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The global bifurcations and chaotic dynamics of a thin-walled compressor blade for the resonant case of 2 : 1 internal resonance and
primary resonance are investigated. With the aid of the normal theory, the desired form associated with a double zero and a pair of
pure imaginary eigenvalues for the global perturbation method is obtained. Based on the simpler form, the method developed by
Kovacic and Wiggins is used to find the existence of a Shilnikov-type homoclinic orbit. The results obtained here indicate that the
orbit homoclinic to certain invariant sets for the resonance case which may lead to chaos in the sense of Smale horseshoes for the
system. The chaotic motions of the rotating compressor blade are also found by using numerical simulation.

1. Introduction

Compressor blades are widely used in many fields of
aerospace, aeronautic engineering, and mechanical industry
due to their excellent mechanical properties. The problem of
nonlinear dynamics of the rotating blades had attracted lots
of research interest during the past decade. Various strategies
and approaches have been proposed for nonlinear dynamics
of rotating blades (see, e.g., [1–15]). However, theoretical
analysis of global dynamics of the rotating blades has not
been concerned in the current available literature. Several
researchers have examined the global behaviors of plates,
beams, and belt (see, e.g., [16–22]), but the results cannot be
directly extended to the case of rotating blades.

Yang and Tsao investigated the vibration and stability of
a pretwisted blade under nonconstant rotating speed in [1],
and they also predicted the time-dependent rotating speed
leads to a system with six parametric instability regions
in primary and combination resonances. Surace et al. [2]
dealt with the coupled bending-bending-torsion vibration of
rotating pretwisted blades. Şakar and Sabuncu [3] presented
the static stability and the dynamic stability of an aerofoil
cross section rotating blade subjected to an axial periodic
force and took into account the effects of coupling due to
the center of flexure distance from the centroid, rotational

speed, disk radius, and stagger angle. Al-Bedoor and Al-
Qaisia [4] used a reduced-order nonlinear dynamic model
to research the steady-state response of the rotating blade
under the main shaft torsional vibration. Tang and Dowell
[5] analyzed the nonlinear response of a nonrotating flexible
rotor blade subjected to periodic gust excitations theoreti-
cally and experimentally. They reported that there exists a
periodic or possibly chaotic behavior in the blade. Choi and
Chou [6] studied the dynamic response of turbomachinery
blades with general end restraints by applying the modified
differential quadraturemethod. AMonte Carlo approach was
employed to explore a supercritical Hopf bifurcation and
random bifurcation of a two-dimensional nonlinear airfoil
in turbulent flow by Poirel and Price [7]. Lacarbonara et
al. [8, 9] established the governing equations of the blades
under the centrifugal forces and discussed linear modal
properties and the nonlinear modes of vibration away from
internal resonances, respectively. Yao et al. [10] performed
a nonlinear dynamic analysis of the rotating blade with
varying rotating speed under high-temperature supersonic
gas flow; furthermore, they [11] explored the contributions of
nonlinearity, damping, and rotating speed to the steady-state
nonlinear responses of the rotating blade, and they also inves-
tigated the effects of the rotating speed on nonlinear oscil-
lations of the blade. Wang and Zhang discussed the stability
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of a spinning blade having periodically time varying coeffi-
cients for both linear model and geometric nonlinear model
and obtained the stability boundary of linear model and
stability of steady-state solutions of nonlinear model in [12].

Inmany cases, blades are usuallymodeled as a pretwisted,
presetting, thin-walled rotating cantilever beam because
the shape of the blade is very complex. Many researchers
carried out studies on the dynamic behavior of the beam
of this kind and obtained a lot of valuable results (see, e.g.,
[13–15]). Several methods have been developed to research
the global bifurcation behaviors and chaotic dynamics in
nonlinear systems that possess homoclinic or heteroclinic
orbits. There are three methods: Melnikov method, global
perturbation method, and energy-phase method. Melnikov
gave the condition under which a homoclinic orbit in the
unperturbation system would break under perturbation and
at last lead to chaos in the system. Based onMelnikovmethod,
Wiggins studied the global behaviors of the three basic
systems [23]. Then, Kovacic and Wiggins [24] developed
the global perturbation method to present Shilnikov-type
homoclinic orbit for resonant system. The energy-phase
method proposed byHaller andWiggins [25, 26] detected the
existence of single-pulse and multipulse homoclinic orbits
in a class of near Hamilton systems. Applying the latter two
methods, there were many applications to investigate the
global behaviors (see, e.g., [16–22]).

In this paper, we obtain a sufficient condition for the
existence of Shilnikov-type homoclinic orbit of a compressor
blade with 2 : 1 internal resonance and primary resonance
using normal form theory and global perturbation method.
Firstly, the formulas of the simpler normal form associated
with a double zero and a pair of pure imaginary eigenvalues
are derived by normal form theory in Section 2. Then, the
dynamics of unperturbed system and perturbed system are
analyzed in Sections 3 and 4 in detail, respectively. The
analysis indicate that Shilnikov-type homoclinic orbit exists
in these cases. Finally, numerical simulations are given to
confirm the result in Section 5 and the work ends in Section 6
with a short summary.

2. Formulation of the Problem

A thin-walled compressor blade of gas turbine engines with
varying speed under high-temperature supersonic gas flow is
considered in [11]. It is modeled as a pretwisted, presetting,
thin-walled rotating cantilever beam, considering the geo-
metric nonlinearity, centrifugal force, the aerodynamic load,
and the perturbed angular speed.

The pretwisted flexible cantilever blade, with length 𝐿

mounted on a rigid hub with radius 𝑅
0
, is considered [11]. It

rotates at a varying rotating speed Ω(𝑡) around its polar axis
whereΩ(𝑡) = Ω

0
+𝑓 cosΩ

1
𝑡, whereΩ

0
is the rotating speed at

the steady-state and 𝑓 cosΩ
1
𝑡 is a periodic perturbation. It is

also allowed to vibrate flexurally in the planemaking an angle
𝛾, as shown in Figure 1(a). The rotating blade is treated as a
pretwisted, presetting, thin-walled rotating cantilever beam.
The length and width of the cross section of the beam in the 𝑥
and 𝑦 directions are 𝑎 and 𝑏, respectively, and the thickness of
the thin-walled beam is ℎ. For the purpose of describing the

motion of the rotating blade, different coordinate systems are
needed.The origin of the rotating coordinate system (𝑥, 𝑦, 𝑧)

is located at the blade root, 𝑥𝑝 and 𝑦𝑝 are the principal axes
of an arbitrary beam cross section in the local coordinates
(𝑥
𝑝
, 𝑦
𝑝
, 𝑧
𝑝
) (Figure 1(b)), and the transformations between

two coordinate systems are shown as 𝑥 = 𝑥
𝑝 cos(𝛾 + 𝛽(𝑧)) −

𝑦
𝑝 sin(𝛾+𝛽(𝑧)) and𝑦 = 𝑥

𝑝 sin(𝛾+𝛽(𝑧))+𝑦𝑝 cos(𝛾+𝛽(𝑧)), 𝑧 =
𝑧
𝑝. 𝛽
0
is denoted as the pretwist at the beam tip; then, 𝛽(𝑧) =

𝛽
0
𝑧/𝐿 is the pretwist angle of a current beam cross section.

The local coordinate system (𝑠, 𝑡, 𝑛) is defined on the cross
section of the beam to describe the geometric configuration
and the cross section, where 𝑠 and 𝑛 are the circumferential
and thickness coordinate variables in Figure 1(c); the notion
(𝑋, 𝑌, 𝑍) represents the points off the middle surface; it is
different from the notion (𝑥, 𝑦, 𝑧); the relationship is 𝑋 =

𝑥 + 𝑛(𝑑𝑦/𝑑𝑠) and 𝑌 = 𝑦 − 𝑛(𝑑𝑥/𝑑𝑠). Assume that (𝑢, V, 𝑤)
and (𝑢

0
, V
0
, 𝑤
0
) represent the displacements of an arbitrary

point and a point in the middle surface of the rotating blades
on the 𝑥, 𝑦, and 𝑧 directions, respectively. 𝜃

𝑥
and 𝜃
𝑦
represent

the rotations about the 𝑥- and 𝑦-axis, respectively.
Based on the isotropic constitutive law, the nonlinear

partial differential governing equations of motion for the
pretwist, presetting, thin-walled rotating cantilever beam
were derived by using Hamilton’s principle in [11]. Then,
Galerkin procedure was applied to obtain the dimensionless
governing differential equations of nonlinear vibration for the
rotating blade by Yao et al. as follows:
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(1)

where 𝑝(𝑡) and 𝑞(𝑡) are the amplitudes of normal modes, 𝜔
1

and 𝜔
2
are normal frequencies, and 𝛽

12
, 𝛽
13
, 𝛽
22
, and 𝛽

23
are

damping parameters. 𝛽
5
plays the role of the nonlinearity, 𝑓

is the amplitude of excitation, and all the expressions of the
coefficients can be found in [11].

We study the case of 2 : 1 internal resonance and primary
resonance; the resonant relations are represented as𝜔2

1
= Ω
2

1
+

𝜀𝜎
1
and 𝜔2

2
= (1/4)Ω

2

2
+ 𝜀𝜎
1
,Ω
1
= 1, where 0 < 𝜀 ≪ 1 and 𝜎

1

and 𝜎
2
are two detuning parameters.

Using the method of multiple scales, the averaged equa-
tions were obtained as follows [11]:
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Figure 1: The rotating cantilever beam mode: (a) general view with the global coordinate system, (b) cross section of the rotating beam, and
(c) local coordinate systems of the cross section.
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Equations (2) have a zero solution (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) =

(0, 0, 0, 0). Without the perturbation parameter 𝛽
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The characteristic equation corresponding to the zero solu-
tion is
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For convenience of the following analysis, let �̃�
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the eigenvalues of system (2) without parameter 𝑟
4
have a

nonsemisimple double zero and a pair of pure imaginary
eigenvalues 𝜆
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2
, 𝜇
1
, 𝜇
2
, and 𝑟

4
as the

perturbation parameters; then, (2) without the perturbation
parameters becomes
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In this case, we have

(
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0 0
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0 0 0
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). (6)

Using the method in [27], a third-order normal form of (5) is
obtained as
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Normal form with perturbation parameters of system (2) is
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We need to transform system (8) to a desired form in order to
apply the global perturbation method. Let 𝜇

𝑖
→ 𝜀𝜇
𝑖
(𝑖 = 1, 2)

and 𝑟
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And substituting (9) into the normal form (8) yields
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0
and 𝐻

1
are of the

following form:

𝐻
0
=
1

2
V2 −

1

4
𝑢
2
𝑟
3
𝐼 +

𝑢
2

2
𝜇
2
−

3

16
𝑟
4
𝑢
4
− �̃�
1
𝐼

−
3

16
𝑟
3
𝐼
2
,

𝐻
1
= −√𝐼𝑟

4
sin𝜙,

(12)

where 𝜇
2
= 𝜇
2

2
− 𝜎


2
(1 − 𝜎



2
).
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Figure 2: Phase portrait of the unperturbed system in the 𝐼−2𝜇
2
/𝑟
3

space.

3. Dynamics of the Unperturbed System

Setting 𝜀 = 0 in system (10), we obtain the unperturbed
system. Obviously, the variable 𝐼 is a constant since �̇� = 0,
and the first three equations are completely independent of
𝜙. Thus, we obtain two uncoupled single-degree-of-freedom
nonlinear systems:

�̇� = V,

V̇ = 𝑢(
1

2
𝑟
3
𝐼 − 𝜇
2
) +

3

4
𝑟
3
𝑢
3
.

(13)

All possible fixed points in (𝑢, V) phase space can be classified
as

𝑃
1
: 𝑢 = V = 0;

𝑃
±

2
: 𝑢 = ±√

4𝜇
2
− 2𝑟
3
𝐼

3𝑟
3

, V = 0,

(14)

where (4𝜇
2
− 2𝑟
3
𝐼)/3𝑟
3
> 0; that is, 𝐼 < 2𝜇

2
/𝑟
3
as 𝑟
3
< 0 or

𝑟
3
> 0.When 𝐼 > 2𝜇

2
/𝑟
3
, the only solution of system (13) is𝑃

1
,

and from the Jacobianmatrix evaluated at the trivial solution,
𝑃
1
is a saddle point. At 𝐼 = 2𝜇

2
/𝑟
3
, the trivial solution may

bifurcate into three solutions through a pitchfork bifurcation.
From the Jacobian matrices evaluated at 𝑃

1
and 𝑃

±

2
, it is

known that 𝑃
1
is a center and 𝑃±

2
are two saddle points. The

phase portrait is illustrated in Figure 2.
From transformation (9), the variables 𝐼 and 𝑟 may

actually represent the amplitude and phase of nonlinear
oscillations. Therefore, assume that variable 𝐼 ≥ 0 and put
𝐼
1
= 0 and 𝐼

2
= 2𝜇
2
/𝑟
3
, such that, for all 𝐼 ∈ [𝐼

1
, 𝐼
2
], system

(13) has two saddle points 𝑃
2
and one center 𝑃

1
, which is

connected by heteroclinic orbits (𝑢ℎ(𝑇
1
, 𝐼), Vℎ(𝑇

1
, 𝐼)). In four-

dimensional space (𝑢, V, 𝐼, 𝜙), the set defined by

𝑀 = {(𝑢, V, 𝐼, 𝜙) | 𝑢 = ±√
4𝜇
2
− 2𝑟
3
𝐼

3𝑟
3

, V = 0, 0 < 𝐼

<
2𝜇
2

𝑟
3

, 0 ≤ 𝜙 ≤ 2𝜋}

(15)

is a two-dimensional invariant manifold and it is normally
hyperbolic [24].

I

u2

u1
𝜙

M0

×

Figure 3: The geometric structures of𝑀
0
and Γ.

𝑀 has a three-dimensional stable manifold 𝑊
𝑠
(𝑀) and

an unstable manifold𝑊𝑢(𝑀). Then, from [24], the existence
of the heteroclinic orbits implies that 𝑊𝑠(𝑀) and 𝑊

𝑢
(𝑀)

intersect nontransversally along a three-dimensional hetero-
clinic manifold denoted by Γ, which can be written as

Γ = 𝑊
𝑠
(𝑀) ∩𝑊

𝑢
(𝑀) = {(𝑢, V, 𝐼, 𝜙) | 𝑢

= 𝑢
ℎ
(𝑇
1
, 𝐼) , V = Vℎ (𝑇

1
, 𝐼) , 0 < 𝐼 <

2𝜇
2

𝑟
3

, 𝜙

= ∫

𝑇
1

0

𝐷
𝐼
𝐻
0
(𝑢
ℎ
(𝑠, 𝐼) , Vℎ (𝑠, 𝐼) , 𝐼) 𝑑𝑠 + 𝜙

0
} ,

(16)

where 𝜙
0
is a constant determined by the initial conditions.

The geometric structures of the stable and unstablemanifolds
of 𝑀 and Γ are shown in Figure 3. It is seen that (13) is a
Hamilton system with Hamiltonian

𝐻(𝑢, V) =
1

2
V2 −

𝜂

2
𝑢
2
+

3

16
𝑟
3
𝑢
4
, (17)

where 𝜂 = 𝜇
2
− (1/2)𝑟

3
𝐼. Then, we get the expressions of the

pair of heteroclinic orbits as follows:

𝑢 = ±2√
𝜂

3𝑟
3

tanh(
√2𝜂

2
𝑇
1
) ,

V (𝑇
1
) = ±√

2

3𝑟
3

𝜂 sech2 (
√2𝜂

2
𝑇
1
) .

(18)

The dynamics restricted to the invariant manifold 𝑀 are
described by the following equations:

�̇� = 0, (19a)

�̇� = �̃�
1
+
3

8
𝑟
3
𝐼 +

1

4
𝑟
3
𝑢
2
, (19b)

where 𝐼
1
≤ 𝐼 ≤ 𝐼

2
. From (19b), we have periodic orbits which

are circles for each 𝐼 when �̃�
1
+ (3/8)𝑟

3
𝐼 + (1/4)𝑟

3
𝑢
2

̸= 0,
and the corresponding circle is a circle of fixed points when
�̃�
1
+ (3/8)𝑟

3
𝐼 + (1/4)𝑟

3
𝑢
2
= 0; that is, 𝐼 = 𝐼

𝑟
= (−8𝜇

2
−

24�̃�
1
)/5𝑟
3
.As homoclinic orbit in (𝐼, 𝜙) plane is a heteroclinic

connection in the four-dimensional (𝑢, V, 𝐼, 𝜙) space which is
shown in Figure 4, 𝐼

𝑟
is called resonance due to the vanishing

frequency of rotation along the 𝜙 direction, and when 𝐼 ̸= 𝐼
𝑟
,

Δ𝜙 is not defined.
Now, we consider the phase shift:

Δ𝜙 = 𝜙 (+∞, 𝐼
𝑟
) − 𝜙 (−∞, 𝐼

𝑟
) . (20)
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Figure 5: The phase shift Δ𝜙 defined in (23).

Substituting (18) into (19b) yields

�̇� = �̃�
1
+
3

8
𝑟
3
𝐼
𝑟
+
𝜂

3
tanh2 (

√2ℎ

2
𝑇
1
) . (21)

Integrating (21) yields

𝜙 (𝑇
1
) = (�̃�

1
+
3

8
𝑟
3
𝐼
𝑟
+
𝜂

3
)𝑇
1

−
√2𝜂

3
tanh(

√2𝜂

2
𝑇
1
) + 𝜙

0
.

(22)

Thus, the phase shift is expressed as

Δ𝜙 = −
2√2𝜂

3
. (23)

Δ𝜙 is a function of 𝜂. It is illustrated in Figure 5.

4. Dynamics of the Perturbed System

As the manifold 𝑀 along with its stable manifold 𝑊
𝑠
(𝑀)

and unstable manifold𝑊𝑢(𝑀) is invariant under sufficiently
small perturbations [24], under perturbation (when 𝜀 ̸= 0),

𝑀 becomes a locally invariant two-dimensional manifold𝑀
𝜀

described as follows:

𝑀
𝜀
= {(𝑢

𝜀
, V
𝜀
, 𝐼, 𝜙) | 𝑢

𝜀
(𝐼, 𝜙) = ±2√

𝜂

3𝑟
3

+ 𝜀𝑢
1
(𝐼, 𝜙)

+ 𝑜 (𝜀
2
) , V
𝜀
(𝐼, 𝜙) = 0 + 𝜀V

1
(𝐼, 𝜙) + 𝑜 (𝜀

2
) , 0 < 𝐼

<
2𝜇
2

3𝑟
3

, 0 ≤ 𝜙 ≤ 2𝜋} .

(24)

The flow on𝑀
𝜀
is obtained by substituting (𝑢

𝜀
, V
𝜀
) into (10):

�̇� = −2𝜀𝜇
1
𝐼 − 𝜀𝑟

4
√𝐼 cos𝜙 + 𝑜 (𝜀2) ,

�̇� = �̃�
1
+
3

8
𝑟
3
𝐼 +

1

4
𝑟
3
𝑢
2
+
𝜀𝑟
4
sin𝜙
2√𝐼

+ 𝑜 (𝜀
2
) .

(25)

Introduce the scale transformations

𝐼 = 𝐼
𝑟
+ √𝜀ℎ,

𝜏 = √𝜀𝑇
1
.

(26)

Substituting transformations (26) into (25) yields

ℎ

= −2𝜇

1
𝐼
𝑟
− √𝐼
𝑟
𝑟
4
cos𝜙 − √𝜀ℎ(2𝜇

1
+

𝑟
4

2√𝐼

cos𝜙)

+ 𝑜 (𝜀) ,

𝜙

=

1

24
𝑟
3
ℎ +

𝑟
4
sin𝜙
2√𝐼

√𝜀 + 𝑜 (𝜀) .

(27)

When 𝜀 = 0, (27) is reduced to

ℎ

= −2𝜇

1
𝐼
𝑟
− √𝐼
𝑟
𝑟
4
cos𝜙,

𝜙

=

1

24
𝑟
3
ℎ,

(28)

which is a Hamilton system with Hamiltonian

𝐻(ℎ, 𝜙) = −2𝜇
1
𝐼
𝑟
𝜙 − √𝐼

𝑟
𝑟
4
sin𝜙 + 1

12
𝑟
3
ℎ
2
. (29)

The fixed points of Hamilton system (28) are given by

𝑝 (0, 𝜙
𝑠
) = (0, 𝜋 − arccos(

2𝜇
1
√𝐼
𝑟

𝑟
4

)) ,

𝑞 (0, 𝜙
𝑐
) = (0, 𝜋 + arccos(

2𝜇
1
√𝐼
𝑟

𝑟
4

)) .

(30)

The Jacobian matrix of (28) evaluated at these fixed points is

𝐽 = (

0 √𝐼
𝑟
𝑟
4
sin𝜙
𝑠,𝑐

1

24
𝑟
3

0

) . (31)

It is easy to find that 𝑝 is a saddle point and 𝑞 is a center.
Therefore, there exists a homoclinic orbit connecting 𝑝 to
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Figure 6: Dynamics of unperturbed system (28) on𝑀
𝜀
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Figure 7: Dynamics of perturbed system (27) on𝑀
𝜀
.

itself. The phase portrait of system (28) is shown in Figure 6.
By the analysis of Kovacic and Wiggins [24], we can obtain
that, for sufficiently small 𝜀, 𝑝 remains a saddle point and 𝑞
becomes a hyperbolic sink 𝑞

𝜀
.

The phase portrait of perturbed system (27) is given
in Figure 7; Hamilton function remains constant on the
homoclinic orbit; that is,𝐻(0, 𝜙

𝑛
) = 𝐻(0, 𝜙

𝑠
); then, we have

− 2𝜇
1
𝐼
𝑟
𝜙
𝑛
− √𝐼
𝑟
𝑟
4
sin𝜙
𝑛

= −2𝜇
1
𝐼
𝑟
[𝜋 − arccos(

2𝜇
1
√𝐼
𝑟

𝑟
4

)]

− √𝐼
𝑟
𝑟
4
sin[𝜋 − arccos(

2𝜇
1
√𝐼
𝑟

𝑟
4

)] .

(32)

In order to consider the dynamics on𝑀
𝜀
in the neighbor-

hood of 𝐼 = 𝐼
𝑟
, an annulus 𝐴

𝜀
is defined as

𝐴
𝜀
= {(𝑢, V, ℎ, 𝜙) | 𝑢 = 𝑢 (𝐼

𝑟
+ √𝜀ℎ, 𝜙) , V

= V (𝐼
𝑟
+ √𝜀ℎ, 𝜙) , |ℎ| < ℎ

0
, 0 ≤ 𝜙 ≤ 2𝜋} ,

(33)

where ℎ
0
is a constant, which is chosen sufficient large so

that the unperturbed homoclinic orbits are enclosed within

the annulus. Denote 𝑊
𝑠
(𝐴
𝜀
) and 𝑊

𝑢
(𝐴
𝜀
) as the three-

dimensional stable and unstable manifolds of 𝐴
𝜀
, which are

subsets of 𝑊𝑠(𝐴
𝜀
) and 𝑊

𝑢
(𝐴
𝜀
), respectively. According to

the analysis of [24], the existence of an orbit homoclinic
to a saddle-focus point 𝑞

𝜀
can lead to chaos. This type of

homoclinic orbit is called Shilnikov-type homoclinic orbit.
The point 𝑞

𝜀
on 𝐴
𝜀
has an orbit that comes out of 𝐴

𝜀
in

the four-dimensional space and may return to the annulus;
it may approach 𝑞

𝜀
asymptotically as 𝑡 → ∞ and eventually

complete a Shilnikov-type homoclinic orbit as shown in
Figure 8.

We need to confirm the existence of a Shilnikov type
homoclinic orbit in two steps. First, we show 𝑊

𝑢
(𝐴
𝜀
) ⊂

𝑊
𝑠
(𝐴
𝜀
) by using Melnikov theory when Melnikov function

has a simple zero. Second, we determine whether or not the
trajectory in𝑊𝑢(𝐴

𝜀
) comes back in the domain of attraction

of 𝑞
𝜀
. Based on [24], the higher dimensional Melnikov

function is given as

𝑀
𝐼
𝑟 = ∫

+∞

−∞

(
𝜕𝐻
0

𝜕𝑢
𝑔
𝑢
+
𝜕𝐻
0

𝜕V
𝑔
V
+
𝜕𝐻
0

𝜕𝐼
𝑔
𝐼
)𝑑𝑇
1
. (34)

Using the division of integral method and the abovemen-
tioned analysis, (34) can be expressed as

𝑀
𝐼
𝑟 = ∫

+∞

−∞

(−
𝑑𝐻
1

𝑑𝑇
1

− 2𝜇
2
�̇�V + 2𝜇

1
𝐼
𝑟
�̇�) 𝑑𝑇

1

= 𝑀
1
+𝑀
2
+𝑀
3
.

(35)

With the aforementioned analysis, the first term can be
evaluated as

𝑀
1
= −∫

+∞

−∞

𝑑𝐻
1

𝑑𝑇
1

𝑑𝑇
1
= √𝐼𝑟

4
[sin𝜙 (+∞)

− sin𝜙 (−∞)] = √𝐼𝑟
4
[cos𝜙 (−∞) sinΔ𝜙

− sin𝜙 (−∞) (1 − cosΔ𝜙)]

= √𝐼𝑟
4
[

[

−
2𝜇
1
√𝐼

𝑟
4

sinΔ𝜙

+ √1 −
2𝜇
2

1
𝐼
𝑟

𝑟
2

4

(cosΔ𝜙 − 1)]

]

.

(36)

The second term can be simplified as

𝑀
2
= 2𝜇
2
∫

+∞

−∞

2

3𝑟
3

𝜂
2 sech4 (

√2𝜂

2
𝑇
1
)𝑑𝑇
1

= −
16√2𝜇

2
𝜂
3/2

9𝑟
3

𝐼=𝐼
𝑟

.

(37)

The third term is changed into

𝑀
3
= ∫

+∞

−∞

2𝜇
1
𝐼
𝑟
�̇� 𝑑𝑇
1
= 2𝜇
1
𝐼
𝑟
Δ𝜙. (38)
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Figure 8: Shilnikov-type homoclinic orbit to 𝑝
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.

By (36), (37), and (38), the Melnikov function may be ex-
pressed as

𝑀
𝐼
𝑟 = 𝑟
4
√𝐼[

[

−
2𝜇
1
√𝐼

𝑟
4

sinΔ𝜙

+ (cosΔ𝜙 − 1)√1 −
4𝜇
2

1
𝐼
𝑟

𝑟
2

4

]

]

−
16√2𝜇

2
𝜂
3/2

9𝑟
3

+ 2𝜇
1
𝐼
𝑟
Δ𝜙.

(39)

Now, we can require that the Melnikov function has a simple
zero. That is, we require

𝑟
4
√𝐼[

[

−
2𝜇
1
√𝐼

𝑟
4

sinΔ𝜙 + (cosΔ𝜙 − 1)√1 −
4𝜇
2

1
𝐼
𝑟

𝑟
4

]

]

−
16√2𝜇

2

9𝑟
3

𝜂
3/2

+ 2𝜇
1
𝐼
𝑟
Δ𝜙 = 0.

(40)

Next, we examine whether the orbit on𝑊𝑢(𝑞
𝜀
) returns to the

domain of attraction of 𝑞
𝜀
. The condition is given by

𝜙
𝑠
< 𝜙
𝑐
+ Δ𝜙 + 2𝑚𝜋 < 𝜙

𝑛
, (41)

where 𝑚 is an integer, 𝜙
𝑠
, 𝜙
𝑐
, and 𝜙

𝑛
are given by (30)

and (31), and Δ𝜙 is the change of angle. According to [24],
when conditions (40) and (41) are satisfied simultaneously,
there exists the Shilnikov-type chaos in the sense of Smale
horseshoes in system (2).

5. Numerical Simulation of Chaotic Motions

Nowfixed parameters are used in the abovementioned theory
to simplify the calculation. Letting

𝜇
1
= 𝜇
2
= 𝜇,

𝛽 =
2𝑟
4

𝜇
,

𝐼
𝑟
= 1,

(42)

0.05
0.1
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Figure 9: The zeros of Melnikov’s function.
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Figure 10: Graphs of 𝜙
𝑠
, 𝜙
𝑐
+ Δ𝜙, and 𝜙

𝑛
.

condition (41) becomes

𝛽

=
1 − cosΔ𝜙

√(cosΔ𝜙 − 1)2 + ((−36.28√2/9) 𝜂3/2 − Δ𝜙 + sinΔ𝜙)
2

. (43)

From (23),Δ𝜙 is a function of 𝜂; then, 𝛽 is a function of 𝜂.The
figure of 𝛽 shows that 𝛽 exists when 𝜂 ∈ (0, 1), so Melnikov
function 𝑀

𝐼
𝑟(𝛽, 𝜂) has a simple zero (Figure 9). 𝜙

𝑠
, 𝜙
𝑐
, and

𝜙
𝑛
are presented in Figure 10; we can see 𝜙

𝑠
< 𝜙
𝑐
+ Δ𝜙 < 𝜙

𝑛
;
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Figure 11:The chaoticmotions of the compressor blade based on (2): (a) the phase portrait on plane (𝑥
1
, 𝑥
2
), (b) the waveform on plane (𝑡, 𝑥

1
),

(c) the phase portrait on plane (𝑥
3
, 𝑥
4
), (d) the waveform on plane (𝑡, 𝑥

3
), (e) the phase portrait in three-dimensional space (𝑥

1
, 𝑥
2
, 𝑥
3
), and

(f) the phase portrait in three-dimensional space (𝑥
2
, 𝑥
3
, 𝑥
4
).

that is, condition (41) is satisfied. Then, 𝑞
𝜀
has a Shilnikov

homoclinic orbit for sufficiently small 𝜀. We choose (1) and
(2) to do numerical simulations. We use numerical approach
to explore the existence of chaotic motions of the rotating
thin-walled blade. In Figure 10, we show the existence of

the chaotic responses of the thin-walled blade to the forcing
excitation. 𝛽

16
= 8.8, and other parameters and initial condi-

tionswere chosen as𝜇 = 0.001,𝜎
1
= 12,𝛽

14
= 0,𝛽

5
= −17.64,

𝜇
2
= 0.001, 𝜎

2
= 11/40, Ω

0
= 5, 𝛽

24
= −4, 𝑥

10
= −0.052,

𝑥
20

= 0.061, 𝑥
30

= 0.042, and 𝑥
40

= −0.051. Figure 11
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Figure 12:The chaoticmotions of the compressor blade based on (1): (a) the phase portrait on plane (𝑥
1
, 𝑥
2
), (b) the waveform on plane (𝑡, 𝑥

1
),

(c) the phase portrait on plane (𝑥
3
, 𝑥
4
), (d) the waveform on plane (𝑡, 𝑥

3
), (e) the phase portrait in three-dimensional space (𝑥

1
, 𝑥
2
, 𝑥
3
), and

(f) the phase portrait in three-dimensional space (𝑥
2
, 𝑥
3
, 𝑥
4
).

shows the phase portraits on the planes (𝑥
1
, 𝑥
2
), (𝑥
3
, 𝑥
4
),

(𝑥
1
, 𝑥
2
, 𝑥
3
), (𝑥
2
, 𝑥
3
, 𝑥
4
) and the wave forms on plane (𝑡, 𝑥

1
),

(𝑡, 𝑥
3
) based on (2). With the same parameters, we get the

portraits on the planes (𝑥
1
, 𝑥
2
), (𝑥
3
, 𝑥
4
), (𝑥
1
, 𝑥
2
, 𝑥
3
), (𝑥
2
,

𝑥
3
, 𝑥
4
) and the wave forms on plane (𝑡, 𝑥

1
), (𝑡, 𝑥

3
) based

on (1). They are shown in Figure 12; the chaotic motion
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demonstrated in Figures 11 and 12 is Shilnikov-type multi-
pulse chaotic motion. Therefore, the numerical results agree
with the theoretical predictions qualitatively.

6. Conclusions

The global bifurcations and chaotic dynamics of the thin-
walled compressor blade with varying speed are investigated
for the first time by using the analytical and numerical
approaches simultaneously when the averaged equations
have one nonsemisimple double zero and a pair of pure
imaginary eigenvalues. The study is focused on coexistence
of 2 : 1 internal resonance and primary resonance. Normal
theory is utilized to find the explicit expressions of the
simpler normal form of the averaged equations with a double
zero and a pair of pure imaginary eigenvalues. Based on
the Melnikov method and its extensions to resonance cases
developed by Kovacic and Wiggins, the thin-walled com-
pressor blade can undergo homoclinic bifurcation and the
Shilnikov-type homoclinic orbit; that is, there exists chaotic
motion in full four-dimensional averaged system. Finally, the
Dynamics software is used to perform numerical simulation.
The numerical results show the existence of chaotic motions
in the averaged equations, which illustrate the predictions
obtained by the theoretical analysis. The chaotic motions
in averaged equations can lead to the amplitude modulated
chaotic oscillations in the original system under certain
conditions. Therefore, there are Shilnikov-type single-pulse
chaotic motions for the thin-walled rotating compressor
blade. This is the extension of the results obtained by Yao et
al. [11]. We believe that our results give a direct explanation
for the jumping behaviors observed in this class of the
compressor blade under in-plane and moment excitations.
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