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A modified soccer league algorithm is presented in this paper.The effect of stubborn fixed players is investigated and the algorithm
is implemented to three benchmark water distribution networks. The modified algorithm is compared to several algorithms. The
results show that themodified algorithmperforms better than the soccer league competition algorithm, in particular, on the average
number of evaluations required to find the optimal cost. Computational results show that the utility benefit of both the individual
player and team is essential. The algorithm becomes more reliable when utility benefits are high and as the number of fixed players
increases.

1. Introduction

Optimization techniques have been in recent years regarded
as important in line with technological advancement. The
reliability of these optimization techniques is essential in real
world applications [1–4]. Some techniques have been intro-
duced to improve system reliability such as the techniques
that increase reliability of system components and using
redundancy components in many different subsystems [5].
Several hybrid algorithms have been introduced to improve
performance of heuristics such as genetic algorithms [6],
simulated annealing [7], ant colony optimization system [8],
and particle swarm optimization [9].

Metaheuristic algorithms have been in recent years used
to solve water distribution systems such as Max-Min Ant
System [10], soccer league competition (SLC) [11], harmony
search optimization approach [12], and shuffled frog leaping
algorithm [13]. This research is motivated by the success of
the soccer league competition algorithm ofMoosavian [11] to
solve water distribution network problems.

The remainder of the paper is organised as follows. In
Section 2, a review and modification of SLC algorithm is
presented. Implementation of the modified SLC algorithm is
done in Section 3 and conclusions are drawn in Section 4.

2. Review and Modification of Soccer League
Competition (SLC) Algorithm

The successful implementation of the Soccer League Compe-
tition algorithm of Moosavian [11] to solve water distribution
network motivates this research. The soccer league algo-
rithm’s ideas are based on the soccer league and competition
among players and teams and is relatively new but its
promising results have motivated this research to explore the
possibilities of expansion of the algorithm.The soccer league
algorithm has the following steps.

Step 1. Initialisation of the problem and algorithm parame-
ters: this involves defining the objective function and decision
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variables. The number of seasons, teams in the league, fixed
players, and substitutes are determined in this step.

Step 2. Samples generation is carried out in this step of
the algorithm. The total number of players in the league is
calculated.

Step 3. Teams assessment is done by first arranging players
according to their power. The power of each team is equal to
the summation of power of each fixed player in the team.

Step 4. The league starts and competitions are initialised
between all possible pairs of the teams that are in the league.
Winners and losers in each match are determined. Imitation
operator is introduced to fixed players in the winning team.
The solution vector related to the fixed players in the team
is regarded as moving toward the best solution vector of the
league. A new fixed player is generated based on the solution
vector of the winner team’s fixed players. Provocation oper-
ator is introduced to screen the substitutes. The substitutes
need to prove that they are better than the fixed player in
the winner team. A new solution vector of substitutes in the
winner teammoves toward the solution direction of the fixed
players. If the new solution vector generated is better than the
older solution vector, the old solution vector is replaced (see
Moosavian [11] for details).

Step 5. League update is done after every season. The players
are arranged taking into account their updated power. Best
players are allocated to best teams, average performers to
average performing teams, and weakest players to bottom
teams in the league table.

Step 6. Steps 3, 4, and 5 are repeated until the number of
seasons required is achieved. Relegation of weakest teams and
promotion of better performing teams take place.

The third step of the SLC algorithm ismodified in order to
achieve a better assessment of the teams in the league. Since
power of fixed players in the team is used to determine the
power of the teams, an attempt to incorporate stubbornness
among the fixed players is carried out. It is a fact that
most super star players become stubborn due to praises and
they are usually assured of their fixed player status in most
teams. It is therefore imperative to include this fact in the
metaheuristic so as to improve its performance. Definitions
of terms that are used are presented in “Definitions of Terms”
section.

The team power is basically defined as the average power
of its fixed players. The algorithm of Moosavian [11] did
not incorporate the possibility of stubborn players. Stubborn
players have an effect on the power of team which is an
important aspect of the SLC algorithm. Team power is the
most important part of winning the game. The power of
player, as defined in the SLC algorithm, 𝑃

𝑖,𝑗
, is

𝑃
𝑖,𝑗
=
1

𝐹
𝑖,𝑗

, 𝑖 ∈ 𝑇, 𝑗 ∈ 𝐽. (1)

Incorporating the proposed effect of the stubborn players into
(1) is presented as follows. We start by looking at the utility
function of the team, 𝑇, which is given as follows:

𝑈
𝑖
= 𝐵
𝑚
− 𝐶
𝑚
+ 𝑏. (2)

The team’s performance can be affected by bribes given to
either the couch or player or both. The utility function of the
individual player is presented by (3) taking note of the effect
of bribe. Bribes cannot be neglected when we are talking of
soccer games:

𝑈
𝑗
= 𝛼𝜋 + 𝐻 − 𝛽𝑊

𝑚
− 𝑏. (3)

Using (1) to (3), the power of an individual player can be
formulated as in (4) since performance of an individual player
is affected by the behavior of the couch toward each game:

𝑃
𝑖,𝑗
=

1

𝐹
𝑖,𝑗
× 𝛾 [𝑈

𝑖
+ 𝑈
𝑗
]

. (4)

The total team power is based on the power of each fixed
player. It is therefore important to find the probability that the
stubborn player secures the fixed position in the team. The
probability that a stubborn player secures a fixed position in
the team can be calculated as follows:

𝜖 (𝑗) = �̃� (𝜎) 𝛿 (𝑥𝑗) 𝑅 + (1 − 𝛿 (𝑥𝑗))𝑄

+ [1 − �̃� (𝜎)] 𝑥𝑗𝐸 − 𝑄.

(5)

Now, the total team power can be calculated by the following:

𝑌
𝑖
=
1

𝑁
𝑖

𝑁𝑖

∑

𝑗=1

𝜖 (𝑗) 𝑃
𝑖,𝑗
. (6)

Figure 1 shows the flow chart of the modified soccer league
algorithm.

3. Numerical Examples

Implementation of the modified soccer league algorithm is
carried out in this section. Formalisation of steps required
for comparing metaheuristics is important. In Chiarandini
et al. [30], two main models were introduced and these are
the univariate and multivariate models taking into account
the solution cost and run time. There are good practices
required to fairly compare metaheuristics. It is important to
use benchmark problems [31]. It is also vital to present results
in a way that allows fair comparisons ofmetaheuristics.These
include showing execution time and the mean number of
iterations to obtain the best result. The execution time and
quality of solution are regarded as the main performance
measures of primary interest. McGeoch [32] presents a
detailed explanation of experimental analysis of algorithms.

In this paper, these best practices are implemented for
a fair and effective comparison of the proposed modified
heuristic with the other heuristics available in the literature.
Three benchmark problems, that is, the two-loop, Hanoi,
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Figure 1: Modified soccer league algorithm flow chart.

Table 1: Control parameters choice and average values.

Parameter Initial/manual value Average computational value
𝛾 0.1 0.821
𝛽 30% of 𝑏 51% of 𝑏
𝛼 2% 45.9%

and New York Tunnels water networks, are used to test the
performance of the modified heuristic. Computations are
executed in MATLAB environment on a PC with AMD E-
300APU with RadeonTM @1.30GHz and 4.00GB RAM. A
total of 100 runs are performed for each problem recording
the number of evaluations and the optimal cost.

The control parameters are 𝛼, 𝛾, and 𝛽. Sequential Param-
eter Optimization (SPO) introduced by Bartz-Beielstein et al.
[27] is used to tune the parameters. The algorithm is allowed
to perform a total of 1000 tests and is repeated 50 times.
An initial population of 100 is used. Table 1 presents the
initial values of the parameters used to perform the tests and
the average values that are then used in the computational
experiments. It is noticed that there is an inverse relationship
between 𝑏 and 𝛽; that is, as 𝑏 → ∞, then 𝛽 → 0.

3.1. Two-Loop Water Network. A two-loop network problem
of Alperovits and Shamir [28] is considered.The problem has
1 reservoir, 7 nodes, and 8 pipes. Figure 2 is the diagrammatic
presentation of the network. The pipes in the network, all
of them, are 1000m long. Table 3 shows the cost data of
available pipe diameters in both inches and millimeters.

Table 2: Two-loop network node information.

Nodes Demand (m3/h) Elevation (m)
1 −1120 210
2 100 150
3 100 160
4 120 155
5 270 150
6 330 165
7 200 160

1
1

2

2

3

3
4 6
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Figure 2: Two-loop water network.

Table 2 shows the node information of the network. The
results are compared to those of genetic algorithm (GA) [14],
simulated annealing algorithm (SA) [15], shuffled leapfrog
algorithm (SLA) [13], shuffled complex algorithm (SCA) [16],
modified genetic algorithm [17], particle swarm optimization
(PSO) [18], differential evolution (DE) [19], harmony search
(HS) [12], scatter search (SS) [21], PSO + DE [18], particle
swarm harmony search (PSHS) [20], and SLC [11].



4 Mathematical Problems in Engineering

1

1

2

2

3
3

4
4

5
5

6

6

7

7

8

8

9
9

10
13

10

11

11

12
12

13

14
14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23
23

24

25

25

24

26
26

27
2728

28
29

29

30

30

31

31

32

32
3334

Figure 3: Hanoi water networkt.

Table 3: Cost and diameter information for the two-loop water
network.

Diameter (in) Diameter (mm) Cost ($/m)
1 25.4 2
2 50.8 5
3 76.2 8
4 101.6 11
6 152.4 16
8 203.2 23
10 254 32
12 304.8 50
14 355.6 60
16 406.4 90
18 457.2 130
20 508 170
22 558.8 300
24 609.6 550

The computational results of the two-loop network are
shown in Table 4. The modified soccer league algorithm that
uses stubborn players performs better in terms of average
number of evaluations (1031) as compared to other heuris-
tics, especially, the soccer league competition algorithm. As
reported in Moosavian [11], the optimal costs ($419 000) are
exactly the same for all the algorithms.

3.2. Hanoi Water Network. The Hanoi network layout is
shown by Figure 3. The network has 34 pipes, 32 nodes, of
which one is a reservoir, and 3 loops. Table 5 presents the
node and pipe data and Table 6 presents the cost information
as described by Fujiwara and Khang [29]. There are 2.87 ×
10
26 possible designs and 6 commercially available diameters.

Table 4: Results obtained by different metaheuristics for two-loop
network.

Algorithm Mean evaluations Cost ($)
GA [14] 65 000 419 000
SA [15] 25 000 419 000
SLA [13] 11 155 419 000
SCA [16] 11 019 419 000
Modified genetic algorithm [17] 2440 419 000
PSO [18] 5138 419 000
DE [19] 4750 419 000
HS [20] 2891 419 000
SS [21] 3215 419 000
PSO + DE [18] 3080 419 000
PSHS [20] 233 419 000
SLC [11] 2051 419 000
Modified soccer league algorithm 1031 419 000

The modified soccer league algorithm is compared to Max-
Min Ant System (MMAS) [22], PSO [18], hybrid discrete
dynamically dimensioned search (HD-DDS) [23], genetic
algorithm pipe network optimization model (GENOME)
[24], genetic heritage evolution by stochastic transmission
(GHEST) [25], SS [21], DE [19], self-adaptive differential
evolution (SADE) [26], and SLC [11].

The computational results are shown in Table 7. The
results show that the optimal cost is the same for all algo-
rithms. The average evaluations required by the modified
algorithm to find the optimal solution are 65 443, fewer than
that ofMMAS,HD-DDS, and SLC. It is important to note that
the modified algorithm has a success rate of 100% for the 100
runs. The algorithm performs better than the SLC algorithm
in particular.
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Table 5: The Hanoi network pipe and node data.

Pipe Length (m) Pipe Length (m) Node Demand (m3/h) Node Demand (m3/h)
1 100 18 800 1 −19940 18 1345
2 1350 19 400 2 890 19 60
3 900 20 2200 3 850 20 1275
4 1150 21 1500 4 130 21 930
5 1450 22 500 5 725 22 485
6 450 23 2650 6 1005 23 1045
7 850 24 1230 7 1350 24 820
8 850 25 1300 8 550 25 170
9 800 26 850 9 525 26 900
10 950 27 300 10 525 27 370
11 1200 28 750 11 500 28 290
12 3500 29 1500 12 560 29 360
13 800 30 2000 13 940 30 360
14 500 31 1600 14 615 31 105
15 550 32 150 15 280 32 805
16 2730 33 860 16 310 — —
17 1750 34 950 17 865 — —
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Figure 4: New York Tunnels water network.

Table 6: The cost data of the Hanoi network.

Diameter (inches) Cost per unit length (unit)
12 45.726
16 70.400
20 98.387
24 129.333
30 180.748
40 278.280

3.3. New York Tunnels Network. The New York Tunnels city
network was first presented by Neelakantan and Suribabu
[17]. The network consists of 1 loop, 21 pipes, and 20 nodes as
shown in Figure 4. It is fed by gravity from a reservoir. Table 8
presents the pipe length and node data of the network. The
search space of this optimization problem has 1621 = 1.93 ×
10
25 possible designs [33]. Available commercial diameters of

the network and the respective costs are shown in Table 9.
The results are shown in Table 10 and 15 311 average

evaluations, lower than those of SLC, SS, and HD-DDS,

produced the optimal cost of $38.64 million. The best cost
is found by the modified soccer league algorithm with an
average success probability of 100% of 100 runs. A significant
reduction in themean evaluations from 15764 of SLC to 15 311
is worth noting.

Statistical analysis of the experimental results is per-
formed in SPSS. Table 11 presents results of the Analysis of
Variance (ANOVA). The results show that the results of the
algorithms used are significantly different from each other.
Nonparametric tests, as suggested by Garćıa et al. [34], are
performed to analyse the behavior of the modified soccer
league algorithm as compared to the other algorithms used
in each experimental problem. Table 12 presents results of the
Wilcoxon test. Best 30 results among the runs are selected
and used to avoid the challenge of using high runs that may
result in the statistical test to detect insignificant difference
as significant. The results show that the modified algorithm
outperformed all the other algorithms in all experimental
problems.

An experiment has been carried out to understand the
behavior of the modified algorithm as the input parameters
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Table 7: Computational results of the Hanoi network.

Algorithm Number of runs Optimal cost ($) Mean evaluations
MMAS [22] 20 6 134 087 85 600
PSO [18] 2000 6 081 087 NA
HD-DDS [23] 50 6 081 087 100 000
GENOME [24] 10 6 081 087 NA
GHEST [25] 60 6 081 087 50 134
SS [21] 100 6 081 087 43 149
DE [19] 300 6 081 087 48 724
SADE [26] 50 6 081 087 60 532
SLC [11] 50 6 081 087 71 789
Modified soccer league algorithm 100 6 081 087 68 443

Table 8: Node and pipe information of the New York Tunnels network.

Node Demand (m3) Minimum head (ft) Pipe Length (ft) Existing diameter (ft)
1 −22018 300 1 11 600 180
2 92.4 255 2 19 800 180
3 92.4 255 3 7 300 180
4 88.2 255 4 8 300 180
5 88.2 255 5 8 600 180
6 88.2 255 6 19 100 180
7 88.2 255 7 9 600 132
8 88.2 255 8 12 500 132
9 170 255 9 9 600 180
10 1 255 10 11 200 204
11 170 255 11 14 500 204
12 117.1 255 12 12 200 204
13 117.1 255 13 24 100 204
14 92.47 255 14 21 100 204
15 92.4 255 15 15 500 204
16 170 260 16 26 400 72
17 57.5 272.8 17 31 200 72
18 117.1 255 18 24 000 60
19 117.1 255 19 14 400 60
20 170 255 20 38 400 60

21 26 400 72

Table 9: New York Tunnels commercially available pipe diameters
and their respective costs.

Diameter (in) Cost (US$/ft)
36 93.5
48 134
60 176
72 221
84 267
96 316
108 365
120 417
132 469
144 522
156 577
168 632
180 689
192 746
204 804

change. Unlike the SLC algorithm which uses the number of
teams, fixed players, and substitutes as input parameters only,
the modified algorithm uses the utility benefit of individual
player, as a percentage, 𝑈

𝑗
, the utility function of the team,

as a percentage, 𝑈
𝑖
, and the number of fixed players as

additional input parameters. Table 13 shows the summary
of computational results in terms of number of evaluations
(Evalu), optimal cost (cost), and the computational time (run
time).

It is shown that if both percentage benefits of the fixed
player and team are high and the number of fixed players
is high, the number of evaluations is reduced significantly.
The computational time is as well reduced significantly. This
might be as a result of the fact that the set of fixed players con-
structed by the algorithm eliminate those that are stubborn
and concentrate only on players that aremotivated by benefits
they will get for winning the match. Fixed players that cost
the team are penalised and eliminated from calculating the
team power. The modified algorithm becomes more reliable
and efficient by increasing the number of fixed players.
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Table 10: Computational results of the New York Tunnels network.

Algorithm Number of runs Best cost ($) Mean evaluations
MMAS [22] 20 38.64 30 700
PSO [18] 2000 38.64 NA
HD-DDS [23] 50 38.64 47 000
GHEST [25] 60 38.64 11 464
SS [21] 100 38.64 57 583
DE [19] 50 38.64 5 494
SADE [26] 50 38.64 6 598
SLC [11] 100 38.64 15 764
Modified soccer league algorithm 100 38.64 15 311

Table 11: ANOVA results of the three experimental problems.

Problem Definition Degrees of freedom 𝑝 value

Two-loop
Between group 12

0.002Within groups 1288
Total 1300

Hanoi
Between group 9

0.037Within groups 991
Total 1000

New York
Between group 8

0.041Within groups 892
Total 1000

Table 12: Wilcoxon test of the experimental problems.

Proposed algorithm versus Two-loop Hanoi New York
𝑅
+

𝑅
−

𝑝 𝑅
+

𝑅
−

𝑝 𝑅
+

𝑅
−

𝑝

GA [27] 210 88 0.001 — — — — — —
SA [28] 120 36 0.012 — — — — — —
SLA [13] 123 37 0.033 — — — — — —
SCA [14] 144 41 0.002 — — — — — —
Modified genetic algorithm [15] 101 29 0.011 — — — — — —
PSO [16] 111 33 0.012 93 24 0.002 119 89 0.003
DE [17] 213 56 0.03 117 34 0.021 144 47 0.034
HS [19] 122 37 0.041 — — — — — —
SS [18] 144 54 0.032 127 51 0.043 154 71 0.011
PSO + DE [16] 123 77 0.037 — — — — — —
PSHS [19] 142 56 0.000 — — — — — —
SLC [11] 13 6 0.049 43 6 0.39 33 8 0.042
MMAS [20] — — — 134 67 0.001 89 23 0.003
HD-DDS [29] — — — 129 66 0.037 65 29 0.016
GENOME [22] — — — 178 50 0.045 — — —
GHEST [23] — — — 280 67 0.001 90 34 0.019
SADE [24] — — — 128 44 0.029 138 79 0.022

4. Conclusion

This paper presented a modified soccer league algorithm
by introducing stubborn fixed players. Each stubborn player
is taken as a cost to the algorithm. Utility benefit of each
individual fixed player and the team is used to calculate

power of each fixed player. Probability of including a fixed
player who has not reformed is also used to calculate the
total team power. The algorithm is implemented to three
benchmark problems and compared to the other algorithms
available in the literature. The computational results show
that the modified algorithm performs better than the SLC
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Table 13: Sensitivity analysis of the input parameters.

Parameter Two-loop Hanoi New York
𝑈
𝑗
(%) 𝑈

𝑖
(%) 𝑁

𝑗
Evalu Cost Run time Evalu Cost Run time Evalu Cost Run time

0 0 1 1900 419 000 2.64 68500 6 081 087 4.02 15800 38.64 3.18
5 5 2 1502 419 000 2.33 68495 6 081 087 3.99 15792 38.64 3.04
10 10 3 1465 419 000 2.27 68490 6 081 087 3.56 15788 38.64 2.67
20 20 4 1392 419 000 2.12 68485 6 081 087 3.42 15781 38.64 2.55
30 30 5 1109 419 000 2.09 68480 6 081 087 3.37 15779 38.64 2.33
40 40 6 1001 419 000 1.73 68475 6 081 087 3.35 15768 38.64 2.21
50 50 7 954 419 000 1.65 68445 6 081 087 3.31 15765 38.64 2.15
60 60 8 869 419 000 1.62 68440 6 081 087 3.29 15742 38.64 2.08
70 70 9 701 419 000 1.45 68435 6 081 087 3.25 15703 38.64 2.01
80 80 10 602 419 000 1.37 68433 6 081 087 3.17 15596 38.64 2.00
90 90 11 503 419 000 1.28 68302 6 081 087 3.15 15584 38.64 1.98
100 100 12 375 419 000 1.24 68219 6 081 087 3.09 15347 38.64 1.85

Mean 1031 419 000 1.82 68433 6 081 087 3.41 15 311 38.64 2.34

algorithm in particular. It is also shown that the number of
evaluations and computational time are reduced significantly
as percentage benefits of both the player and team increase
and the number of fixed players increases as well. It is
recommended to increase the number of fixed players for the
algorithm to be more reliable.

Definitions of Terms

𝜋: Team benefit before bribe
𝛿(𝑥
𝑗
): Probability of successful reform 𝑥 attempt on
player 𝑗

𝛼: Fraction of the team benefits owned by the
player outside the team

𝛽: Bonus for the player for winning a match
𝛾: Stubbornness parameter that determines that

the player’s decision will be biased toward
past decision

𝜖(𝑗): The probability that the stubborn player 𝑖
secures the fixed status

𝜎: Set of constraints
�̃�(𝜎): Updated belief of the team management

based on conditionally observing 𝜎
𝑏: Bribe
𝐵
𝑚
: Team benefit for winning match𝑚

𝐶
𝑚
: Team cost of losing the match𝑚

𝐸: Outcome with the opportunist reformer as
fixed player status

𝐹
𝑖,𝑗
: Objective function

𝐻: Season benefit of the player for winning the
championship

𝑖: Index denoting team
𝑗: Index denoting player, 𝑗 ∈ 𝐽
𝑚: Index denoting match
𝑁
𝑖
: Number of fixed player in a team, 𝑖 ∈ 𝑇

𝑃
𝑖,𝑗
: Power of player

𝑄
𝑗
: Outcome when the player 𝑗 cannot overrun

the fixed player status

𝑅: Outcome when a genuine reformer
successfully secures the fixed player status

𝑇: Team
𝑈
𝑖
: Utility benefit of the team 𝑖, 𝑖 ∈ 𝑇

𝑈
𝑗
: Utility benefit of the individual player 𝑗

𝑉: Genuine reformer benefit
𝑊
𝑚
: Won match𝑚

𝑥
𝑗
: Maturity of reform 𝑥 on player 𝑗

𝑌
𝑖
: Total power of team 𝑖.
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