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Thepaper presents the problemof discrete vibration reduction inmechanical systems depending on the desired dynamic properties.
The conditions for physical feasibility of dynamic characteristics have been defined, in the form of impedance and mobility, for
passive and active vibration reduction. The authors have presented a graphic method for determining the free vibration drop
coefficient, based on the desired value of the reduced resonance frequency amplitude.

1. Introduction

The reduction of vibration is related with determining, at
a given point of a system, the force with parameters that
allow controlling the vibration amplitude of a chosen point
in the feedback loop [1–6], or utilization in the system so-
called energy dissipating components [3, 4, 7–9]. The values
of active and passive components are generated, in systems
subjected to vibration reduction, on the basis of information
on the dynamic state of the system. The conditions, under
which the structural and parametric identification of the
system subject to vibration reduction is realized, should meet
in advance the required dynamic properties [2, 6, 8–10].

The synthesis, as the inverse task, enables the identifi-
cation of parameters for the desired dynamic properties in
the form of resonance frequencies and amplitude values. In
such cases, it is therefore necessary to specify the criterion for
searching the structure and parameters of themodel based on
knowledge of the dynamic properties of the real object.

The paper concerns the formulation and solution the
problem of active vibration reduction of discrete mechanical
systems in view of the desired dynamic properties [2–4, 7, 11–
13]. For this purpose, it has formulated the conditions of
physical realisability of dynamic characteristics in the form
of a impedance and mobility in the case of passive and active
vibration reduction. It also presented the graphical method

for determining the damping coefficient based on the desired
value of the amplitude of the reduced resonance frequency.
Moreover, it has proposed the method of searching for the
active force that reduces vibration to the desired amplitude
value.

2. Synthesis: The Inverse Problem of
Vibrating Systems

One of the conditions of assuming the proper model of a
machine, at the stage of structural and parametric identifi-
cation of the object, is the synthesis of mechanical systems
with the desired properties [14–16]. Synthesis or the inverse
problem of vibrating systems is understood in this work as
a search for the structure parameters based on the known
dynamic properties [17–20].

2.1. Dynamic Characteristics and Properties of the Identi-
fied System. The characteristics of the input-output (force-
velocity) relationships, subjected to the direct identification
with the methods of the synthesis of a discrete vibrating
system, are dynamic function in the form of the mechanical
impedance 𝑍(𝑠) or the mobility 𝑌(𝑠), describing in unam-
biguously way its state [21–24]. The dynamic characteris-
tics, subjected to the identification process with synthesis
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methods, are positive real-valued rational functions of the
following forms:

𝑌 (𝑠) = V
𝑓 =

1
𝑍 (𝑠) =

𝑑𝑙𝑠𝑙 + 𝑑𝑙−1𝑠𝑙−1 + ⋅ ⋅ ⋅ + 𝑑0
𝑐𝑘𝑠𝑘 + 𝑐𝑘−1𝑠𝑘−1 + ⋅ ⋅ ⋅ + 𝑐0 ,

𝑙 = 𝑘 + 1,

𝑍 (𝑠) = 𝑓
V
= 1
𝑌 (𝑠) =

𝑐𝑘𝑠𝑘 + 𝑐𝑘−1𝑠𝑘−1 + ⋅ ⋅ ⋅ + 𝑐0
𝑑𝑙𝑠𝑙 + 𝑑𝑙−1𝑠𝑙−1 + ⋅ ⋅ ⋅ + 𝑑0 ,

𝑘 = 𝑙 + 1,

(1)

where 𝑘, 𝑙 are natural numbers, V is velocity, 𝑓 is force, 𝑠 is
Laplace operator, and 𝑑𝑙, . . . , 𝑑0, 𝑐𝑘, . . . , 𝑐0 are real numbers.

Generally, the synthesis of vibrating mechanical systems
comes down to the prime factorization of the characteristic
function (decomposition into partial fractions, decompo-
sition into continued fractions). In this work, the mixed
method formalized by the authors in [20] is used.

Prior to the synthesis with the mixed method, the char-
acteristic function of the mobility 𝑌𝑈(𝑠) or the mechanical
impedance 𝑍𝑈(𝑠) should be designated. For this purpose,
on the basis of the desired dynamic properties in the form
of a sequence of resonance frequencies 𝜔𝑝1, 𝜔𝑝2, . . . , 𝜔𝑝𝑛
and antiresonance frequencies 𝜔𝑧1, 𝜔𝑧2, . . . , 𝜔𝑧𝑛 which are,
respectively, the poles and zeros of the searched character-
istics 𝑌𝑈(𝑠), the admittance function 𝑉𝑈(𝑠) or the dynamic
stiffness 𝑈𝑈(𝑠) is determined in the form

𝑈𝑈 (𝑠) = 1
𝑉𝑈 (𝑠) = 𝐻

∏𝑛𝑖=1 (𝑠2 + 𝜔2𝑝𝑖)
∏𝑛−1𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

= 𝐻 𝐿 (𝑠)
𝑀 (𝑠) ,

𝑖, 𝑗 = 1, 2, 3, . . . , 𝑛,
𝜔𝑝1 < 𝜔𝑧1 < 𝜔𝑝2 < 𝜔𝑧2 ⋅ ⋅ ⋅ 𝜔𝑝𝑛 < 𝜔𝑧𝑛,

(2)

where 𝜔𝑝1, 𝜔𝑝2, . . . , 𝜔𝑝𝑛 are resonance frequencies, the pools
of the function 𝑉𝑈(𝑠), 𝐻 is proportionality constant, and𝜔𝑧1, 𝜔𝑧2, . . . , 𝜔𝑧𝑛 are antiresonance frequencies, the zeros of
the function 𝑉𝑈(𝑠).

Characteristic functions of the mobility 𝑌𝑈(𝑠) or the
impedance𝑍𝑈(𝑠), directly subjected to the synthesis method,
are determined using the transformation in relation to the
admittance 𝑉𝑈(𝑠) or the stiffness 𝑈𝑈(𝑠) in the form

𝑌𝑈 (𝑠) = 𝑠𝑉𝑈 (𝑠) ,
𝑍𝑈 (𝑠) = 1𝑠 𝑈𝑈 (𝑠) ,

(3)

where 𝑌𝑈(𝑠) is dynamic mobility, 𝑉𝑈(𝑠) is admittance, 𝑠 is
variable determined as the Laplace operator, described by the
formula 𝑠 = 𝑖𝜔, 𝑍𝑈(𝑠) is mechanical impedance, and𝑈𝑈(𝑠) is
dynamic stiffness.

The resulting functions transform themotion description
of the system from generalized displacements 𝑥 and general-
ized forces 𝑓(𝑉𝑈(𝑠) = 1/𝑈𝑈(𝑠) = 𝑥/𝑓) to the motion descrip-
tion using generalized velocities V and generalized forces𝑓(𝑌𝑈(𝑠) = 1/𝑍𝑈(𝑠) = V/𝑓), fulfilling the condition |𝑘 − 𝑙| = 1
as in the forms in (1).

2.2. Method of Mixed Synthesis. The mixed method of syn-
thesis of vibrating systems is based on the distribution of
the characteristic function, in the form 𝑌𝑈(𝑠) or 𝑍𝑈(𝑠) on
the sum of rational functions, the number of which depends
on the adopted resonance frequencies. In extreme cases, it is
the sum of partial fractions or a continued fraction of the
analyzed dynamic characteristic 𝑌𝑈(𝑠) or 𝑍𝑈(𝑠) describing
the dynamic properties. Due to the nature of the distribution
of the considered dynamic characteristics, the presented
method of synthesis could be treated as generalization of the
knownmethods of synthesis, not only in the field of mechan-
ics, but also in the field of electric engineering of systems with
concentrated parameters. To these methods are included the
Fostermethod (expansion of the dynamic characteristics into
a continued fraction CFE) and the Cauer method (expansion
of the characteristics into partial fractions PFE). Beginning
the formalization of the presented method, it should be
assumed that the dynamic properties of the required or
being identified system are given. These properties are given
in the form of known resonance (𝜔𝑝1, 𝜔𝑝2, . . . , 𝜔𝑝𝑛) and
antiresonance frequencies (𝜔𝑧1, 𝜔𝑧2, . . . , 𝜔𝑧𝑛), on the basis of
which the dynamic characteristics𝑌𝑈(𝑠) or𝑍𝑈(𝑠) subjected to
the synthesis with the mixed method are determined. In the
general case, the function 𝑍𝑈(𝑠), of systems on which there
are imposed constraints, takes the form

𝑍𝑈 (𝑠) = 𝑈𝑈 (𝑠)𝑠 = 1
𝑠𝑉𝑈 (𝑠) = 𝐻

∏𝑛𝑖=1 (𝑠2 + 𝜔2𝑝𝑖)
𝑠∏𝑛−1𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

= 𝐻 𝐿 (𝑠)
𝑀 (𝑠) , 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑛.

(4)

𝜔𝑝1 < 𝜔𝑧1 < 𝜔𝑝2 < 𝜔𝑧2 ⋅ ⋅ ⋅ 𝜔𝑝𝑛 < 𝜔𝑧𝑛, (5)

where 𝜔𝑝1, 𝜔𝑝2, . . . , 𝜔𝑝𝑛 are resonance frequencies, the pools
of the mobility function 𝑌𝑈(𝑠), and 𝜔𝑧1, 𝜔𝑧2, . . . , 𝜔𝑧𝑛 are
antiresonance frequencies, the zeros of the mobility function𝑌𝑈(𝑠).

The determined dynamic characteristic 𝑍𝑈(𝑠) = 1/𝑌𝑈(𝑠)
is decomposed into partial fractions, obtaining

𝑍𝑈 (𝑠)
𝐻 = 𝑘∞𝑠 + 𝑘0𝑠 +

𝐴1
(𝑠 − 𝑖𝜔𝑧1) +

𝐴2
(𝑠 + 𝑖𝜔𝑧1) + ⋅ ⋅ ⋅

+ 𝐴2𝑛−1
(𝑠 − 𝑖𝜔𝑧𝑛) +

𝐴2𝑛
(𝑠 + 𝑖𝜔𝑧𝑛) ,

(6)

where 𝑘∞, 𝑘0, 𝐴1, 𝐴2, . . . , 𝐴2𝑛−1, 𝐴2𝑛 are values of residues in
pools, equal, respectively, to ∞, 𝑖𝜔𝑧1, −𝑖𝜔𝑧1, . . . , 𝑖𝜔𝑧𝑛, −𝑖𝜔𝑧𝑛,𝑖 = √−1.

Values of residues 𝑘∞, 𝑘0, 𝐴1, 𝐴2, . . . , 𝐴2𝑛−1, 𝐴2𝑛 are de-
termined using

𝑘∞ = lim
𝑠→∞

𝑍𝑈 (𝑠)
𝑠

𝑘0 = lim
𝑠→0
𝑠𝑍𝑈 (𝑠)
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𝐴1 = lim
𝑠→𝑖𝜔𝑧𝑎

(𝑠 − 𝑖𝜔𝑧1) 𝑍𝑈 (𝑠) ,
𝐴2 = lim

𝑠→−𝑖𝜔𝑧𝑎
(𝑠 + 𝑖𝜔𝑧1) 𝑍𝑈 (𝑠)
...

𝐴2𝑛−1 = lim
𝑠→𝑖𝜔𝑧𝑛

(𝑠 − 𝑖𝜔𝑧𝑛) 𝑍𝑈 (𝑠) ,
𝐴2𝑛 = lim

𝑠→−𝑖𝜔𝑧𝑛
(𝑠 + 𝑖𝜔𝑧𝑛) 𝑍𝑈 (𝑠) .

(7)

Function equation (4) is a positive real-valued rational
function, whichmeans that all residues on the imaginary axis
are real positive numbers, and 𝐴1, 𝐴2, . . . , 𝐴2𝑛−1, 𝐴2𝑛 are the
values of residues of conjugate numbers. It could be saved as

𝐴1 = 𝐴2 = 𝑘1, . . . , 𝐴2𝑛−1 = 𝐴2𝑛 = 𝑘𝑛, (8)

and hence

𝐴1
(𝑠 − 𝑖𝜔𝑧1) +

𝐴2
(𝑠 + 𝑖𝜔𝑧1) =

2𝑘1𝑠
(𝑠2 + 𝜔2𝑧1)

𝐴3
(𝑠 − 𝑖𝜔𝑧2) +

𝐴4
(𝑠 + 𝑖𝜔𝑧2) =

2𝑘2𝑠
(𝑠2 + 𝜔2𝑧2)

𝐴5
(𝑠 − 𝑖𝜔𝑧3) +

𝐴6
(𝑠 + 𝑖𝜔𝑧3) =

2𝑘3𝑠
(𝑠2 + 𝜔2𝑧3)

...
𝐴2𝑛−1

(𝑠 − 𝑖𝜔𝑧𝑛) +
𝐴2𝑛

(𝑠 + 𝑖𝜔𝑧𝑛) =
2𝑘𝑛𝑠

(𝑠2 + 𝜔2𝑧𝑛) .

(9)

Finally, the distribution of impedance function equation (4)
into partial fractions taking into account (9) in (6) takes the
form

𝑍𝑈 (𝑠)
𝐻 = 𝑘∞𝑠 + 𝑘0𝑠 +

2𝑘1𝑠
(𝑠2 + 𝜔2𝑧1) +

2𝑘2𝑠
(𝑠2 + 𝜔2𝑧2)

+ 2𝑘3𝑠
(𝑠2 + 𝜔2𝑧3) + ⋅ ⋅ ⋅ +

2𝑘(𝑛−1)𝑠
(𝑠2 + 𝜔2

𝑧(𝑛−1)
) .

(10)

Such obtained mechanical impedance 𝑍𝑈(𝑠), in the form of
“partial fractions,” could be represented as the sum of any
rational functions.Through the addition of the selected com-
ponents of function equation (10), whose number depends on
the adopted antiresonance frequencies, impedance equation
(4) is determined in one of the following forms:

𝑍𝑈 (𝑠)
𝐻 = 𝑘∞𝑠 + 𝑘0𝑠 +

2𝑘1𝑠
(𝑠2 + 𝜔2𝑧1) + ⋅ ⋅ ⋅

+ 𝐵1𝑠2𝑛−3 + 𝐵2𝑠2𝑛−5 + ⋅ ⋅ ⋅ + 𝐵0𝑠
(𝑠2 + 𝜔2𝑧2) (𝑠2 + 𝜔2𝑧3) ⋅ ⋅ ⋅ (𝑠2 + 𝜔2𝑧(𝑛−1))

(11)

𝑍𝑈 (𝑠)
𝐻 = 𝑘∞𝑠 + 𝑘0𝑠 +

2𝑘1𝑠
(𝑠2 + 𝜔2𝑧1) + ⋅ ⋅ ⋅ +

2𝑘2𝑠
(𝑠2 + 𝜔2𝑧2)

+ 𝐶1𝑠2𝑛−6 + 𝐶2𝑠2𝑛−8 + ⋅ ⋅ ⋅ + 𝐶0𝑠(𝑠2 + 𝜔2𝑧3) ⋅ ⋅ ⋅ (𝑠2 + 𝜔2𝑧(𝑛−1))
(12)

𝑍𝑈 (𝑠)
𝐻 = 𝑛∑

𝑖=1

𝑘𝑖∞𝑠 + ∑
𝑛
𝑖=1 𝑘𝑖0
𝑠 + 𝐷1𝑠3 + 𝐷2𝑠

(𝑠2 + 𝜔2𝑧1) (𝑠2 + 𝜔2𝑧2)

+ ⋅ ⋅ ⋅ + 𝐶1𝑠2𝑛−6 + 𝐶2𝑠2𝑛−8 + ⋅ ⋅ ⋅ + 𝐶0𝑠(𝑠2 + 𝜔2𝑧3) ⋅ ⋅ ⋅ (𝑠2 + 𝜔2𝑧(𝑛−1))
(13)

𝑍𝑈 (𝑠)
𝐻 = 𝐸1𝑠5 + 𝐸2𝑠3 + 𝐸0𝑠

𝑠 (𝑠2 + 𝜔2𝑧1) (𝑠2 + 𝜔2𝑧2) + ⋅ ⋅ ⋅

+ 𝐶1𝑠2𝑛−6 + 𝐶2𝑠2𝑛−8 + ⋅ ⋅ ⋅ + 𝐶0𝑠
s (𝑠2 + 𝜔2𝑧3) ⋅ ⋅ ⋅ (𝑠2 + 𝜔2𝑧(𝑛−1))

,
(14)

where 𝐵1, 𝐵2, 𝐵0, 𝐶1, 𝐶2, 𝐶0, 𝐷1, 𝐷2, 𝐸1, 𝐸2, 𝐸0 are parameters
determined by adding together the partial fractions obtained
in (10).

The obtained rational functions, as the components of the
sum of (11) ÷ (14), are decomposed into continued fractions.
In order to decompose into a continued fraction, for example,
the function (𝐷1𝑠3 + 𝐷2𝑠)/(𝑠2 + 𝜔2𝑧1)(𝑠2 + 𝜔2𝑧2) from (13),
obtained by impedance decomposition equation (4), the
considered function, should be presented in the form of the
quotient of two polynomials:

𝑍1 (𝑠)𝐻 = 𝐷1𝑠3 + 𝐷2𝑠
(𝑠2 + 𝜔2𝑧1) (𝑠2 + 𝜔2𝑧2) =

𝐿1 (𝑠)𝑀1 (𝑠) =
1

𝑀11 (𝑠)𝐿11 (𝑠)
= 1
𝑌1 (𝑠) .

(15)

After dividing, in (15), the denominator by the numerator, we
obtain

𝑍1 (𝑠)𝐻 = 1
𝑀11 (𝑠)𝐿11 (𝑠)

= 1
𝑌11 (𝑠) + 1

𝑍11 (𝑠)
= 1
𝑠
𝑐11 +

1
𝐿11 (𝑠)𝑀12 (𝑠)

= 1
𝑠
𝑐11 +

1
𝑌11 (𝑠)

, (16)

where 𝑐11 is value of the determined spring component.
The next stage of decomposition of the function 𝑍1(𝑠)/𝐻

into a continued fraction is realization of the expression𝑍11(𝑠) in (16). After dividing 𝐿11(𝑠) by𝑀11(𝑠), we obtain
𝑍11 (𝑠) = 𝑚11𝑠 + 𝐿12 (𝑠)𝑀12 (𝑠) = 𝑚11𝑠 +

1
𝑀12 (𝑠)𝐿12 (𝑠)

= 𝑚11𝑠 + 1
𝑌12 (𝑠) ,

(17)

where𝑚11 is value of the determined inertial component.
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The synthesized impedance 𝑍1(𝑠) takes the form

𝑍1 (𝑠)𝐻 = 1
𝑠
𝑐11 +

1
𝑚11𝑠 + 1

𝑌12 (𝑠)

.
(18)

Themobility𝑌12(𝑠) in dependency equation (18) is realized as

𝑌12 (𝑠) = 𝑠
𝑐12 +

𝑀13 (𝑠)
𝐿12 (𝑠) =

𝑠
𝑐12 +

1
𝐿12 (𝑠)𝑀13 (𝑠)

= 𝑠
𝑐12 +

1
𝑍12 (𝑠) ,

(19)

where 𝑐12 is value of the determined spring component.

After carrying out operations defined by dependency
equation (19), the impedance 𝑍1(𝑠) is obtained in the form

𝑍1 (𝑠)𝐻 = 1
𝑠
𝑐11 +

1
𝑚11𝑠 + 1

𝑠
𝑐12 +

1
𝑍12 (𝑠)

.
(20)

The process, described by dependencies equations (15) ÷
(20), is continued until the moment when, as a result of
polynomials dividing (𝐿(𝑠),𝑀(𝑠)), 𝑐/𝑠 or𝑚𝑠 (𝑐 ∈ 𝑅 ∩𝑚 ∈ 𝑅)
is obtained.

Realizing the decomposition of all rational functions in
(13), we determine the values required of inertial and elastic
two-terminals in the case of the dynamic properties described
in the form of impedance equation (4). Finally, the dynamic
characteristics equation (4) subjected to the identification
with the mixed method takes the general form of the sum of
continued fractions in the form of

𝑍𝑈 (𝑠) = 𝑚∞𝑠 + 𝑐10𝑠 +
1

𝑠
𝑐11 +

1
𝑚11𝑠 + 1

𝑠
𝑐12 +

1
𝑚12𝑠 + ⋅ ⋅ ⋅ + 1

𝑠
𝑐1(𝑛−1) +

1
𝑚1(𝑛−1)𝑠 + 𝑐20𝑠

+ ⋅ ⋅ ⋅

+ 1
𝑠

𝑐(𝑛−1)1 +
1

𝑚(𝑛−1)1𝑠 + 1
𝑠

𝑐(𝑛−1)2 +
1

𝑚(𝑛−1)2𝑠 + ⋅ ⋅ ⋅ + 1
𝑠

𝑐(𝑛−1)(𝑛−1) +
1

𝑚(𝑛−1)(𝑛−1)𝑠 + 𝑐𝑛0𝑠

,
(21)

where 𝑚∞, 𝑚11, 𝑚1(𝑛−1), 𝑚1𝑛, 𝑚(𝑛−1)(𝑛−1) are values of the
inertial components of the sought system, 𝑐10, 𝑐20, 𝑐𝑛0, 𝑐(𝑛+1)0
are values of the springs restrained components, and𝑐11, 𝑐1(𝑛−1), 𝑐1𝑛, 𝑐(𝑛−1)(𝑛−1) are values of the springs components
of the sought system.

Indexes (scripts) located at values of the designated
parameters indicate, respectively, the number of branches and
the number of two-terminals of the same type occurring in
the bifurcation. The values of the elastic, restrained compo-
nents are obtained by decomposition of the restraint rigidity
𝑐0 = ∑𝑛+1𝑘=1 𝑐𝑘0 into the sum of components and multiplying by
𝑐𝑘0/𝑠 any rational function of the obtained sum (11) ÷ (14).
The number of components of the sum 𝑐0 = ∑𝑛+1𝑘=1 𝑐𝑘0 depends
on the restraints imposed on the sought system. The general
form of the system structure obtained by the decomposition
of impedance function equation (21) with the mixed method
is shown in Figure 1.

3. Active Vibration Reduction

Inverse task [17, 24–26], presented in the work, not only
solves the problem of the search for the structure and
parameters (inertial, spring) of vibrating systems for the
desired frequency spectrum, but also allows determining the
components reducing vibration of the system to the desired
amplitude value. Active vibration reduction with methods
of the synthesis of vibrating systems refers to the systems
whose dynamic properties and the forces reducing vibration
are given in the analytical form.

3.1. Dynamic Properties of Active Vibration Reduction. Due
to the required dynamic properties, which characterize the
mode of action of the sought active force, four cases should
be distinguished.

The first case occurs when the force reducing vibration
dampens the selected resonance frequency of the dynamic
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Figure 1: Cascade-branched structure as physical realization of impedance function equation (4) decomposition with the mixed method.

characteristics to the desired value of the amplitude of the
deflection of the inertial component being under consider-
ation. Dynamic properties are described by the impedance
function in the form

𝑍I (𝑠) = 1
𝑌I (𝑠) = 𝐻

∏𝑛𝑖=1 (𝑠2 + 2ℎ𝑝𝑖𝑠 + 𝜔2𝑝𝑖 + ℎ2𝑝𝑖)
𝑠∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

= 𝐻

⋅ 𝑠∏
𝑛
𝑖=1 (𝑠2 + 𝜔2𝑝𝑖)

∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)
+ 𝐻

⋅ 𝑠∏
𝑛
𝑖=1 (𝑠2 + 2ℎ𝑝𝑖𝑠 + (𝜔2𝑝𝑖 + ℎ2𝑝𝑖)) − 𝑠∏𝑛𝑖=1 (𝑠2 + 𝜔2𝑝𝑖)

∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

= 𝐻 ∏𝑛𝑖=1 (𝑠2 + 𝜔2𝑝𝑖)
𝑠∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

+ 𝐿𝑅 (𝑠)𝑀 (𝑠) = 𝑍𝑈 (𝑠) + 𝑍𝑅 (𝑠) ,

(22)

where 𝜔𝑝1, 𝜔𝑝2, . . . , 𝜔𝑝𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛) are resonance fre-
quencies, 𝜔𝑧1, 𝜔𝑧2, . . . , 𝜔𝑧𝑗 (𝑗 = 1, 2, 3, . . . , 𝑛) are antireso-
nance frequencies, ℎ𝑝1, ℎ𝑝2, . . . , ℎ𝑝𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛) are
damping coefficient in the frequency units, 𝑍𝑅(𝑠) is function
characterizing the forces reducing vibration of the system,𝐻
is proportionality constant, and 𝑠 is Laplace operator.

The second case occurs when the force reducing vibration
acts as a dynamic vibration eliminator. Such force does
not dampen the system but causes the system to leave the
resonance zone, shifting the resonance frequency to any
resonance zone chosen by the designer.The dynamic proper-
ties of sought system of vibration reduction (the impedance
function) in this case are as follows:

𝑍II (𝑠) = 1
𝑌II (𝑠) = 𝐻

∏𝑛𝑖=1 (𝑠2 + (𝜔𝑝𝑖 + Δ𝜔𝑝𝑖)2)
𝑠∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

= 𝐻 ∏𝑛𝑖=1 (𝑠2 + 𝜔2𝑝𝑖)
𝑠∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

+ 𝐿𝑅 (𝑠)𝑀 (𝑠)
= 𝑍𝑈 (𝑠) + 𝑍𝑅 (𝑠) ,

(23)

where Δ𝜔𝑝1, Δ𝜔𝑝2, . . . , Δ𝜔𝑝𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛) are values of
resonance frequencies shifts.

The third case occurs when the force reducing vibration
dampens the desired resonance frequency to the amplitude

value of deflection of the considered inertial component. In
the system is a damped vibration frequency, in contrast to
the first case, where the resonance frequency is the frequency
of damped vibration of the system. The properties of the
analyzed case should be selected as follows:

𝑍III (𝑠) = 1
𝑌III (𝑠) = 𝐻

∏𝑛𝑖=1 (𝑠2 + 2ℎ𝑝𝑖𝑠 + 𝜔2𝑝𝑖)
𝑠∏𝑛−1𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

= 𝐻 ∏𝑛𝑖=1 (𝑠2 + 𝜔2𝑝𝑖)
𝑠∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

+ 𝐿𝑅 (𝑠)𝑀 (𝑠)
= 𝑍𝑈 (𝑠) + 𝑍𝑅 (𝑠) .

(24)

The fourth case occurs when the force reducing vibration not
only causes the system to leave the resonance zone, shifting
the resonance frequency to any resonance zone, but also
dampens the chosen zone to the required amplitude value of
deflection of the considered inertial component.Thedynamic
properties are then as follows:

𝑍IV (𝑠) = 1
𝑌IV (𝑠) = 𝐻

⋅ ∏
𝑛
𝑖=1 (𝑠2 + 2ℎ𝑝𝑖𝑠 + 𝜔2𝑝𝑖 + 2𝜔𝑝𝑖Δ𝜔𝑝𝑖 + Δ𝜔2𝑝𝑖 + ℎ2𝑝𝑖)

𝑠∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

= 𝐻 ∏𝑛𝑖=1 (𝑠2 + 𝜔2𝑝𝑖)
𝑠∏𝑛𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)

+ 𝐿𝑅 (𝑠)𝑀 (𝑠) = 𝑍𝑈 (𝑠) + 𝑍𝑅 (𝑠) .

(25)

To be able to speak about the desired dynamic properties for
vibration reduction, one should specify the parameters values
of the dynamic characteristics subjected to the synthesis. The
parameter which characterizes the analyzed systems of vibra-
tion reduction is the damping coefficient ℎ𝑝𝑖. Whereas the
value determining the sought system of vibration reduction
is the maximal amplitude, that should be achieved by the
systemduring the occurrence in the system, the phenomenon
of, for example, resonance. In this case, the dependence of
the damping coefficient on the desired amplitude of vibration
should be determined.

The desired amplitude of vibration is defined, in the
work, as the maximal deflection of the inertial component
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Figure 3: Characteristic function intersected by the plane
𝑉𝐴𝑖(𝑠, ℎ) = 𝐴𝑝𝑖.

corresponding to the system response at the unit amplitude
of exciting force (𝐻 = 1). If the value of such amplitude is
known, then, using the graph of dynamic characteristics, as a
function of two variables, the frequency one (𝜔𝑧𝑗,𝑝𝑖) and the
damping coefficient (ℎ𝑧𝑗,𝑝𝑖), ℎ𝑝𝑖 is determined corresponding
to the required amplitude for the selected resonant frequency𝜔𝑝𝑖. Depending on the amplitude of the vibration of the
desired kinematic quantity, the graphs of admittance, mobil-
ity, or virtual mass are considered.

Let us give the maximal deflection 𝐴max, for the first
case, which could be achieved by the inertial component with
respect to which it is determined by the dynamic character-
istics in the form of the impedance or mobility functions.
In order to determine the coefficient ℎ𝑝𝑖, the graph of the
admittance 𝑉(𝑠) = (1/𝑠)𝑌(𝑠) = 1/𝑠𝑍(𝑠) should be generated
as a function of two variables, which are the frequencies 𝜔𝑝𝑖
and the decreasing coefficient ℎ𝑝𝑖.

In Figure 2 is shown the change of amplitude of the
admittance function in the selected resonance zone.

Knowing the value of the amplitude 𝐴𝑝𝑖 of the selected
resonance zone, one should determine the following equation
of a plane:

𝑉𝐴𝑖 (𝑠, ℎ) = 𝐴𝑝𝑖. (26)

The determined plane intersects the admittance characteris-
tics in the value of the chosen amplitude 𝐴𝑝𝑖 (Figure 3).

Making the projection of the plotted area on the plane(𝑠, ℎ), component ℎ of the maximal point specified by the
plane 𝑉𝐴(𝜔𝑝, ℎ) = 𝐴𝑝 in the selected resonance zone is
determined. The resultant component ℎ corresponds to the
sought value of the free vibration frequency decrease coeffi-
cient.

Using the methods of active vibration reduction, it is
possible to assume any value of the amplitude, in the
case of successively chosen resonance frequencies, without
affecting the previously determined coefficient of free vibra-
tion frequency decreasing. Further cases of determining the
coefficient ℎ, depending on the type of the sought force,
are determined according to the presented method. The free
vibration frequency decrease coefficient ℎ𝑝 corresponding to
the desired amplitude 𝐴𝑝 of the analyzed point of the system
is the solution of the following system:

𝑉 (𝑠, ℎ) = 1𝑠 𝑍 (𝑠, ℎ) = 𝐻

⋅ ∏𝑛−1𝑗=1 (𝑠2 + 𝜔2𝑧𝑗)
(𝑠2 + 2ℎ𝑝𝑠 + 𝜔2𝑝 + ℎ2𝑝)∏𝑛−1𝑖=1 (𝑠2 + 2ℎ𝑝𝑖𝑠 + 𝜔2𝑝𝑖 + ℎ2𝑝𝑖)

,

𝑠 = 𝜔𝑝,
𝑉𝐴 (𝑠, ℎ) = 𝐴𝑝.

(27)

3.2. Method of the Synthesis of Active Vibration Reduction to
the Desired Amplitude Value. The function of the impedance𝑍(𝑠) (the inverse mobility) is the basis for conducting the
identification and active vibration reduction using the meth-
ods of synthesis. As a result of decomposition of the dynamic
characteristics, one receives two rational functions:𝑍𝑈(𝑠) and𝑍𝑅(𝑠). The function 𝑍𝑅(𝑠) defines the conditions which must
be satisfied by the sought active force. However, the function𝑍𝑈(𝑠) is the impedance function of the system being identi-
fied in equations (22) ÷ (25).The active vibration reduction is
carried out in two stages. In the first stage, parameters of the
system subjected to reduction are designated, on the basis of a
sequence of resonance antiresonance frequencies (Figure 5).
The resulting structure and the parameters of the identified
system are the starting point for applying the methods of
active vibration reduction.

Stage I. See Figure 5.

Stage II. It is the force acting on the inertial component for
which the impedance is determined as a result of the second
stage of the active vibration reduction, which is equivalent to
the impedance 𝑍𝑈(𝑠) subjected to decomposition. For this
purpose, the stiffness matrix of the system obtained as a
result of utilization of the synthesis with the mixed method
is determined. In general, the stiffness matrix becomes
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[[[[[[[[[[
[

𝑚∞𝑠2 + 𝑐11 + 𝑐10 − (𝑐11) ⋅ ⋅ ⋅ 0 0
− (𝑐11) 𝑚11𝑠2 + 𝑐1 + 𝑐11 + 𝑐12 ⋅ ⋅ ⋅ 0 0
... ... ⋅ ⋅ ⋅ ... ...
0 0 ⋅ ⋅ ⋅ 𝑚1(𝑛−2)𝑠2 + 𝑐(𝑛−1) + 𝑐1(𝑛−2) + 𝑐1(𝑛−1) − (𝑐1(𝑛−1))
0 0 ⋅ ⋅ ⋅ − (𝑐1(𝑛−1)) 𝑚1(𝑛−1)𝑠2 + 𝑐1(𝑛−1) + 𝑐20

]]]]]]]]]]
]

= K (𝑠) . (28)

The resulting matrix is the square one and its determinant
detK(𝑠) = 0 is the characteristic equation of the identified
system (Figure 5). As a result of expansion of the determinant
of matrix equation (28), an algebraic equation of the degree2(𝑛 + 1) is obtained with respect to the unknown 𝑠. This
equation has 2(𝑛 + 1) roots, which are complex conjugated
numbers and whose values are equal to the predetermined
resonance frequencies.

Using the stiffness matrix, one should determine the
algebraic complement𝑀𝑥(𝑛+1)(𝑠), which takes the form

𝑀𝑥1 (𝑠) = 𝐷11 (K) = (−1)1+1 󵄨󵄨󵄨󵄨𝐾11󵄨󵄨󵄨󵄨
𝑀𝑥2 (𝑠) = 𝐷12 (K) = (−1)1+2 󵄨󵄨󵄨󵄨𝐾12󵄨󵄨󵄨󵄨
𝑀𝑥3 (𝑠) = 𝐷13 (K) = (−1)1+3 󵄨󵄨󵄨󵄨𝐾13󵄨󵄨󵄨󵄨

...
𝑀𝑥(𝑛+1) (𝑠) = 𝐷1(𝑛+1) (K) = (−1)1+(𝑛+1) 󵄨󵄨󵄨󵄨𝐾1(𝑛+1)󵄨󵄨󵄨󵄨 .

(29)

For such determined complements, one proceeds with
decomposition of the function 𝑍𝑅(𝑠). The function 𝑍𝑅(𝑠) =𝐿𝑅(𝑠)/𝑀(𝑠) is denoted in the form of a quotient of two
polynomials, whose numerator is multiplied by the Laplace
operator and∏𝑛−1𝑖=1𝑚1𝑖, as follows:

𝑍𝑅 (𝑠) = 𝐿𝑅 (𝑠)𝑀 (𝑠) 󳨐⇒
𝑠𝐿𝑅 (𝑠)∏𝑛−1𝑖=1𝑚1𝑖

𝑀(𝑠) = 𝐿𝐹1 (𝑠)𝑀𝑥1 (𝑠) , (30)

where𝑀𝑥1(𝑠) is the algebraic complement of stiffness matrix
equation (28).

After dividing in (30) the numerator by the denominator,
we obtain

𝐿𝐹1 (𝑠)𝑀𝑥1 (𝑠) = 𝐹𝑥1 (𝑠) +
𝐿𝐹2 (𝑠)𝑀𝑥1 (𝑠) = 𝑎1𝑠 + 𝑏1 +

𝐿𝐹2 (𝑠)𝑀𝑥1 (𝑠) , (31)

where the designated parameters are components of the
sought active force.

In the next step, the numerator obtained from (31) should
be divided by the matrix determinant, designated in (29):

𝐿𝐹2 (𝑠)𝑀𝑥2 (𝑠) = 𝐹𝑥2 (𝑠) +
𝐿𝐹3 (𝑠)
𝑀𝑥2 (𝑠) = 𝑎2𝑠 + 𝑏2 +

𝐿𝐹3 (𝑠)
𝑀𝑥2 (𝑠) . (32)

On the basis of the function 𝐿𝐹3(𝑠), the successive compo-
nents of the force 𝐹(𝑠) are determined in the next way:

𝐿𝐹3 (𝑠)
𝑀𝑥3 (𝑠) = 𝐹𝑥3 (𝑠) +

𝐿𝐹4 (𝑠)𝑀𝑥3 (𝑠) = 𝑎3𝑠 + 𝑏3 +
𝐿𝐹4 (𝑠)𝑀𝑥3 (𝑠) . (33)

Dividing process is continued until the remainder is not
obtained after dividing the numerator by the denominator,
which is noted as follows:

𝐿𝐹𝑛 (𝑠)
𝑀𝑥𝑛 (𝑠) = 𝐹𝑥𝑛 (𝑠) = 𝑎𝑛𝑠 + 𝑏𝑛. (34)

Finally the components of the force take the next form:

𝐹 (𝑠) = − (𝑎1𝑠 + 𝑏1 + 𝑎2𝑠 + 𝑏2 + 𝑎3𝑠 + 𝑏3 ⋅ ⋅ ⋅ + 𝑎𝑛𝑠 + 𝑏𝑛) 󳨐⇒
𝐹 (𝑥̇, 𝑥, 𝑡) = − (𝑎1𝑥̇1 (𝑡) + 𝑏1𝑥1 (𝑡) + 𝑎2𝑥̇2 (𝑡) + 𝑏2𝑥2 (𝑡)
+ ⋅ ⋅ ⋅ + 𝑎𝑛𝑥̇𝑛 (𝑡) + 𝑏𝑛𝑥𝑛 (𝑡)) ,

(35)

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, . . . , 𝑎𝑛, 𝑏𝑛 are values determined during
the conducted synthesis, 𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡) are general-
ized coordinates of the adequate inertia components, and𝑥̇1(𝑡), 𝑥̇2(𝑡), . . . , 𝑥̇𝑛(𝑡) are generalized velocities of the partic-
ular inertia components.

As a result of the conducted synthesis of systems with
active vibration reduction, the system is obtained (Figure 6),
whose structure and values of determined parameters meet
the required dynamic properties.

3.3. Numerical Example. Let us give the dynamic properties,
in the form of resonance and antiresonance frequencies, and
the amplitude value of the sought system:

𝜔𝑝1 = 121 rad/s,
𝜔𝑝2 = 175 rad/s,
𝜔𝑝3 = 330 rad/s
𝜔𝑧1 = 148 rad/s,
𝜔𝑧2 = 252 rad/s
𝐴𝑝3 = 0,0003m.

(36)

It is assumed that the structure of the sought system is in the
form of a cascade model shown in Figure 7.
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Figure 4: Graphical interpretation of the method for damping coefficient determination.

The analytic form of the dynamic characteristics describ-
ing the desired dynamic properties, in the case of active vibra-
tion reduction, takes the following form of the impedance:
𝑍 (𝑠)

= (𝑠
2 + 1212) (𝑠2 + 1752) (𝑠2 + 2ℎ𝑏3𝑠 + 3302 + ℎ2𝑏3)

𝑠 (𝑠2 + 1482) (𝑠2 + 2522) ,
for 𝐻 = 1.

(37)

On the basis of such adopted dynamic characteristics equa-
tion (37), the graph of admittance 𝑉(𝑠, ℎ) and the plane
corresponding to the desired amplitude 𝐴𝑝3 = 0,0003m is
determined. The set of points obtained by the intersection
of the two graphs (see Figure 4) determines the appropriate
indication of the value of the sought decrease coefficient ℎ𝑝3:
𝑉 (𝑠, ℎ) = 1

𝑠𝑍 (𝑠, ℎ)

= (𝑠2 + 1482) (𝑠2 + 2522)
(𝑠2 + 1212) (𝑠2 + 1752) (𝑠2 + 2ℎ𝑝3𝑠 + 3302 + ℎ2𝑝3)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝜔𝑝3
𝑉𝐴 (𝑠, ℎ) = 𝐴𝑝3.

(38)

The determined damping coefficient takes the following
value:

ℎ𝑝3 = 2,7 rad/s. (39)
Including (39) in (37), one obtains the impedance function in
the form

𝑍 (𝑠) = (𝑠
2 + 1212) (𝑠2 + 1752) (𝑠2 + 5,4𝑠 + 332,72)

𝑠 (𝑠2 + 1482) (𝑠2 + 2522) ,
𝑍 (𝑠) = 𝑍𝑈 (𝑠) + 𝑍𝑅 (𝑠)

= (𝑠
2 + 1212) (𝑠2 + 1752) (𝑠2 + 3302)
𝑠 (𝑠2 + 1482) (𝑠2 + 2522)

+ (𝑠
2 + 1212) (𝑠2 + 1752) (5,4𝑠 + 2,72)

𝑠 (𝑠2 + 1482) (𝑠2 + 2522) .

(40)

As a result of decomposition of the function 𝑍𝑈(𝑠) with the
mixed method of the synthesis, parameters equation (41) of
the identified system is obtained:

𝑍𝑈 (𝑠) = 𝑚∞𝑠 + 𝑐10𝑠
+ 1
𝑠
𝑐11 +

1
𝑚11𝑠 + 1

𝑠
𝑐12 +

1
𝑚12𝑠 + 𝑐20𝑠

,
(41)

where 𝑚∞ = 1,000 kg, 𝑚11 = 1,39 kg, 𝑚12 = 6,944 kg, 𝑐11 =51206,26N/m, 𝑐12 = 33036,34N/m, 𝑐10 = 17551,74N/m,
and 𝑐20 = 139356,47N/m.

In the next step the values of the active force (Figure 7) are
determined, acting on the inertial component𝑚∞, in respect
to which the system response is generated. To realize this one
should determine the stiffness matrix of the resulting system
(Figure 7):

K (𝑠)

= [[[
[

𝑚∞𝑠2 + 𝑐11 + 𝑐10 − (𝑐11) 0
− (𝑐11) 𝑚11𝑠2 + 𝑐1 + 𝑐11 + 𝑐12 − (𝑐12)
0 − (𝑐12) 𝑚12𝑠2 + 𝑐12 + 𝑐20

]]]
]
. (42)

Based on resulting stiffness matrix equation (42), the alge-
braic complement in accordance with the presented equa-
tions is determined:

𝑀𝑥1 (𝑠) = 𝐷11 (K) = (−1)1+1 󵄨󵄨󵄨󵄨𝐾11󵄨󵄨󵄨󵄨
𝑀𝑥2 (𝑠) = 𝐷12 (K) = (−1)1+2 󵄨󵄨󵄨󵄨𝐾12󵄨󵄨󵄨󵄨
𝑀𝑥3 (𝑠) = 𝐷13 (K) = (−1)1+3 󵄨󵄨󵄨󵄨𝐾13󵄨󵄨󵄨󵄨 .

(43)
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Figure 5: Physical implementation of dynamical characteristics in the form of a continued fraction sum.
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Figure 6: Structure of the system searched including the active damping force.
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Figure 7: Model of structure of the sought system including the active damping force.
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Figure 8: Dynamical characteristics for the admittance of systems
obtained as a result of active vibration reduction performed by using
the direct method.

The rational function 𝑍𝑅(𝑠), in the form of a quotient of two
polynomials, should be presented in the following form:

𝑍𝑅 (𝑠) = 𝐿𝑅 (𝑠)
𝑀𝑥1 (𝑠) 󳨐⇒

∏𝑛−1𝑖=1𝑚1𝑖𝑠𝐿𝑅 (𝑠)
𝑀𝑥1 (𝑠)

= (𝑠
2 + 1212) (𝑠2 + 1752) (5,4𝑠 + 2,72)

(𝑠2 + 1482) (𝑠2 + 2522) ,

(44)

where 𝑀𝑥1(𝑠) is algebraic complement of stiffness matrix
equation (42).

After dividing in (44) the numerator by the denominator,
we obtain

𝐿𝐹1 (𝑠)𝑀𝑥1 (𝑠) = 𝐹𝑥1 (𝑠) +
𝐿𝐹2 (𝑠)𝑀𝑥1 (𝑠) = 5,4𝑠 + 7,29 +

−216766,8𝑠3 − 292635,2𝑠2 − 5090099351,4𝑠 − 6871634124,4
(𝑠2 + 1482) (𝑠2 + 2522) . (45)

The numerator 𝐿𝐹2(𝑠) is divided by the determinant of the
matrix𝑀𝑥2(𝑠), in accordance with (45), obtaining the param-
eters of force equation (46) that depended on the generalized
coordinate associated with the inertial component𝑚11:
𝐿𝐹2 (𝑠)𝑀𝑥2 (𝑠)
= −216766,8𝑠3 − 292635,2𝑠2 − 5090099351,4𝑠 − 6871634124,436839𝑠2 + 914571562,3
= 𝐹𝑥2 (𝑠) + 𝐿𝐹3 (𝑠)𝑀𝑥2 (𝑠)
= −5,88𝑠 − 7,943 + 291391756,7𝑠 + 393378871,536839𝑠2 + 914571562,3 .

(46)

Dividing, in the further step, 𝐿𝐹3(𝑠) from (46) by𝑀𝑥3(𝑠), the
components of the force𝐹(𝑠), depending on the displacement
of the inertial component, are determined obtaining

291391756,7𝑠 + 393378871,5
175263092,9 = 𝐹𝑥3 (𝑠)

= 1,66𝑠 + 2,44.
(47)

As a result of the decomposition of the function 𝑍𝐹(𝑠), the
obtained force takes the form

𝐹 (𝑠) = − (5,4𝑠 + 7,29 − 5,88𝑠 − 7,943 + 1,66𝑠 + 2,44) 󳨐⇒
𝐹 (𝑥̇, 𝑥, 𝑡) = − (5,4𝑥̇1 (𝑡) + 7,29𝑥1 (𝑡) − 5,88𝑥̇2 (𝑡)
− 7,943𝑥2 (𝑡) + 1,66𝑥̇2 (𝑡) + 2,44𝑥2 (𝑡)) .

(48)

As the method for verification of the solutions obtained
as a result of vibration reduction, the characteristics of the
system admittance have been determined (Figure 7). It was
assumed that on the system acts unit excitation force with

the frequency equal to the reduced frequency. The generated
dynamic characteristic (Figure 8) confirms the correctness of
carried out vibration reduction.

4. Conclusions

Thesynthesismethods, presented in authors’ works, and their
formulation and formalization allow finding a mechanical
system and adopting its nature of functioning and then
determining the values of the actuating force. The value of
this force should be such determined that the movement
of this system would be consistent with the requirements
assumed with regard to the characteristic function. The
positive solution of this problem allows conducting qualita-
tively new research as well as obtaining new solutions and
generalizations that are difficult to predict with the previously
used methods of description and designing the systems
with specific dynamic properties. The formalism, presented
in works, forms the basis for the development of software
systems designated for the passive and active synthesis of
mechanical systems. The paper presents also the conditions
for physical realization of the dynamic characteristics that
describe the dynamic properties of the sought structure. The
designated control forces may be the measure of structural
sensitiveness of systems with characteristics that meet the
same dynamic properties. Such approach is caused by the
variety of values of forces obtained depending on the system
subjected to active vibration reduction. It is possible to
conclude that the smaller the value of the control force, the
greater the structural sensitiveness of the system to the change
of the reduced resonance frequency. Moreover, the set of
values of meeting the same dynamic properties could be used
to optimize the system control forces because of the desired
vibration amplitude.
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