝛽 variations, respectively.The presented
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Figure 8: The time series of the Rossler system variables 𝑥 (a), 𝑦 (b), and 𝑧 (c), the DFA of the time series in (d) where the dashed line
corresponds to the variable 𝑥, the continuous line to variable 𝑦, and circles line to the variable 𝑧.

numerical results indicate that the DFA algorithm has a
constant response and changing the values of the parameter
does not affect the stability and the asymptotic behavior of the
system.

4.2. Rossler System. The Rossler system can be defined using
(8) with the following changes:

𝐴 =
[
[

[

0 −1 −1

1 𝜌 0

0 0 −𝛽

]
]

]

,

𝐺 (𝑋) =
[
[

[

0

0

𝑥𝑧 + 𝛾

]
]

]

,

(13)

where 𝜌, 𝛽, and 𝛾 are the system parameters. Figures 8(a),
8(b), and 8(c) show theRossler system time series for𝑥,𝑦, and
𝑧, respectively, with the parameters values 𝜌 = 0.2, 𝛽 = 5.0,
and 𝛾 = 0.2 at integration step ℎ = 0.1.

From the first sight to theDFA algorithm response toward
the chaotic time series fromRossler system, it can be seen that
the DFA curves of time series 𝑥 and 𝑦 are quite similar. On
the other hand, the dashed vertical line in Figure 8(d) presents
the separation between different behaviors in the time series
detected by the DFA algorithm. For scale values smaller than
2
7.25, the values of 𝐹 slopes are approximately 1.4, 1.5, and

0.92 for the time series 𝑥, 𝑦, and 𝑧, respectively. As a result,
at this time scale the DFA algorithm describes the time series
𝑥 and 𝑧 as persistent data and the time series from variable
𝑦 as a Brownian motion. At scale values greater than 28 the
values of the 𝐹 slopes are approximately 0.0 for the three
time series which leads to conclude that, for large scales, the
DFA algorithm characterizes the Rossler time series as a pure
antipersistent processes represented by an alternating values
sequence.

Figure 9 presents the study of theDFAalgorithm response
for Rossler time series initialized with the set −0.8 ≤ 𝑥(0) ≤

10 and −10.0 ≤ 𝑦(0) ≤ 8 at increments of 1 while 𝑧 variable
initial value is fixed to 𝑧(0) = 3.0. Figures 9(a), 9(b), and
9(c) contain the set of the DFA graphs under these initial
conditions for time series 𝑥, 𝑦, and 𝑧, respectively. As seen
in Figure 9, the DFA response for the time series of variable 𝑥
is similar to the DFA response for time series of variable𝑦.
Besides, their respective standard deviations from each set
of DFA curves are plotted in Figure 9(d). As expected, the
standard deviation of the DFA curves is bigger when the
scale value is bigger likewise. In spite of the DFA standard
deviation of the curves from the time series 𝑧 being bigger
in comparison with the standard deviation for DFA curves
from the time series 𝑥 and 𝑦, the standard deviation of the
time series 𝑥 tends to a small and constant value.

4.3. Multistable System. In the previous subsections, we
explore the DFA algorithm response to time series from
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Figure 9: The DFA of Rossler system time series under various conditions: (a) time series of the variable 𝑥, (b) time series of the variable 𝑦,
and (c) the time series of the variable 𝑧. The standard deviation of each set of curves is presented in (d) where the dotted line corresponds to
(a), the dashed line to (b), and continuous line to (c).

chaotic system under the case when 𝐺(⋅) is a nonlinear
function. In this section, the time series froma systemdefined
under the case when 𝐺(⋅) is a piecewise linear function;
namely, the multistable system is considered.Themultistable
system is defined as

𝐴 =
[
[

[

0 1 0

0 0 1

−𝛼
31

𝛼
32

−𝛼
33

]
]

]

, (14)

𝐺 (𝑋) =
[
[

[

0

0

𝑢 (𝑥)

]
]

]

, (15)

where 𝛼
31
, 𝛼
32
, and 𝛼

33
are system parameters, and 𝑢 : R →

R is the piecewise linear function:

𝑢 (𝑥) =

{{{{

{{{{

{

0.9, if 𝑥 ≥ 0.3

0, if − 0.3 < 𝑥 < 0.3

−0.9, if 𝑥 ≤ −0.3.

(16)

In [29], it is shown that based on the number of linear pieces
in the function𝑢(𝑥), the orbit of the system (14) and (15) could
flow with the same number of scrolls.

For the numerical integration made with multistable
oscillator, the form (16) is applied and in most cases, the

assigned values to the system (14) parameters are chosen to
generate orbit solutions with shapes of three scroll oscillators.
Figures 10(a), 10(b), and 10(c) present the time series of the
multistable oscillator corresponded to the variables 𝑥, 𝑦, and
𝑧 generated with a step size ℎ = 0.1 and parameter values
𝛼
31

= 1.5, 𝛼
32

= 1.0, and 𝛼
33

= 1.0 (ℎ = 0.1 is used
in each numerical integration given in this subsection). In
Figure 10(d), the DFA corresponding curves are presented
where one can see that the persistency of each time series
changes as a function of the scale. On the scale interval
[2
4
, 2
6
), the scaling exponents are 1.75, 1.64, and 1.54 for time

series 𝑥, 𝑦, and 𝑧, respectively; that is, the DFA algorithm
characterizes them as time series with long-range correlation.
Meanwhile on the scale interval (27, 212), each time series has
different characterization.The values of the scaling exponents
are 0.8772 (persistent series), 0.2087 (antipersistent), and
0.0144 (antipersistent series oscillating between two values).

Figure 11 shows the results for the DFA response when
the initial conditions (𝑥(0), 𝑦(0), 𝑧(0)) of the multistable
numerical integration are varied as −1.0 ≤ 𝑥(0) ≤ 1.0, −0.6 ≤
𝑦(0) ≤ 0.6, and a constant value for the initial condition
𝑧(0) = 1.0 with the same parameter values mentioned
above. The DFA curves for time series of the three variables
are plotted in the same figure (Figure 11). In the interval
[2
4
, 2
6
], the curves are almost overlapped; meanwhile in the

interval [26, 212] the set of curves corresponding to time series
variable 𝑥 are located in the upper position, DFA curves for
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Figure 10: The multistable system time series: (a) variable 𝑥, (b) variable 𝑦, and (c) variable 𝑧. (d) shows the DFA for the time series in (a)
with continuous line, in (b) with dashed line, and in (c) with dotted line.
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Figure 11: The DFA of the time series multistable system generated
at various initial conditions.

time series 𝑦 are in the middle position, and DFA curves
for time series 𝑧 are located in the below position. The error
average percentage coefficients𝐷 = (1/𝑚)∑

𝑚

𝑗=1
𝑆
2
(𝑗) for each

curves set are 2.94%, 0.58%, and 0.37% which correspond to
time series of variables𝑥,𝑦, and 𝑧, respectively. It is noticeable
that these percentages have very small values which indicate
that the forms of the curves are similar among them.

Figure 12 shows numerical examples of 𝐹 graphs from
the time series of the three variables of the multistable
oscillator when the parameter values are varied and the initial
conditions are fixed to (1.5, 1.0, 1.0). The parameter value
intervals are selected as a set of values so that the numerically

generated orbits with systems (14), (15), and (16) are strange
attractors. As in the previous oscillators time series analysis,
𝐹 graphs from the time series generated under various
parameter values have similar form. Figure 12(a) corresponds
to the case for 𝐹 graphs of time series 𝑥 generated when the
parameter 𝛼

31
is varied and the parameters 𝛼

32
and 𝛼

33
are

fixed to 1.0. It is easy to see that from the values of scale > 26,
the graphs begin to separate in two groups. Graphs located in
the lower positions are generated by varying the parameter
𝛼
31
in the range 1.0 < 𝛼

31
< 1.05 where the generated orbits

with these values are strange attractors with disk form like
the one shown in Figure 12(d) (generated with 𝛼

31
= 1.04).

Graphs located in the above positions are generated with the
values 1.05 < 𝛼

31
< 1.53. Figure 12(b) shows the fluctuation

graphs of time series 𝑦when the parameter 𝛼
32
value is varied

as 1.0 < 𝛼
32

< 1.41 and the other parameters are fixed to
𝛼
31

= 1.5 and 𝛼
33

= 1.0. Meanwhile Figure 12(c) shows
the fluctuation graphs for time series 𝑧 generated when the
parameter 𝛼

33
varies as 1.0 < 𝛼

33
< 1.47. Clearly, the DFA

curve sets of all figures are adjacent or spliced among them
and they change their slope approximately for scale > 2

7

values.
Furthermore, to describe the similitude and the closeness

among DFA curves, the percent relative standard deviation is
used and formulated as

𝑆rel =
𝜎
2
(𝐹
𝑖
(𝑝))

(1/𝑛𝑚)∑
𝑚

𝑖=1
∑
𝑛

𝑝=1
𝐹𝑖 (𝑝)

, (17)
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Figure 12: The DFA of the time series multistable system generated at different parameters values: (a) variable 𝛼
31
, (b) variable 𝛼

32
, and (c)

variable 𝛼
33
. (d) presents the multistable strange attractor which revolves around one fixed point.

Table 1: Relative standard deviation of the DFA curves calculated
with different parameter values.

Parameter Variable 𝑆rel (%)

𝛼
31

𝑥 0.103
𝑦 0.066
𝑧 0.022

𝛼
32

𝑥 2.31
𝑦 4.14
𝑧 7.04

𝛼
33

𝑥 3.76
𝑦 1.72
𝑧 0.64

where 𝑚 is the number of different values assigned to a
specific parameter, 𝑛 is the number of scales, and 𝜎

2 is
the variance. In Table 1, the relative standard deviations
of each set of DFA curves are presented where a set of
curves is obtained by analyzing the time series of the same
variable at different parameter values. As we can see in the
right column of Table 1 (𝑆rel (%)), the DFA curves are not
dispersed.

Amore complete analysis for the time series of the system
defined by (14), (15), and (16) is listed in Table 2 where

the average of scaling exponents and the relative standard
deviations as a function of the parameter value interval
(second column) and the scale interval (third column) are
presented. As we can see, the parameter 𝛼

31
has only two

parameter intervals. The interval [1.0, 1.04) corresponds to
multistable oscillator graphs with only one scroll like the
plot in Figure 12(d). Meanwhile, the interval [1.05, 1.53]
corresponds to triple scroll oscillators. As a consequence,
the scaling exponents are different from each other. Besides,
Table 2 shows that from the small scale ([2

4
, 2
6
]) to the

large scale ([27, 212]), each time series decreases its scaling
exponent value. With respect to the parameter 𝛼

31
in the

interval [1.0, 1.04], the scaling exponent average of the sets
of time series for variables 𝑥 and 𝑦 becomes zero at large
scales because their time series are oscillating signals with
amplitude that varies very slowly. For time series 𝑦, the
DFA algorithm characterizes the change from series with
long-range correlation (small scales) to antipersistent series
(large scales). For time series 𝑧 from triple scroll oscillator,
the DFA algorithm characterizes the change from persistent
series (small scales) to series oscillating between two values
(large scale). Finally, for the cases with 𝑆rel > 20%, this
value does not mean that the DFA curve slopes are greatly
expanded over the average. The real reason behind this case
is that the scaling exponent averages are very close to zero
(𝛼 → 0).
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Table 2: The scaling exponent average of the DFA curves and
their respective relative standard deviation for multistable system
time series generated with various parameter values. The behav-
ior column abbreviations: P: persistent; AP: antipersistent; AP2:
antipersistent oscillating between two values; LRC: long range
correlation. The symbol “+” in the case of LRC and P refers to the
set of the DFA curves contain time series that behaves as Brownian
motion.

Parameter Interval value Scale Variable 𝛼
𝑆rel
(%) Behavior

𝛼
31

(1.0, 1.04)

[24, 26]
𝑥 1.64 0.25 LRC
𝑦 1.64 0.20 LRC
𝑧 1.63 0.33 LRC

[27, 212]
𝑥 0.03 49.41 AP2
𝑦 0.00 4.7 AP2
𝑧 0.00 11.42 AP2

[1.05, 1.53]

[24, 26]
𝑥 1.69 1.20 LRC
𝑦 1.58 1.37 LRC
𝑧 1.49 3.23 P+

(27, 212)
𝑥 0.91 11.50 P
𝑦 0.21 12.88 AP
𝑧 0.01 25.57 AP2

𝛼
32

(1.0, 1.40]

[24, 26]
𝑥 1.63 3.26 LRC
𝑦 1.51 1.76 LRC+
𝑧 1.43 0.80 P

[27, 212]
𝑥 0.90 9.20 P
𝑦 0.22 8.05 AP
𝑧 0.01 29.5 AP2

𝛼
33

[1.0, 1.47]

[24, 26]
𝑥 1.70 1.20 LRC
𝑦 1.58 1.43 LRC
𝑧 1.49 3.39 P+

[27, 212]
𝑥 0.89 10.94 AP
𝑦 0.21 11.33 AP
𝑧 0.01 24.00 AP2

5. DFA Algorithm for Fine Spectrum Sensing

As mentioned before, the DFA algorithm is used for fine
SS (PU signal detection) in two-stage spectrum sensor. This
idea is proposed based on the DFA algorithm behavior
analysis presented in Sections 3 and 4. The DFA algorithm
performance and response are stable and invariant under
different initial conditions and for different chaotic system
parameters. The last important property (DFA response
robustness against the changes of the initial conditions and
parameters) made the use and implementation of the DFA
algorithm for fine SS a very practical solution under various
types of imperfections that change the initial conditions of
the SS process such as spatial correlation between the antenna
array elements and noise variance uncertainty. Additionally,
one of the main conclusions from the presented analysis in
Sections 3 and 4 that the DFA algorithm stability, reliability,
and immunity toward the fluctuations in the initial condi-
tions is maintained at the expense of relatively large number

of samples. As a result, the DFA is implemented for fine
SS and not for coarse SS. A brief summary about the last
discussion can be found in Figure 13.

These two sensing stages can be performed in serial or
parallel modes. For serial mode, if the ED decides that there
is PU signal in a certain radio channel, the fine sensing
stage is eliminated or aborted. Otherwise, the fine sensing
stage is performed on the same radio channel for the final
decision. In the case of parallel mode, the two sensing
stages are performed in parallel and the final decision about
the PU signal presence or absence is made by combining
the decisions of the two stages. The block diagram of the
proposed spectrum sensor is shown in Figure 14 where the
ED is implemented for the coarse or fast SS and the fine SS is
performed by the DFA.

5.1. System Model. In the bandwidth of the spectrum to be
sensed there are number of radio channels equal to 𝑁ch and
all these channels are serially sensed.The proposed spectrum
sensor is equipped by antenna array with the number of
elements equal to𝑀 and each antenna array element receives
𝑁 samples during the sensing time. The ED accumulates the
energy of𝑀𝑁 samples and compares it to the ED threshold
(THRED) to decide the PU signal presence or absence. The
times required for coarse sensing 𝑡

𝑠1
and for fine sensing 𝑡

𝑠2

per each channel are given by

𝑡
𝑠1
=
𝑁
𝑠1

2𝑊
,

𝑡
𝑠2
=
𝑁
𝑠2

2𝑊
,

(18)

where 𝑁
𝑠1
and 𝑁

𝑠2
are the numbers of samples needed for

coarse and fine sensing, respectively, and 𝑊 is the channel
bandwidth. Since𝑁

𝑠2
> 𝑁
𝑠1
then it is axiomatic that 𝑡

𝑠2
> 𝑡
𝑠1
.

In the case if the two sensing stages are performed in parallel
mode, the total sensing time for all radio channels is defined
as

𝑇total = 𝑁ch
𝑁
𝑠1

2𝑊
+𝑁fs

𝑁
𝑠2

2𝑊
, (19)

where𝑁ch is the total number of radio channels to be sensed
and 𝑁fs is the mean number of the reported radio channels
for the fine sensing stage. The PU signal detection problem
(spectrum sensing) can be presented using the conventional
binary hypothesis test:

𝐻
0
󳨐⇒ 𝑥
𝑖 [𝑘] = 𝑛𝑖 [𝑘] ,

𝑖 = 1, . . . ,𝑀; 𝑘 = 0, . . . , 𝑁 − 1,

𝐻
1
󳨐⇒ 𝑥
𝑖 [𝑘] = ℎ𝑖 [𝑘] 𝑠𝑖 [𝑘] + 𝑛𝑖 [𝑘] ,

𝑖 = 1, . . . ,𝑀; 𝑘 = 0, . . . , 𝑁 − 1,

(20)

where 𝑥
𝑖
[𝑘] is the discrete-time received signal at the input;

𝑛
𝑖
[𝑘] is the discrete-time colored noise (filtered noise sam-

ples) with zero mean and variance 𝜎
2

𝑛
, that is, 𝑛

𝑖
[𝑘] ∼

CN(0, 𝜎
2

𝑛
); ℎ
𝑖
[𝑘] is the discrete-time channel coefficients
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Case study Results Application

DFA algorithm 
behavior and 
response for 
periodic signals 
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chaotic systems 
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conditions and 
parameters

The DFA algorithm 
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reliable, stable, and 
invariant 
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behavior)
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robustness is 
achieved at the 
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large number of 
samples

The DFA algorithm is 
more suitable for fine 
spectrum sensing not for 
coarse spectrum sensing
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be used for spectrum 
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detection)

Figure 13: A brief summary about the DFA algorithm studying results and the related application.
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Figure 14: Two-stage spectrum sensing using ED and DFA.

obeying the circularly symmetric complex Gaussian distri-
bution with zero mean and variance equal to 𝜎

2

ℎ
, that is,

ℎ
𝑖
[𝑘] ∼ CN(0, 𝜎

2

ℎ
); and 𝑠

𝑖
[𝑘] is the discrete-time PU signal.

The channel coefficients ℎ
𝑖
[𝑘] are spatially correlated between

each other. The coefficient of spatial correlation 𝐶sc between
the adjacent antenna array elements (0 ≤ 𝐶sc ≤ 1) can be
given as [30]

𝐶sc = exp[−23Λ2 (𝑑
𝜆
)

2

] , (21)

where 𝜆 is the wavelength; 𝑑 is the distance between two
adjacent antennas; and Λ is defined as

Λ =
√𝜃2 + 2 cos (𝜃) − 2

2𝜃
, (22)

where 𝜃 is the angular spread.The components of the𝑀×𝑀

antenna array element correlation matrix C can be presented
in the following form:

C
𝑖𝑗
= {𝐶sc

𝑖−𝑗
} , 𝑖 ≤ 𝑗, 𝑖, 𝑗 = 1, . . . ,𝑀. (23)

The 𝑁𝑀 × 1 signal vector X that collects all the observed
signal samples during the sensing time can be defined using
the following form:

X = [x
1 [0] , . . . , x𝑀 [0] , . . . , x1 [𝑁 − 1] , . . . ,

x
𝑀 [𝑁 − 1]]

𝑇
,

(24)

where 𝑇 denotes a transpose. The data distribution of the
matrix X can be expressed as

X ∼
{

{

{

CN (0, 𝜎
2

𝑛
I) 󳨐⇒ 𝐻

0
;

CN (0, 𝐸
𝑠
𝜎
2

ℎ
I + 𝜎2
𝑛
I) 󳨐⇒ 𝐻

1
,

(25)

where 𝐸
𝑠
is the average energy of the PU signal and I is the

𝑀𝑁×𝑀𝑁 identity matrix.

5.2. Fine Spectrum Sensing Using DFA. In general, the radio
channel with low power has a high probability to be unused
by the PU.The fine sensing stage in this scheme is performed
owing to the fact that the ED threshold definition is suscepti-
ble to noise power variations and as a consequence, its detec-
tion performance. The DFA algorithm behaves differently if
the input data, in this case X, contains noise samples only
(the hypothesis 𝐻

0
) or contains samples of PU signal plus

noise (the hypothesis𝐻
1
).The test statistics based on theDFA

algorithm is highly attached to the output parameter or the
scaling exponent 𝛼 given by (6). Thus, the DFA test statistics
𝑇DFA(X) can be defined using the following form:

𝑇DFA (X) =
{

{

{

𝛼 = 0.5 󳨐⇒ 𝐻
0

𝛼 ̸= 0.5 󳨐⇒ 𝐻
1
.

(26)

Under the hypothesis 𝐻
0
, the value of the scaling exponent

𝛼 of the DFA algorithm indicates that the input data corre-
sponds to random or stochastic process like colored noise
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Table 3:The final decision making rule of two stages SS using “OR”
rule.

ED DFA Final
𝐻
0

𝐻
1

𝐻
1

𝐻
1

𝐻
0

𝐻
1

𝐻
1

𝐻
1

𝐻
1

𝐻
0

𝐻
0

𝐻
0

samples. Under the alternative hypothesis (𝐻
1
), the scaling

exponent 𝛼 value indicates that input data corresponds to
correlated data samples (not only noise) which leads us to
conclude that it contains samples of signal plus noise. These
results are obtained since the modulated signals have cyclo-
stationary features when the mean and the autocorrelation
function exhibit periodicity.

The final decision about the PU signal presence or
absence is obtained by combining the decisions of the two
stages using the decision making rule. For example, if the
“OR” rule is used, Table 3 presents the two sensing stages final
decision making results.

In the case of two-stage spectrum sensing scheme, the
probability of false alarm 𝑃FA and the probability of detection
𝑃
𝐷
are definedwith the respect to the two stages test statistics.

Under the hypothesis 𝐻
0
, if 𝑇ED(X) > THRED or if 𝛼 ̸=

0.5 when 𝑇ED(X) ≤ THRED, the false alarm occurs, where
𝑇ED(X) is the ED test statistics given by

𝑇ED (X) =
𝑁−1

∑

𝑘=0

𝑀

∑

𝑖=1

𝑥
2

𝑖
[𝑘]

𝐻1

≷

𝐻0

THRED. (27)

The correct PU detection occurs under the hypothesis𝐻
1
, if

𝑇ED(X) > THRED or if 𝛼 ̸= 0.5 given that 𝑇ED ≤ THRED.
Thus, the overall value can be defined as

𝑃FA = 𝑃
ED
FA + (1 − 𝑃

ED
FA ) 𝑃

DFA
FA ,

𝑃
𝐷
= 𝑃

ED
𝐷

+ (1 − 𝑃
ED
𝐷
) 𝑃

DFA
𝐷

,

(28)

where 𝑃ED
FA and 𝑃

ED
𝐷

are the probability of false alarm and
the probability of detection of the first sensing stage using
ED, respectively, and 𝑃DFA

FA and 𝑃DFA
𝐷

are the probabilities of
false alarm and detection of the second stage using DFA,
respectively.

5.3. Fine Spectrum under Noise Power Uncertainty. The
second type of imperfections after the spatial correlation
between the adjacent antenna array elements is the noise
power or variance uncertainty.The sensitivity to noise power
uncertainty (the fluctuations on the noise variance value as
a function of time) is one of the most common problems
among the spectrum sensors such as the energy detector
(ED), matched filter (MF), and even the cyclostationary
detector under the low signal-to-noise ratio (SNR) [31, 32].
The negative effect of noise power uncertainty is quantified
by the SNR wall location. If the SNR value is less than the
SNR wall, the PU signal detector (spectrum sensor) will fail
to achieve the desired detection performance and maintain

the immunity against power noise uncertainty regardless of
the sensing time length. This problem negatively affects the
receiver operation characteristic (ROC).

The SNR wall phenomenon can be presented using the
sampling complexity of the spectrum sensor that is defined
as the number of samples 𝑁 as a function of the SNR, the
probability of false alarm 𝑃FA, and probability of miss 𝑃miss:

𝑁 = 𝑓 (SNR, 𝑃FA, 𝑃miss) . (29)

In general, any spectrum sensor (or the PU signal detector)
must minimize the number of samples𝑁 required to achieve
the desired detection performance.The lowest SNR satisfying
the probability of false alarm 𝑃FA and the probability of miss
𝑃miss constraints is called the detector sensitivity.

Under noise power uncertainty initial conditions, the
actual noise power or variance 𝜎2 at the spectrum sensor
input can be determined only within the limits of a definite
range [31]:

𝜎
2
∈ [

1

𝜌
𝜎
2

𝑛
, 𝜌𝜎
2

𝑛
] , (30)

where 𝜌 is the uncertainty parameter defined as

𝜌 = 10
0.1𝜀

, (31)

where 𝜀 is the parameter used to define the amount of
nonprobabilistic uncertainty in the noise power. Clearly,
small values of 𝜀 (least uncertainty case) are preferred. As an
example, the sampling complexity of the ED can be defined
using the uncertainty parameter 𝜌 as follows:

𝑁ED =

[𝜌𝑄
−1
(𝑃

ED
FA ) − 𝜌

−1
𝑄
−1
(1 − 𝑃

ED
miss)]
2

𝑀[SNR − (𝜌 − 𝜌−1)]2
, (32)

where

𝑄 (𝑥) =
1

√2𝜋
∫

∞

𝑥

exp(−1
2
𝑡
2
)𝑑𝑡 (33)

is the Gaussian 𝑄-function. From (32), we can define the ED
SNR wall in the following form [31]:

SNRED
wall =

𝜌
2
− 1

𝜌
. (34)

With the new initial conditions when there is noise power
uncertainty, the data distribution of the matrix X given
by (25) should be modified to consider the uncertainty
parameter 𝜌 (the actual noise power 𝜎2):

X

∼

{{{

{{{

{

CN (0, 𝜎
2I) , 𝜎

2
∈ [

1

𝜌
𝜎
2

𝑛
, 𝜌𝜎
2

𝑛
] 󳨐⇒ 𝐻

0
;

CN (0, 𝐸
𝑠
𝜎
2

ℎ
I + 𝜎2I) , 𝜎

2
∈ [

1

𝜌
𝜎
2

𝑛
, 𝜌𝜎
2

𝑛
] 󳨐⇒ 𝐻

1
.

(35)

As a result, the sample complexity tends to approach infinity
as the SNR decreases to approach the SNR wall:

lim
SNR→SNRwall

𝑓 (SNR, 𝑃FA, 𝑃miss, 𝜌) 󳨀→ ∞. (36)
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Figure 15: The DFA algorithm behavior under two cases: (a) the data matrix X contains samples from noise only; (b) the data matrix X
contains samples from signal plus noise under spatial correlation between antenna array elements.

Table 4: The main simulation parameters.

Parameter Value
Number of antenna array elements 𝑀 = 6

Signal-to-noise ratio SNR = −10 [dB]
The angular spread 𝜃 = 0.5

∘

Distance between adjacent antenna elements 𝑑 = 𝜆/8

Coefficient of spatial correlation 𝐶sc = 1

Nonprobabilistic uncertainty parameter 𝜀 = 1 [dB]
Channel parameter 𝜎

2

ℎ
= 1

The scale (number of samples𝑁) Variable

It is important to mention that the SNR at the input of the
spectrum sensor is defined using the following form:

SNR =
𝐸
𝑠
𝜎
2

ℎ

𝜎2
. (37)

As seen from (30) and (37), the noise power uncertainty leads
to SNR value uncertainty at the spectrum sensor input.

5.4. Numerical Results. The main objective of this section
is to show how the DFA algorithm behaves differently in
accordance with the input data, in this case the data matrix
X of the observed received signal samples at the spectrum
sensor input. In other words, the DFA response and the
value of the scaling exponent (test statistics) differ with a
considerable way when X contains data samples from noise
only or data samples fromPUsignal plus noise (see Figure 15).
This fact about the DFA algorithm behavior is illustrated in
Figure 15 where in Figure 15(a) the data matrix (DFA input)
is formed from noise samples only and in Figure 15(b) the
data matrix is formed from PU signal plus noise samples.The
simulation results are obtained using the parameters given in
Table 4. Note that in this section, the value of scale is equal
to the number of samples𝑁. The DFA performance as a fine
spectrum sensor is shown by following the same evaluation
approach presented in Sections 3 and 4.

As shown in Figure 15, the DFA algorithm responses and
behaves differently in accordance with the input data matrix

X contents in the presented two cases, namely, noise only (a)
and PU signal plus noise (b). As a direct observation about
the test statistics presented in (26), the value of the scaling
exponent 𝛼 in the case of noise is 0.5 ((a), 𝛼 = 0.5) while
in the case of noise plus signal this value is not equal to 0.5
((b), 𝛼 ̸= 0.5). It is important to mention that the value of the
scaling exponent 𝛼 changes in Figure 15(b) according to the
scale range. For instance, when the Scale ≤ 2

6 the scaling
exponent 𝛼 = 0.3 and when the Scale > 2

6 the scaling
exponent 𝛼 = 1.0.

Under two types of imperfections, namely, spatially cor-
related antenna array elements and noise power uncertainty,
the DFA response is illustrated in Figure 16 when the value of
the 𝜀 is equal to 1 dB (this parameter value is chosen to roughly
give a big noise power uncertainly when in the case of ED we
have that SNRED

wall = −3 dB).
From Figure 16, it is confirmed that the DFA algorithm

performance differs according to the input data type of
the matrix X. For instance, in the case of noise only as
shown in Figure 16(a), the value of the scaling exponent
𝛼 is equal to 0.5 (𝛼 = 0.5) even under uncertainty case.
The attention should be paid to the case of PU signal plus
noise presented in Figure 16(b) at two types of imperfections,
namely, spatially correlated antenna array elements and noise
power uncertainty when the scaling exponent has two values
(𝛼 ̸= 0.5) according to the number of samples (the scale
range). Approximately, when the Scale ≤ 2

9 the scaling
exponent 𝛼 = 0.24 and when the Scale > 2

9 the scaling
exponent 𝛼 = 2.0. Thus, the DFA algorithm is still able to
distinguish between the basic binary hypothesis cases (𝐻

0

and 𝐻
1
) even under the combined extreme conditions of

spatial correlation and noise uncertainty. Comparing the last
two cases presented in Figure 15 (spatial correlation case) and
Figure 16 (combined spatial correlation and noise uncertainty
case), it is clear that the scale and the scaling exponent have
different limits and values.

A complete analysis for theDFAemployment in fine spec-
trum sensing (full theoretical analysis with detailed perfor-
mance comparison with other spectrum sensing algorithms)
requires a special dedicated work that can be considered as a
future work for the authors.
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Figure 16: The DFA algorithm behavior under two cases: (a) the data matrix X contains samples from noise only; (b) the data matrix X
contains samples from signal plus noise under two types of imperfections (spatial correlation and noise uncertainty).

6. Conclusions

In this work, a numerical study about the DFA algorithm
response and behavior toward the periodical and chaotic
signals is discussed. According to the presented results, each
signal can have more than one characterization that depends
on the time scale under analysis. For example, in the case of
short signal intervals (small scales), the DFA algorithm char-
acterizes the signals as periodic or persistent. For periodical
signals like sinusoidal, the slope of the detrended fluctuation
graphs changes its value to zero when the scale reaches the
first period of the signal. For chaotic signals (not periodic),
the DFA characterizes them as periodic at small time scales.

The presented results have evidently demonstrated that
the DFA response is invariant and robust to initial condition
and chaotic system parameters. For several numerical proofs,
the results were very similar when the initial conditions of
the orbit are varied and the system parameters are changed.
As a result, it is possible to characterize the persistency
(or antipersistency) of time series from real systems (like
physical systems, social system, biological, etc.) without
the need of performing and repeating large number of
experiments.

A primitive proposal about using the DFA algorithm for
fine spectrum sensing along with ED (coarse stage) in two-
stage topology is presented. The DFA does not require any
prior knowledge of the PU signal parameters and relies only
on the data matrix of the sampled received signal. The test
statistics of the DFA fine spectrum sensing is simple and
based on the main algorithm output, namely, the scaling
exponent. The numerical outcomes show promising results
about futuristic use of DFA algorithm for spectrum sensing
in CR systems under practical imperfections like noise
power uncertainty and spatially correlated antenna array
elements.
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detrended fluctuation analysis of multifractal structures,” Phys-
ical Review E, vol. 74, no. 1, Article ID 016103, 37 pages, 2006.

[16] M. Sozanski and J. Zebrowki, “On the application of DFA to the
analysis of unimodal maps,”Acta Physica Polonica B, vol. 36, no.
5, pp. 1803–1822, 2005.

[17] W. P. He, G. L. Feng, Q. Wu, S. Q. Wan, and J. F. Chou, “A new
method for abrupt change detection in dynamic structures,”
Nonlinear Processes in Geophysics, vol. 15, no. 4, pp. 601–606,
2008.

[18] Y. Liu, G. Yang, M. Li, andH. Yin, “Variational mode decompo-
sition denoising combined the detrended fluctuation analysis,”
Signal Processing, vol. 125, pp. 349–364, 2016.

[19] A. Mert and A. Akan, “Detrended fluctuation thresholding for
empirical mode decomposition based denoising,”Digital Signal
Processing: A Review Journal, vol. 32, pp. 48–56, 2014.

[20] S. Miriyala, P. R. Koppireddi, and S. R. Chanamallu, “Robust
detection of ionospheric scintillations using MF-DFA tech-
nique,” Earth, Planets and Space, vol. 67, article 98, 2015.

[21] S. K. Sharma, T. E. Bogale, S. Chatzinotas, B. Ottersten, L. B.
Le, and X. Wang, “Cognitive radio techniques under practical
imperfections: a survey,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, pp. 1858–1884, 2015.

[22] J. Song, Z. Feng, P. Zhang, and Z. Liu, “Spectrum sensing
in cognitive radios based on enhanced energy detector,” IET
Communications, vol. 6, no. 8, pp. 805–809, 2012.

[23] A. Mariani, A. Giorgetti, andM. Chiani, “Effects of noise power
estimation on energy detection for cognitive radio applications,”
IEEE Transactions on Communications, vol. 59, no. 12, pp. 3410–
3420, 2011.

[24] M. S. Shbat and V. Tuzlukov, “Spectrum sensing under cor-
related antenna array using generalized detector in cognitive
radio systems,” International Journal of Antennas and Propaga-
tion, vol. 2013, Article ID 853746, 8 pages, 2013.

[25] Z. Chen, P. C. Ivanov, K. Hu, and H. E. Stanley, “Effect of
nonstationarities on detrended fluctuation analysis,” Physical
Review E, vol. 65, no. 4, Article ID 041107, 2002.

[26] J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A. Rego, S.
Havlin, and A. Bunde, “Detecting long-range correlations with
detrended fluctuation analysis,” Physica A: Statistical Mechanics
and Its Applications, vol. 295, no. 3-4, pp. 441–454, 2001.

[27] L. Xu, P. C. Ivanov, K. Hu, Z. Chen, A. Carbone, and H.
E. Stanley, “Quantifying signals with power-law correlations:
a comparative study of detrended fluctuation analysis and
detrended moving average techniques,” Physical Review E, vol.
71, no. 5, Article ID 051101, 2005.

[28] E. N. Lorenz, “Deterministic non periodic flow,” Journal of the
Atmospheric Sciences, vol. 20, pp. 130–141, 1963.

[29] E. Jimenez-Lopez, J. S. Gonzalez Salas, L. J. Ontanon-Garcia,
E. Campos-Canton, and A. N. Pisarchik, “Generalized multi-
stable structure via chaotic synchronization and preservation
of scrolls,” Journal of the Franklin Institute, vol. 350, no. 10, pp.
2853–2866, 2013.

[30] G. D. Durgin and T. S. Rappaport, “Effects of multipath angular
spread on the spatial cross-correlation of received voltage
envelopes,” in Proceedings of the IEEE VTS 49th Vehicular
Technology Conference (VTC ’99), pp. 996–1000, Houston, Tex,
USA, September 1999.

[31] R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE
Journal on Selected Topics in Signal Processing, vol. 2, no. 1, pp.
4–17, 2008.

[32] M. Shbat and V. Tuzlukov, “SNR wall phenomenon alleviation
using generalized detector for spectrum sensing in cognitive
radio networks,” Sensors, vol. 5, no. 7, pp. 16105–16135, 2015.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


