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The problem of ℓ
1
-induced state-feedback controller design is investigated for positive Takagi-Sugeno (T-S) fuzzy systems with the

use of linear Lyapunov function. First, a novel performance characterization is established to guarantee the asymptotic stability of
the closed-loop system with ℓ

1
-induced performance. Then, the sufficient conditions are presented to design the required fuzzy

controllers and iterative convex optimization approaches are developed to solve the conditions. Finally, one example is presented
to show the effectiveness of the derived theoretical results.

1. Introduction

In the real world, positive systems exist in many branches
of science and technology such as industrial engineering
and ecology [1, 2]. In many applications, the state variables
of positive systems are used to denote the concentrations
of material, thus taking nonnegative values. Many previous
approaches used for general systems are no longer appli-
cable to positive systems because of the special structures
of positive systems. Positive systems are special systems
and they are defined on cones instead of linear spaces.
Therefore, some new problems of positive systems appear
and they have been studied extensively [3–9]. For example,
controllability and reachability for positive systems have been
studied in [10, 11]. The design of state-feedback controllers
guaranteeing the closed-loop system to be asymptotically
stable has been studied by the linear programming approach
in [12]. The positive state-space representation for a given
transfer function has been proposed in [13]. For nonnegative
and time-delay compartmental dynamic systems, stability
has been thoroughly studied in [14–17]. Research on 2D
positive systems has appeared in [18]. Moreover, the problem
of controller design for positive systems has been investigated
by the linear matrix inequality (LMI) approach in [19].

In addition, it is noted that existing research has been
conducted mainly for positive linear systems and there have

been few results on positive nonlinear systems. The reason
is that nonlinearity is difficult to tackle and many methods
derived for positive linear systems cannot be directly used
for positive nonlinear systems. It is well known that T-S
fuzzy model can approximate a nonlinear system arbitrarily
well over a compact domain. Such a modeling approach
provides an efficient method to tackle some problems for
nonlinear systems [20–22]. With the modeling approach,
some research methods applicable to linear systems can be
used for nonlinear systems. Consequently, many important
results on fuzzy systems have appeared; for example, a novel
approach was proposed in [23] for stability analysis and
stabilization of discrete-time T-S fuzzy delay systems. The
problem of stability analysis and stabilization for 2D discrete
fuzzy systems was investigated in [24]. As a result of the
novel idea of delay partitioning technique, the proposed
stability conditions in [23] were much less conservative than
most of the existing results. A fuzzy filter design approach
was established for fuzzy stochastic systems in [25], and the
proposed approach can be used for fault detection problem
due to its strong robustness. In recent years, many researchers
have focused their interest on positive T-S fuzzy systems
[26]. In detail, sufficient conditions of asymptotic stability
and stabilization for discrete-time positive T-S systems were
proposed in [26]. In [27], the problem of stability and
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constrained control was addressed for discrete-time positive
T-S fuzzy systems with time-varying delays.

Recently, in comparison with the existing results derived
with the quadratic Lyapunov function, a novel approach
is derived for the synthesis problem of positive systems
by using a linear Lyapunov function. The reason why we
use the novel approach is that the variables of positive
systems are nonnegative and therefore a linear Lyapunov
function becomes valid. Many researchers have proposed
some novel results based on the linear Lyapunov function
[28–32]. Compared with quadratic Lyapunov function based
results, the new results in terms of linear programming are
more amenable to analysis and computation. Moreover, the
applications of the so-called linear Lyapunov functions in the
analysis of positive linear systems naturally lead to a variety
of results based on a linear setting, which stimulates the use
of 𝐿
1
-gain as a performance index for positive linear systems.

It is noted that some frequently used costs such as𝐻
∞

norm
are based on the 𝐿

2
signal space and these costs are not very

natural to describe some of the features of practical physical
systems. By contrast, 1-norm gives the sum of the values of
the components and it can provide amore natural description
for positive systems. It is more appropriate, for example, if
the values denote the number of animals in a species or the
amount ofmaterial. Based on the above discussion, it is noted
that the synthesis problems for positive T-S fuzzy systems
have not been fully investigated, especially with ℓ

1
-induced

performance and linear Lyapunov functions. This motivates
our study.

In this paper, we investigate the state-feedback controller
design problem for positive T-S fuzzy systems with the use
of linear Lyapunov function. The main contributions of the
paper are as follows: (1) an ℓ

1
-induced performance index is

explicitly presented for positive fuzzy systems and analytically
characterized under a linear Lyapunov function framework;
(2) the desired state-feedback controllers are derived with
which the asymptotic stability of the closed-loop system is
guaranteed and the proposed performance is satisfied; (3)
iterative convex optimization approach is developed to solve
the conditions.

The rest of this paper is organized as follows. In Sec-
tion 2, some important preliminaries about positive T-S
fuzzy systems are introduced. In Section 3, the state-feedback
controller is designed for positive T-S fuzzy systems. One
example is provided in Section 4 to show the applicability
of the theoretical results. The results are finally concluded in
Section 5.

2. Preliminaries

In this section, we introduce notations and several results
concerning positive T-S fuzzy systems.

Let R denote the set of real numbers; R𝑛 is the set of 𝑛-
column real vectors;R𝑛×𝑚 denotes the set of all real matrices
of dimension 𝑛 × 𝑚. 𝐴 ≥≥ 0 (resp., 𝐴 ≫ 0) means that,
for all 𝑖 and 𝑗, [𝐴]

𝑖𝑗
≥ 0 (resp., [𝐴]

𝑖𝑗
> 0). The notation

𝐴 ≥≥ 𝐵 (resp., 𝐴 ≫ 𝐵) means that the matrix 𝐴 − 𝐵 ≥≥ 0

(resp., 𝐴 − 𝐵 ≫ 0). Let R𝑛
+
denote the nonnegative orthants

of R𝑛. The superscript “𝑇” represents matrix transpose. ‖ ⋅ ‖
denotes the Euclidean norm for vectors. 𝐴

𝑖(𝜇]) is the element
of 𝐴
𝑖
located at the 𝜇th row and the ]th column. 𝐴

𝑖(])
denotes the ]th column of 𝐴

𝑖
. The 1-norm of a vector 𝑥(𝑘) =

(𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘)) is defined as ‖𝑥(𝑘)‖

1
≜ ∑
𝑛

𝑖=1
|𝑥
𝑖
(𝑘)|.

The ℓ
1
-norm of an infinite sequence 𝑥 is defined as ‖𝑥‖

ℓ
1

≜

∑
∞

𝑘=0
‖𝑥(𝑘)‖

1
.The space of all vector-valued functions defined

on R
𝑛

+
with finite ℓ

1
-norm is denoted by ℓ

1
(R
𝑛

+
). If the

dimensions of matrices are not explicitly stated, it is assumed
that the matrices have compatible dimensions for algebraic
operations. Vector 1 = [1, 1, . . . , 1]

𝑇.
Consider the following fuzzy system described by the 𝑖th

rule.

Model Rule 𝑖. IF 𝜃
1
(𝑘) is 𝑀

𝑖1
, 𝜃
2
(𝑘) is 𝑀

𝑖2
, . . ., and 𝜃

𝑔
(𝑘) is

𝑀
𝑖𝑔
, THEN

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑤𝑖
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) + 𝐷

𝑤𝑖
𝑤 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛, 𝑤(𝑘) ∈ R𝑚, and 𝑦(𝑘) ∈ R are
the system state, disturbance input, and controlled output,
respectively. The index 𝑖 ∈ {1, 2, . . . , 𝑟} gives the rule
number. 𝜃

1
(𝑘), 𝜃
2
(𝑘), . . . , 𝜃

𝑔
(𝑘) are the premise variables and

𝜃(𝑘) = [𝜃
1
(𝑘), 𝜃
2
(𝑘), . . . , 𝜃

𝑔
(𝑘)] is the premise variable vector.

𝑀
𝑖𝑒
(𝑖 = 1, 2, . . . , 𝑟; 𝑒 = 1, 2, . . . , 𝑔) represents the fuzzy sets.

Then, we have the fuzzy system:

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) (𝐴

𝑖
𝑥 (𝑘) + 𝐵

𝑤𝑖
𝑤 (𝑘)) ,

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) (𝐶

𝑖
𝑥 (𝑘) + 𝐷

𝑤𝑖
𝑤 (𝑘)) ,

(2)

where

ℎ
𝑖
(𝜃 (𝑘)) =

𝜇
𝑖
(𝜃 (𝑘))

∑
𝑟

𝑖=1
𝜇
𝑖
(𝜃 (𝑘))

,

𝜇
𝑖
(𝜃 (𝑘)) =

𝑔

∏

𝑒=1

𝑀
𝑖𝑒
(𝜃
𝑒
(𝑘)) ,

(3)

and 𝑀
𝑖𝑒
(𝜃
𝑒
(𝑘)) ∈ [0, 1] represents the grade of membership

of 𝜃
𝑒
(𝑘) in𝑀

𝑖𝑒
. For all 𝑘, we have

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) = 1, ℎ

𝑖
(𝜃 (𝑘)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟. (4)

Here, the following definition is given, which will be used in
the sequel.

Definition 1. System (2) is a discrete-time positive system if,
for all 𝑥(0) ≥≥ 0 and input𝑤(𝑘) ≥≥ 0, one has 𝑥(𝑘) ≥≥ 0 and
𝑦(𝑘) ≥≥ 0 for 𝑘 ∈ N.

Next, some useful results are introduced.
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Lemma 2 (see [26]). The discrete-time system (2) is positive if
and only if

𝐴
𝑖
≥≥ 0,

𝐵
𝑤𝑖

≥≥ 0,

𝐶
𝑧𝑖
≥≥ 0,

𝐷
𝑧𝑤𝑖

≥≥ 0,

𝐶
𝑖
≥≥ 0,

𝑖 = 1, 2, . . . , 𝑟.

(5)

Lemma 3 (see [33]). Positive system (2) with input𝑤(𝑘) = 0 is
asymptotically stable if there exists a vector 𝑝

𝑖
≥≥ 0 (or 𝑝

𝑖
≫ 0)

satisfying

𝑝
𝑇

𝑖
𝐴
𝑗
− 𝑝
𝑇

𝑗
≪ 0, (6)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑟.

Here, the definition of ℓ
1
-induced performance is intro-

duced.We say that a stable positive system (2) has ℓ
1
-induced

performance at the level 𝛾 if, under zero initial conditions,

sup
𝑤 ̸=0,𝑤∈ℓ

1
(R
𝑛

+
)

𝑦
ℓ
1

‖𝑤‖ℓ
1

< 𝛾, (7)

where 𝛾 > 0 is a given scalar.
The following result serves as a characterization on

the asymptotic stability of system (2) with the ℓ
1
-induced

performance in (7).

Lemma4 (see [33]). Thepositive fuzzy system (2) is asymptot-
ically stable and satisfies ‖𝑦‖

ℓ
1

< 𝛾‖𝑤‖
ℓ
1

if there exists a vector
𝑝
𝑖
≥≥ 0 satisfying

1𝑇𝐶
𝑗
+ 𝑝
𝑇

𝑖
𝐴
𝑗
− 𝑝
𝑇

𝑗
≪ 0,

1𝑇𝐷
𝑤𝑗

+ 𝑝
𝑇

𝑖
𝐵
𝑤𝑗

− 𝛾1𝑇 ≪ 0,

(8)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑟.

3. State-Feedback Controller Synthesis for
Positive Fuzzy Systems

In this section, the ℓ
1
-induced state-feedback controller

synthesis problem is formulated. Based on the stability
and performance conditions, a state-feedback controller is
designed for positive fuzzy systems. Finally, an iterative
convex optimization approach is developed to solve the
conditions accordingly.

Here, we deal with the stabilization problem for the
following positive fuzzy systems:

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) (𝐴

𝑖
𝑥 (𝑘) + 𝐵

𝑖
𝑢 (𝑘) + 𝐵

𝑤𝑖
𝑤 (𝑘)) ,

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) (𝐶

𝑖
𝑥 (𝑘) + 𝐷

𝑖
𝑢 (𝑘) + 𝐷

𝑤𝑖
𝑤 (𝑘)) ,

(9)

where 𝑥(𝑘) ∈ R𝑛, 𝑤(𝑘) ∈ R𝑚, 𝑢(𝑘) ∈ R𝑙, and 𝑦(𝑘) ∈ R

are the system state, disturbance input, control input, and
controlled output, respectively.

For the positive fuzzy system in (9), we construct the
following parallel distributed compensation (PDC) fuzzy
controller.

Control Rule 𝑖. IF 𝜃
1
(𝑘) is 𝑀

𝑖1
, 𝜃
2
(𝑘) is 𝑀

𝑖2
, . . ., and 𝜃

𝑔
(𝑘) is

𝑀
𝑖𝑔
, THEN

𝑢 (𝑘) = 𝐾
𝑖
𝑥 (𝑘) . (10)

The overall fuzzy controller is represented by

𝑢 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘))𝐾

𝑖
𝑥 (𝑘) . (11)

Then, the closed-loop system with the PDC fuzzy controller
(11) is given by

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝜃 (𝑘)) ℎ

𝑗
(𝜃 (𝑘))

⋅ ((𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑥 (𝑘) + 𝐵

𝑤𝑖
𝑤 (𝑘)) ,

𝑦 (𝑘) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝜃 (𝑘)) ℎ

𝑗
(𝜃 (𝑘))

⋅ ((𝐶
𝑖
+ 𝐷
𝑖
𝐾
𝑗
) 𝑥 (𝑘) + 𝐷

𝑤𝑖
𝑤 (𝑘)) .

(12)

The problem to be addressed in this paper is described as
follows.

Problem PPSFCD (Positivity-Preserving ℓ
1
-Induced State-

Feedback Controller Design). Given the fuzzy positive system
(9), the control objective is to find controller (11) such that the
closed-loop system (12) is positive and asymptotically stable
and satisfies the ℓ

1
-induced performance ‖𝑦‖

ℓ
1

< 𝛾‖𝑤‖
ℓ
1

under zero initial conditions.
First, the stability characterization of the closed-loop

system (12) is proposed as follows.

Proposition 5. The closed-loop system in (12) with input
𝑤(𝑘) = 0 is positive and asymptotically stable if there exist
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vectors𝑝
𝑖
≫ 0, 𝑦

𝑖𝑗𝑡(1)
, . . . , 𝑦

𝑖𝑗𝑡(1)
∈ R1× satisfying the following

LPs:

𝑝
𝑇

𝑖
𝐴
𝑗
+

𝑙

∑

𝜎=1

𝑦
𝑖𝑗𝑡(𝜎)

− 𝑝
𝑇

𝑗
≪ 0, (13)

1

𝑙
𝐴
𝑖(𝜇])

𝑛

∑

ℎ=1

𝑝
𝜉(ℎ)

𝐵
𝑡(ℎ𝑠)

+ 𝐵
𝑖(𝜇𝑠)

𝑦
𝑗𝑡𝜉(𝑠)

≥ 0, (14)

1

𝑙
𝐶
𝑖(𝛼])

𝑛

∑

ℎ=1

𝑝
𝜉(ℎ)

𝐵
𝑡(ℎ𝑠)

+ 𝐷
𝑖(𝛼𝑠)

𝑦
𝑗𝑡𝜉(𝑠)

≥ 0, (15)

with 𝑖, 𝑗, 𝑡, 𝜉 = 1, 2, . . . , 𝑟, 𝜇, ] = 1, 2, . . . , 𝑛, 𝑠 = 1, 2, . . . , 𝑙,
𝛼 = 1, 2, . . . , 𝑞, and

𝐾
𝑡
=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑦
𝑖𝑗𝑡(1)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ1)

𝑦
𝑖𝑗𝑡(2)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ2)

.

.

.

𝑦
𝑖𝑗𝑡(𝑙)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝑙)

]
]
]
]
]
]
]
]
]
]
]
]

]

. (16)

Proof. We have

[𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
]
𝜇]

= 𝐴
𝑗(𝜇]) +

𝑙

∑

𝑠=1

𝐵
𝑗(𝜇𝑠)

𝑦
𝑖𝑗𝑡(𝑠)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝑠)

=

𝑙

∑

𝑠=1

[
1

𝑙
𝐴
𝑗(𝜇]) + 𝐵

𝑗(𝜇𝑠)

𝑦
𝑖𝑗𝑡(𝑠)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝑠)

] .

(17)

It is noted that (1/𝑙)𝐴
𝑗(𝜇]) + 𝐵

𝑗(𝜇𝑠)
(𝑦
𝑖𝑗𝑡(𝑠)

/∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝑠)

) ≥ 0

for 𝑖, 𝑗, 𝑡, 𝜉 = 1, 2, . . . , 𝑟 implies 𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
≥≥ 0.

Moreover, the following equation holds:

[𝐶
𝑗
+ 𝐷
𝑗
𝐾
𝑡
]
𝛼]

= 𝐶
𝑗(𝛼]) +

𝑙

∑

𝑠=1

𝐷
𝑗(𝛼𝑠)

𝑦
𝑖𝑗𝑡(𝑠)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝑠)

=

𝑙

∑

𝑠=1

[
1

𝑙
𝐶
𝑗(𝛼]) + 𝐷

𝑗(𝛼𝑠)

𝑦
𝑖𝑗𝑡(𝑠)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝑠)

] .

(18)

We note that (1/𝑙)𝐶
𝑗(𝛼]) + 𝐷

𝑗(𝛼𝑠)
(𝑦
𝑖𝑗𝑡(𝑠)

/∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝑠)

) ≥ 0

for 𝑖, 𝑗, 𝑡, 𝜉 = 1, 2, . . . , 𝑟 implies 𝐶
𝑗
+ 𝐷
𝑗
𝐾
𝑡
≥≥ 0. Therefore,

from (14) and (15), we have that the closed-loop system (12)
is positive.

On the other hand, consider the Lyapunov function
𝑉(𝑥(𝑘)) = (∑

𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑘))𝑝

𝑖
)
𝑇
𝑥(𝑘) and we have

Δ𝑉 (𝑥 (𝑘)) = (

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘 + 1)) 𝑝

𝑖
)

𝑇

𝑥 (𝑘 + 1) − (

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) 𝑝

𝑖
)

𝑇

𝑥 (𝑘)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑟

∑

𝑡=1

𝑟

∑

𝜉=1

ℎ
𝑖
(𝜃 (𝑘 + 1)) ℎ

𝑗
(𝜃 (𝑘)) ℎ

𝑡
(𝜃 (𝑘)) ℎ

𝜉
(𝜃 (𝑘)) (𝑝

𝑇

𝑖
(𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
𝐶
𝜉
) − 𝑝
𝑇

𝑗
) 𝑥 (𝑘) .

(19)

For 𝑥(𝑘) ̸= 0, we have that 𝑝𝑇
𝑖
(𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
) − 𝑝
𝑇

𝑗
≪ 0 implies

Δ𝑉(𝑥(𝑘)) < 0. Therefore, system (12) is asymptotically stable.

Now, let 𝐾
𝑡
= [

[

𝐾
𝑡(1)

𝐾
𝑡(2)

.

.

.

𝐾
𝑡(𝑙)

]

]

, where 𝐾
𝑡(𝜎)

are vectors in R; one

has

𝑝
𝑇

𝑖
𝐵
𝑗
𝐾
𝑡
=

𝑙

∑

𝜎=1

[

𝑛

∑

ℎ=1

𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝜎)

]𝐾
𝑡(𝜎)

=

𝑙

∑

𝜎=1

𝑦
𝑖𝑗𝑡(𝜎)

, (20)

with𝑦
𝑖𝑗𝑡(𝜎)

= [∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝜎)

]𝐾
𝑡(𝜎)

. Consequently, inequality
𝑝
𝑇

𝑖
(𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
) − 𝑝
𝑇

𝑗
≪ 0 can be written as

𝑝
𝑇

𝑖
𝐴
𝑗
+

𝑙

∑

𝜎=1

𝑦
𝑖𝑗𝑡(𝜎)

− 𝑝
𝑇

𝑗
≪ 0,

𝐾
𝑡
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑦
𝑖𝑗𝑡(1)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ1)

𝑦
𝑖𝑗𝑡(2)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ2)

.

.

.

𝑦
𝑖𝑗𝑡(𝑙)

∑
𝑛

ℎ=1
𝑝
𝑖(ℎ)

𝐵
𝑗(ℎ𝑙)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(21)

Next, a sufficient condition for the existence of a solution
to Problem PPSFCD is obtained.

Theorem 6. The closed-loop system in (12) is positive and
asymptotically stable and satisfies ‖𝑦‖

ℓ
1

< 𝛾‖𝑤‖
ℓ
1

if there exist
matrices 𝐾

𝑖
and vectors 𝑝

𝑖
≫ 0 satisfying
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𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
≥≥ 0, (22)

𝐶
𝑗
+ 𝐷
𝑗
𝐾
𝑡
≥≥ 0, (23)

1𝑇 (𝐶
𝑗
+ 𝐷
𝑗
𝐾
𝑡
) + 𝑝
𝑇

𝑖
(𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
) − 𝑝
𝑇

𝑡
≪ 0, (24)

1𝑇𝐷
𝑤𝑗

+ 𝑝
T
𝑖
𝐵
𝑤𝑗

− 𝛾1𝑇 ≪ 0, (25)

where 𝑖, 𝑗, 𝑡 = 1, 2, . . . , 𝑟.

In the following, our aim is to derive a numerically
tractable means to synthesize a derived controller. It is noted
that when matrix 𝐾

𝑡
is fixed, (24) turns out to be linear with

respect to the other variables. Therefore, a natural way is to
fix 𝐾
𝑡
and solve (24)-(25) by linear programming.

Algorithm PPSFCD

Step 1. Set 𝜅 = 1. We use Proposition 5 to solve for 𝐾
1

𝑖

such that the positive system (9) with (10) is positive and
asymptotically stable.

Step 2. For fixed 𝐾
𝜅

𝑖
, solve the following optimization prob-

lem for 𝑝𝜅
𝑖
and 𝛾
𝜅
.

OP1: minimize 𝛾
𝜅
subject to the following constraints:

1𝑇 (𝐶
𝑗
+ 𝐷
𝑗
𝐾
𝑡
) + 𝑝
𝑇

𝑖
(𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
) − 𝑝
𝑇

𝑡
≪ 0,

1𝑇𝐷
𝑤𝑗

+ 𝑝
𝑇

𝑖
𝐵
𝑤𝑗

− 𝛾1𝑇 ≪ 0,

𝑝
𝜅

𝑖
≫ 0.

(26)

Denote 𝛾∗
𝜅
, 𝑝
𝜅

𝑖
as the solution to the optimization problem. If

|(𝛾
∗

𝜅
− 𝛾
∗

𝜅−1
)/𝛾
∗

𝜅
| ≤ 𝜀
1
, where 𝜀

1
is a prescribed bound, then

𝐾
𝑖
= 𝐾
𝜅

𝑖
, 𝑝
𝑖
= 𝑝
𝜅

𝑖
. STOP.

Step 3. For fixed 𝑝
𝜅

𝑖
, solve the following optimization prob-

lem for𝐾𝜅
𝑖
.

OP2: minimize 𝛾
𝜅
subject to the following constraints:

𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
≥≥ 0,

𝐶
𝑗
+ 𝐷
𝑗
𝐾
𝑡
≥≥ 0,

1𝑇 (𝐶
𝑗
+ 𝐷
𝑗
𝐾
𝑡
) + 𝑝
𝑇

𝑖
(𝐴
𝑗
+ 𝐵
𝑗
𝐾
𝑡
) − 𝑝
𝑇

𝑡
≪ 0,

1𝑇𝐷
𝑤𝑗

+ 𝑝
𝑇

𝑖
𝐵
𝑤𝑗

− 𝛾1𝑇 ≪ 0.

(27)

Denote 𝛾∗
𝜅
as the solution to the optimization problem.

Step 4. If |(𝛾∗
𝜅
− 𝛾
∗

𝜅−1
)/𝛾
∗

𝜅
| ≤ 𝜀

2
, where 𝜀

2
is prescribed

tolerance, STOP; else, set 𝜅 = 𝜅 + 1 and 𝐾𝜅
𝑖
= 𝐾
𝜅−1

𝑖
, and then

go to Step 2.

Remark 7. The parameter 𝛾 can be optimized iteratively.
Notice that 𝛾∗

𝜅+1
≤ 𝛾
∗

𝜅
since the corresponding parameters

obtained in Step 3 will be utilized as the initial values in Step 2
to derive a smaller 𝛾. Since the sequence {𝛾∗

𝜅
} is bounded from

below, the convergence of the iterative process is naturally
guaranteed.

4. Illustrative Example

In this section, one illustrative example is presented in
the following to illustrate the effectiveness of the proposed
controller design approach.

In this example, we consider the following Lotka-
Volterra population model, which reflects various interac-
tions between two species [34]:

𝑥
1
(𝑘 + 1) = 𝑒

0.5−sin(0.5𝜋𝑘)𝑥
1
(𝑘)−0.2𝑥

2
(𝑘)
𝑥
1
(𝑘) + 1.5𝑥

2
(𝑘)

+ 0.1𝑢 (𝑘) + 0.2𝑤 (𝑘) ,

𝑥
2
(𝑘 + 1) = 0.2𝑥

1
(𝑘)

+ 𝑒
0.8−0.2 cos(1.5𝜋𝑘)𝑥

1
(𝑘)−0.5𝑥

2
(𝑘)
𝑥
2
(𝑘)

+ 0.2𝑢 (𝑘) + 0.1𝑤 (𝑘) ,

𝑧 (𝑘) = 𝑥
1
(𝑘) + 𝑥

2
(𝑘) ,

(28)

where 𝑥
𝑖
(𝑘) is the density of population 𝑖 at 𝑘th generation

and 𝑥(0) = [0.5 0.3]
𝑇

. The external disturbance 𝑤(𝑘) is
assumed to be

𝑤 (𝑘) =

{

{

{

0.15, 5 ≤ 𝑘 ≤ 10,

0, otherwise.
(29)

Define 𝜃
1
(𝑘) = 𝑒

0.5−sin(0.5𝜋𝑘)𝑥
1
(𝑘)−0.2𝑥

2
(𝑘) and 𝜃

2
(𝑘) =

𝑒
0.8−0.2cos(1.5𝜋𝑘)𝑥

1
(𝑘)−0.5𝑥

2
(𝑘). We calculate the minimum and

maximum values of 𝜃
1
(𝑘) and 𝜃

2
(𝑘). They are obtained as

follows:
max 𝜃

1
(𝑘) = 2.0437,

min 𝜃
1
(𝑘) = 0.3250,

max 𝜃
2
(𝑘) = 2.2034,

min 𝜃
2
(𝑘) = 0.7861.

(30)

From the maximum and minimum values, 𝜃
1
(𝑘) and

𝜃
2
(𝑘) can be represented by

𝜃
1
(𝑘) = 𝑒

0.5−sin(0.5𝜋𝑘)𝑥
1
(𝑘)−0.2𝑥

2
(𝑘)

= 𝑀
1
(𝜃
1
(𝑘)) ⋅ 2.0437 +𝑀

2
(𝜃
1
(𝑘)) ⋅ 0.3250,

𝜃
2
(𝑘) = 𝑒

0.8−0.2cos(1.5𝜋𝑘)𝑥
1
(𝑘)−0.5𝑥

2
(𝑘)

= 𝑁
1
(𝜃
2
(𝑘)) ⋅ 2.2034 + 𝑁

2
(𝜃
2
(𝑘)) ⋅ 0.7861,

(31)

with

𝑀
1
(𝜃
1
(𝑘)) =

𝜃
1
(𝑘) − 0.3250

2.0437 − 0.3250
,

𝑀
2
(𝜃
1
(𝑘)) =

2.0437 − 𝜃
1
(𝑘)

2.0437 − 0.3250
,

𝑁
1
(𝜃
2
(𝑘)) =

𝜃
2
(𝑘) − 0.7861

2.2034 − 0.7861
,

𝑁
2
(𝜃
2
(𝑘)) =

2.2034 − 𝜃
2
(𝑘)

2.2034 − 0.7861
.

(32)
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The membership functions 𝑀
1
(𝜃
1
(𝑘)) and 𝑀

2
(𝜃
1
(𝑘)) are

named “Big” and “Small” for 𝜃
1
(𝑘), respectively, and similarly

for 𝑁
1
(𝜃
2
(𝑘)) and 𝑁

2
(𝜃
2
(𝑘)) for 𝜃

2
(𝑘). Then, the following

fuzzy rules are employed.

Rule 1. IF 𝜃
1
(𝑘) is “Big” and 𝜃

2
(𝑘) is “Big,” THEN

𝑥 (𝑘 + 1) = 𝐴
1
𝑥 (𝑘) + 𝐵

1
𝑢 (𝑘) + 𝐵

𝑤1
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧1
𝑥 (𝑘) .

(33)

Rule 2. IF 𝜃
1
(𝑘) is “Big” and 𝜃

2
(𝑘) is “Small,” THEN

𝑥 (𝑘 + 1) = 𝐴
2
𝑥 (𝑘) + 𝐵

2
𝑢 (𝑘) + 𝐵

𝑤2
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧2
𝑥 (𝑘) .

(34)

Rule 3. IF 𝜃
1
(𝑘) is “Small” and 𝜃

2
(𝑘) is “Big,” THEN

𝑥 (𝑘 + 1) = 𝐴
3
𝑥 (𝑘) + 𝐵

3
𝑢 (𝑘) + 𝐵

𝑤3
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧3
𝑥 (𝑘) .

(35)

Rule 4. IF 𝜃
1
(𝑘) is “Small” and 𝜃

2
(𝑘) is “Small,” THEN

𝑥 (𝑘 + 1) = 𝐴
4
𝑥 (𝑘) + 𝐵

4
𝑢 (𝑘) + 𝐵

𝑤4
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧4
𝑥 (𝑘) ,

(36)

where

𝐴
1
= [

2.0437 1.5

0.2 2.2034

] ,

𝐴
2
= [

2.0437 1.5

0.2 0.7861
] ,

𝐴
3
= [

0.3250 1.5

0.2 2.2034
] ,

𝐴
4
= [

0.3250 1.5

0.2 0.7861
] ,

𝐵
1
= 𝐵
2
= 𝐵
3
= 𝐵
4
= [

0.1

0.2

] ,

𝐵
𝑤1

= 𝐵
𝑤2

= 𝐵
𝑤3

= 𝐵
𝑤4

= [

0.2

0.1

] ,

𝐶
𝑧1
= 𝐶
𝑧2
= 𝐶
𝑧3
= 𝐶
𝑧4
= [1 1] .

(37)

We have the fuzzy model for the nonlinear system as follows:

𝑥 (𝑘 + 1)

=

4

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) (𝐴

𝑖
𝑥 (𝑘) + 𝐵

𝑖
𝑢 (𝑘) + 𝐵

𝑤𝑖
𝑤 (𝑘)) ,

𝑧 (𝑘) =

4

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) 𝐶

𝑧𝑖
𝑥 (𝑘) ,

(38)

with

ℎ
1
(𝜃 (𝑘)) =

(𝑒
0.5−sin(0.5𝜋𝑘)𝑥

1
(𝑘)−0.2𝑥

2
(𝑘)

− 0.3250) (𝑒
0.8−0.2 cos(1.5𝜋𝑘)𝑥

1
(𝑘)−0.5𝑥

2
(𝑘)

− 0.7861)

(2.0437 − 0.3250) (2.2034 − 0.7861)
,

ℎ
2
(𝜃 (𝑘)) =

(𝑒
0.5−sin(0.5𝜋𝑘)𝑥

1
(𝑘)−0.2𝑥

2
(𝑘)

− 0.3250) (2.2034 − 𝑒
0.8−0.2 cos(1.5𝜋𝑘)𝑥

1
(𝑘)−0.5𝑥

2
(𝑘)
)

(2.0437 − 0.3250) (2.2034 − 0.7861)
,

ℎ
3
(𝜃 (𝑘)) =

(2.0437 − 𝑒
0.5−sin(0.5𝜋𝑘)𝑥

1
(𝑘)−0.2𝑥

2
(𝑘)
) (𝑒
0.8−0.2 cos(1.5𝜋𝑘)𝑥

1
(𝑘)−0.5𝑥

2
(𝑘)

− 0.7861)

(2.0437 − 0.3250) (2.2034 − 0.7861)
,

ℎ
4
(𝜃 (𝑘)) =

(2.0437 − 𝑒
0.5−sin(0.5𝜋𝑘)𝑥

1
(𝑘)−0.2𝑥

2
(𝑘)
) (2.2034 − 𝑒

0.8−0.2 cos(1.5𝜋𝑘)𝑥
1
(𝑘)−0.5𝑥

2
(𝑘)
)

(2.0437 − 0.3250) (2.2034 − 0.7861)
.

(39)

By solving the conditions inTheorem 6, a feasible solution is
achieved with

𝑝
1
= [0.2536 1.1746]

𝑇

,

𝑝
2
= [0.2489 1.1673]

𝑇

,

𝑝
3
= [0.2352 1.1582]

𝑇

,

𝑝
4
= [0.2235 1.1299]

𝑇

,

(40)

which further yields the matrices of the state-feedback con-
troller as
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Figure 1: Time response 𝑥
1
of open-loop system.
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Figure 2: Time response 𝑥
2
of open-loop system.

𝐾
1
= [−0.2380 −0.3534] ,

𝐾
2
= [−0.1630 −0.2973] ,

𝐾
3
= [−0.3472 −0.4281] ,

𝐾
4
= [−0.4291 −0.3723] .

(41)

The responses of the open-loop and the closed-loop system
are shown in Figures 1–4, from which we can see that the
system can be stabilized by the designed controller.

With this choice of initial condition, Figures 1 and 2
show the response of open-loop system. It can be seen that
the open-loop system is not globally asymptotically stable.
Figures 3 and 4 show the state response of the closed-loop
system, from which we can see that the state of the closed-
loop system converges to zero.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time k

Re
sp

on
se

x1

Figure 3: Time response 𝑥
1
of closed-loop system.
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Figure 4: Time response 𝑥
2
of closed-loop system.

5. Conclusion

In this paper, the state-feedback controller synthesis problem
for positive T-S fuzzy systems has been addressed under
ℓ
1
performance. Novel performance characterization of the

closed-loop system has been established. Based on the novel
characterization, sufficient conditions have been developed
for the existence of state-feedback controllers. Moreover, iter-
ative convex optimization algorithms have been developed to
solve the design conditions. Finally, one example has been
presented to demonstrate the effectiveness of the proposed
approach. Further research topics include the controller
synthesis problem for positive fuzzy systems with time-
varying or distributed delays with linear Lyapunov functions.
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