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Workforce scheduling is an important and common task for projects with high labour intensities. It becomes particularly complex
when employees have multiple skills and the employees’ productivity changes along with their learning of knowledge according to
the tasks they are assigned to. Till now, in this context, only little work has considered the minimum quality limit of tasks and the
quality learning effect. In this research, the workforce scheduling model is developed for assigning tasks to multiskilled workforce
by considering learning of knowledge and requirements of project quality. By using piecewise linearization to learning curve, the
mixed 0-1 nonlinear programming model (MNLP) is transformed into a mixed 0-1 linear programming model (MLP). After that,
the MLP model is further improved by taking account of the upper bound of employees’ experiences accumulation, and the stable
performance of mature employees. Computational experiments are provided using randomly generated instances based on the
investigation of a software company. The results demonstrate that the proposed MLPs can precisely approach the original MNLP
model but can be calculated in much less time.

1. Introduction

Workforce scheduling is one of the key tasks in modern
projectmanagement. Since human resource costs keep rising,
project managers have to pay more attention to workforce
scheduling in projects. An optimal employee scheduling
solution can align employee with anticipated demand, ensure
project quality, and reduce production costs. Compared
with traditional resource constrained project scheduling
problems, multiskilled workforce scheduling has more com-
plex features, that is, more options of skills, nonlinear
learning effects, project quality requirements, and so forth.
This research works on multiskilled workforce scheduling
problems considering learning effect and project quality
(MSWSP-LE&PQ), which constitute the significance and
value of this paper.

Multiskilled workforce scheduling problems (MSWSP)
have been widely studied in the last few decades [1, 2]. Néron
[3] developed the classical resource constrained project
scheduling model to a basic multiskilled workforce schedul-
ing model by assuming that each employee can perform

more than one type of task. Brucker et al. [4] analysed the
features and complexity of some main mathematical models,
covering specific aspects in the field of workforce scheduling.
According to Brucker et al., the workforce scheduling model
is NP-hard, even for a two-task case. Then, metaheuristics
were designed to tackle these complex problems. Valls et
al. [5] presented a biobjective model and a hybrid genetic
algorithm to solve theMSWSP in service centres. Shahnazari-
Shahrezaei et al. [6] handled the MSWSP by particle swarm
optimization and elite tabu search. Chen and Zhang [7]
proposed an ant colony optimization algorithm to deal with
the MSWSP in software industry. However, few of these
aforementioned methods considered the learning effects of
workforce.

The phenomenon of learning effect arises in work activ-
ities where the experiences accumulation improves skill
performance of individual employee. In recent years, inwork-
force scheduling model, the learning effect on productivity is
described in two perspectives: discrete and continuous.

In the discrete perspective, multiple levels are used to
differentiate the performance of employees in the same
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activity. Employees with a higher skill level, due to more
experiences, can perform certain tasks better or faster than
employees with a lower skill level. Models considering
multiple levels are mainly described as integer and linear.
Eitzen et al. [8] introduced a set covering approach to handle
the multiskilled rostering problem with multiple skill levels.
Cezik and L’Ecuyer [9] proposed an iterative cutting-plane
algorithm to solve the multilevel MSWSP in call centre.
These models follow a linear pattern and can be calculated
with high efficiency. However, according to De Bruecker
et al. [1], employees’ skill levels which appeared in the
literatures are mainly defined based on task requirements.
The generations of skill levels are classified according to the
scope of the overall employees’ productivity, and individual
employee’s productivity is estimated based on these skill
levels. However, the classified skill levels may not perfectly
reflect the individual employee’s learning effect.

In the continuous perspective, learning curves are incor-
porated into the workforce scheduling model. Wright [10]
initially put forward a log-linear model to study the learning
effect in aircraft production. Since then, various learning
curves have been introduced and applied in different areas,
such as Plateau model, Stanford B model, S-curve model,
Jaber-Glock learning curve model, 2-parameter exponential
model, 3-parameter exponential model, and 3-parameter
hyperbolic model [11–13]. Grosse et al. [13] systematically
compared performance of existing well-known learning
curves using a large set of empirical data and showed
how to select appropriate learning curves based on task
characteristics. According to their analysis, the S-curve, the
3-parameter hyperbolic, and the 3-parameter exponential
models worked well on average. C. Otto and A. Otto [14]
proposed a precedence graph approach based on learning
from multiple sources of information available to generate
new feasible assembly line balances in mass production
of complex product. Glock et al. [15] modified the 3-
parameter exponential function to describe the production
processes and adopted a S-curve as the demand function in
workforce scheduling problem. Both of the functions were
validated using available empirical data. Zamiska et al. [16]
investigated worker learning and forgetting phenomenon in
dual resource constrained systems. The phenomenon was
modelled considering a task-type factor in dual resource
constrained systems to demonstrate how the task-type affects
the performance of training. Though the models mentioned
above can obviously simulate the learning process more
precisely than the discrete ones by importing the learning
curves, the nonlinearity caused by modelling learning curves
makes the models difficult to solve, and consequently, the
production in those model is mainly monoskilled. However,
in complex production, whenmultiple workers with different
skills are involved in tasks, the workforce scheduling becomes
even complicated.

Employees’ work experiences not only promote produc-
tivity, but also improve project quality. Project quality man-
agement, mentioned in the literatures, was achieved mainly
through selecting proper resources, activity scheduling, and
work process monitoring [17, 18]. Glock and Jaber [19],
Icmeli-Tukel and Rom [20], and Tiwari et al. [21] investigated

project quality and cost trade-off scheduling problem with
rework factor. Pinker and Shumsky [22] took both efficiency
and quality learning processes into account and presented a
service process model. Heimerl and Kolisch [23] combined
the multiskill and the learning curves together in IT-projects
and presented a mixed nonlinear programming model for
minimizing the scheduling costs. They solved the nonlinear
model by a primal-dual interior filter line search algorithm.
Since the solutions obtained by their algorithm can hardly be
proved as global optimal, they calculated each instance for
50 times using random starting points to partially overcome
local optimality. After that, the effect of learning curves
on the individual production quality was not considered in
their study. To the best of our knowledge, there are limited
literatures which simultaneously consider the productivity
promoting and the quality improving caused by the learning
effect.

In this research, a nonlinear model for the MSWSP-
LE&PQ is put forward through investigating the effect of
skill experiences accumulation on productivity promoting
and quality improving. In consideration of the nonlinearity
of learning functions, a piecewise linearization approach
is proposed to construct the multiple levels for individual
employee’s each skill. Then, the model is transformed into
a mixed integer linear one, which can be handled by linear
programming solver. In accordance with actual situations,
two kinds of improvements are incorporated into the model
to further enhance solving performance. Through designing
and testing the orthogonal experiments based on a lot of
instances, results of the nonlinear model and the linearized
models are compared and analysed. The improved piecewise
linear model is demonstrated to be significantly better than
the others. Coupledwith the orthogonal experimental results,
the impacts of various parameters on model complexity are
discussed.

The rest of this paper is organized as follows. In Section 2,
a detailed description of problems is provided in this study
and a nonlinear programming model is introduced. In
Section 3, the mathematical piecewise linear model for mul-
tiskilled workforce scheduling is put forward, and the formal
expressions of the improvements on the model are provided.
In Section 4, an orthogonal experiment is designed, and
the experimental results are thoroughly discussed. Section 5
provides the limitation and the future work for this research.

2. Model

2.1. Learning Effect. Since the learning curve was found by
Wright [10] in 1936, it has been developed into various
forms [13]. According to [13], the 3-parameter exponential
function has the best performance in individual models
compared with other learning curves. Heimerl and Kolisch
[23] employed an adaptation of the 3-parameter exponential
learning function [24] due to its ability to depict steady-
state unit production time and its mathematical tractability.
To simplify the modelization, in this research, employees
are considered as individual and the skills of employees are
assumed as mutually independent. Based on these literatures
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Figure 1: Learning curve for unit production time.

and assumptions, the following learning curve model is
presented in this study.

Given an initial experience 𝑧
𝑤𝑠0

of employee 𝑤 with skill
𝑠 at the start of period 0, the experience 𝑧

𝑤𝑠𝑡
of employee 𝑤

with skill 𝑠 at the end of period 𝑡 can be calculated by

𝑧
𝑤𝑠𝑡

= 𝑧
𝑤𝑠0

+

𝑡

∑

𝜏=1

𝑥
𝑤𝑠𝜏
, (1)

where 𝑥
𝑤𝑠𝜏

is the workload allocated to employee𝑤with skill
𝑠 in the 𝜏th period.With the accumulation of experiences, the
unit production time will decrease progressively. As shown
in Figure 1, a learning curve 𝜏

𝑤𝑠
(𝑧
𝑤𝑠
) describes the unit

production time, that is, the amount of time that employee𝑤
requires to complete an additional workload unit after having
completed 𝑧

𝑤𝑠
workload units using skill 𝑠, which can be

expressed as

𝜏
𝑤𝑠
(𝑧
𝑤𝑠
) = (𝜏

ub
𝑤𝑠
− 𝜏

lb
𝑤𝑠
) 𝑒
−𝜆
𝑤𝑠
𝑧
𝑤𝑠

+ 𝜏
lb
𝑤𝑠
, (2)

where 𝜏lb
𝑤𝑠

≥ 0 represents the steady-state unit production
time, 𝜏ub

𝑤𝑠
≥ 0 is the first-unit production time, and 𝜆

𝑤𝑠
≥ 0 is

the learning rate. According to (2), the amount of time 𝜔
𝑤𝑠𝑡

that employee 𝑤 requires to complete extra 𝑥
𝑤𝑠𝑡

workload
units with skill 𝑠 in period 𝑡 with experience 𝑧

𝑤𝑠(𝑡−1)
can be

calculated by the following formula:

𝜔
𝑤𝑠𝑡

= ∫

𝑧
𝑤𝑠(𝑡−1)
+𝑥
𝑤𝑠𝑡

𝑧
𝑤𝑠(𝑡−1)

𝜏
𝑤𝑠
𝑑𝑧
𝑤𝑠
. (3)

As an employee’s experience accumulates, the quality of
the task that the employee completes improves. In Grosse and
Glock [25], a description for failure rate is given at the end
of their article. According to their research, the amount of
errors made by employees decreases over time. Based on our
investigation, the quality learning effect has much similarity
with the productivity learning effect. Hence, a modified 3-
parameter exponential learning function is put forward to
describe the quality learning processes. As shown in Figure 2,
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Figure 2: Learning curve for individual production quality.

the quality 𝑞
𝑤𝑠𝑡

of the task for employee 𝑤 who has 𝑧
𝑤𝑠(𝑡−1)

experience of skill 𝑠 can be defined by

𝑞
𝑤𝑠𝑡

= 𝑞
ub
𝑤𝑠
− (𝑞

ub
𝑤𝑠
− 𝑞

lb
𝑤𝑠
) 𝑒
−𝛼
𝑤𝑠
𝑧
𝑤𝑠(𝑡−1)

, (4)

where 𝑞ub
𝑤𝑠
≥ 0 represents the steady-state production quality,

𝑞
lb
𝑤𝑠

≥ 0 is the first-unit production quality, and 𝛼
𝑤𝑠

≥ 0 is
the learning rate of learning curve for individual production
quality.

2.2. Mathematical Model. The MSWSP-LE&PQ can be
explained as follows: assume that a project schedule is given.
Let 𝑇 be the set of periods, and |𝑇| denote the project dura-
tion. Time period 𝑡 ∈ 𝑇 is defined as the time span [𝑡 − 1, 𝑡).
Without loss of generality, in this paper, the period length of
a week is assumed. The project requires the set 𝑆 of skills.
In the context of IT projects, skills indicate programming,
architecture, security, hardware, and so forth. For period 𝑡 ∈
𝑇, the project requests qualified 𝑟

𝑠𝑡
workload units of skill

𝑠 ∈ 𝑆. The workload can be recorded as a qualified workload,
only when they are completed by employees, whose skill level
is equal or higher than the minimum quality limit of the task
with skill 𝑠 in period 𝑡,𝑄

𝑠𝑡
. In this study, theminimumquality

limits of the overall tasks are assumed to have the same value
which is equal to the project quality standard.

The set of employees is denoted as 𝑊. For performing
tasks, each employee 𝑤 ∈ 𝑊 has 𝑅

𝑤𝑡
time units and an

experience 𝑧
𝑤𝑠𝑡

of skill 𝑠 in period 𝑡. The cost per unit time
of employee 𝑤 denotes 𝑐

𝑤
. In the 𝑡th period, the workload

allocated to employee 𝑤 with skill 𝑠 is 𝑥
𝑤𝑠𝑡

, and correspond-
ingly the production quality and the time requested are 𝑞

𝑤𝑠𝑡

and 𝜔
𝑤𝑠𝑡

, respectively. The main objective for the problem is
to minimize the total cost.

Compared to the traditional MSWSP, the workforce
allocation in this study needs to meet not only the skill
requirements, but also project quality standards.

We introduce the following additional decision variables:

𝑢
𝑤𝑠𝑡

= {

1 The work that employee 𝑤 performs with skill 𝑠 in period 𝑡 is qualified;
0 Otherwise.

(5)
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Then, the mathematical model of the MSWSP-LE&PQ can
be formulated as the followingmixed 0-1 nonlinear program-
ming model (MNLP):

MNLP: min ∑

𝑤∈𝑊

∑

𝑠∈𝑆

∑

𝑡∈𝑇

𝑐
𝑤
𝜔
𝑤𝑠𝑡 (6)

s.t. ∑

𝑤∈𝑊

𝑥
𝑤𝑠𝑡
𝜇
𝑤𝑠𝑡

≥ 𝑟
𝑠𝑡

𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (7)

∑

𝑠∈𝑆

𝜔
𝑤𝑠𝑡

≤ 𝑅
𝑤𝑡

𝑤 ∈ 𝑊, 𝑡 ∈ 𝑇 (8)

𝑞
𝑤𝑠𝑡

− 𝑄
𝑠𝑡
𝜇
𝑤𝑠𝑡

≥ 0

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

(9)

𝑥
𝑤𝑠𝑡

≥ 0 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (10)

𝜇
𝑤𝑠𝑡

∈ {0, 1} 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, (11)

where the objective function (6) is to minimize the cost of
workforce. Constraint (7) ensures the total qualified work
with each skill in each period to meet the request for the
project. Constraint (8) limits the total time that the employee
performs in each period. Constraint (9) judges whether
the quality of the task that employee performs reaches the
standard. Constraints (10) and (11) describes the decision
variables.

3. Linear Reformulation

3.1. Linearization of Learning Curve. As a nonlinear mixed
integer programming model, the MNLP model is hard to
solve. In this section, a piecewise linear processing method
is adopted to linearize the MNLP model.

We introduce the following notations:

𝐾: the set of experience levels,𝐾 = {1, 2, . . . , 𝑘
max

},

𝑧
𝑘

𝑤𝑠
: the lower bound of experience of level 𝑘 for

employee 𝑤 using skill 𝑠, and the range of the
experience in experience level 𝑘 is [𝑧𝑘

𝑤𝑠
, 𝑧
𝑘+1

𝑤𝑠
),

𝜏
𝑘

𝑤𝑠
: the unit work time for employee 𝑤 with skill 𝑠 in

experience level 𝑘.

Note that the improvement of productivity in the learning
curve is more significant in the initial stage and will be
decreasing along with experiences accumulating. Then, the
learning curve is divided into pieces along vertical axis
according to the employee’s unit production time, and the
corresponding pieces along horizontal axis represent experi-
ence intervals. The specific division method is explained in
the following paragraph.
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Figure 3: Division of the learning curve.

While the experiences of employee 𝑤 with skill 𝑠 accu-
mulate from 0 to +∞, the unit production time decreases by
(𝜏

ub
𝑤𝑠
−𝜏

lb
𝑤𝑠
). Along the vertical axis (unit production time), the

(𝜏
ub
𝑤𝑠
−𝜏

lb
𝑤𝑠
) is divided into 𝑘max −1 pieces, and each piece with

length of (𝜏ub
𝑤𝑠
− 𝜏

lb
𝑤𝑠
)/(𝑘max − 1), as shown in Figure 3.

After the division, the lower bound 𝑧𝑘
𝑤𝑠
of experience level

𝑘 for employee 𝑤 with skill 𝑠 can be calculated by

𝑧
𝑘

𝑤𝑠
= −

1

𝜆
𝑤𝑠

ln
𝑘max − 1

𝑘max − 𝑘
,

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾 \ {1} .

(12)

The amount of time 𝜔
𝑤𝑠𝑡

that employee 𝑤 takes to
complete extra 𝑥

𝑤𝑠𝑡
units with skill 𝑠 in experience level 𝑘 can

be estimated by

𝜔̃
𝑤𝑠𝑡

=

1

2

(𝜏
𝑘

𝑤𝑠
+ 𝜏
𝑘+1

𝑤𝑠
) ⋅ 𝑥
𝑤𝑠𝑡
,

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾.

(13)

3.2. Linearization forQuality Curve. Theskill is qualified only
when the experiences of the skill meet a certain standard.
Constraint (9) can be replaced with the following two
formulas:

𝑧
𝑄

𝑤𝑠𝑡
=

1

𝛼
𝑤𝑠

(ln (1 − 𝑞lb
𝑤𝑠
) − ln (1 − 𝑄

𝑠𝑡
)) ,

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇,

(14)

𝑧
𝑤𝑠(𝑡−1)

− 𝑧
𝑄

𝑤𝑠𝑡
𝜇
𝑤𝑠𝑡

≥ 0, 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇. (15)
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3.3. Piecewise Linear Model of MNLP. We introduce the
following additional decision variables:

𝜂
𝑤𝑠𝑡

: the qualified workload that employee 𝑤 com-
pletes with skill 𝑠 in period 𝑡:

𝑦
𝑤𝑠𝑡𝑘

=

{

{

{

1 The experience of employee 𝑤 using skill 𝑠 at the start of period 𝑡 is in level 𝑘

0 Otherwise.
(16)

The MNLP model can be approximately reformulated as
the following mixed 0-1 linear programming model (MLP1)
based on linearization of learning curves and quality con-
straints:

MLP1: min ∑

𝑤∈𝑊

∑

𝑠∈𝑆

∑

𝑡∈𝑇

𝑐
𝑤
𝜔
𝑤𝑠𝑡 (17)

s.t. ∑

𝑤∈𝑊

𝜂
𝑤𝑠𝑡

≥ 𝑟
𝑠𝑡

𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (18)

∑

𝑠∈𝑆

𝜔
𝑤𝑠𝑡

≤ 𝑅
𝑤𝑡

𝑤 ∈ 𝑊, 𝑡 ∈ 𝑇 (19)

𝑧
𝑤𝑠(𝑡−1)

− 𝑧
𝑄

𝑤𝑠𝑡
𝜇
𝑤𝑠𝑡

≥ 0

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

(20)

𝑧
𝑤𝑠𝑡

= 𝑧
𝑤𝑠0

+

𝑡

∑

𝜏=1

𝑥
𝑤𝑠𝜏

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

(21)

𝑧
𝑘

𝑤𝑠
𝑦
𝑤𝑠𝑡𝑘

≤ 𝑧
𝑤𝑠(𝑡−1)

≤ 𝑧
𝑘+1

𝑤𝑠
+𝑀
1
(1 − 𝑦

𝑤𝑠𝑡𝑘
)

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 \ {𝑘
max

}

(22)

∑

𝑘∈𝐾\{𝑘
max
}

𝑦
𝑤𝑠𝑡𝑘

= 1

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

(23)

𝜔
𝑤𝑠𝑡

≥

1

2

(𝜏
𝑘

𝑤𝑠
+ 𝜏
𝑘+1

𝑤𝑠
) ⋅ 𝑥
𝑤𝑠𝑡

−𝑀
2
(1 − 𝑦

𝑤𝑠𝑡𝑘
)

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 \ {𝑘
max

}

(24)

𝜂
𝑤𝑠𝑡

≤ 𝑥
𝑤𝑠𝑡

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (25)

𝜂
𝑤𝑠𝑡

≤ 𝑀
3
𝜇
𝑤𝑠𝑡

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (26)

𝑥
𝑤𝑠𝑡

≥ 0 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (27)

𝜂
𝑤𝑠𝑡

≥ 0 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (28)

𝜇
𝑤𝑠𝑡

∈ {0, 1} 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (29)

𝑦
𝑤𝑠𝑡𝑘

∈ {0, 1}

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 \ {𝑘
max

} ,

(30)

where 𝑀
1
,𝑀
2
,𝑀
3
represent sufficient large positive num-

bers. Constraint (20) is to judge whether the workload that
employee 𝑤 completes using skill 𝑠 in period 𝑡 is qualified.
Constraint (21) calculates the experience 𝑧

𝑤𝑠𝑡
of employee

𝑤 using skill 𝑠 at the end of period 𝑡. Constraint (22)
confirms the experience level of employee 𝑤 using skill 𝑠 at
the start of period 𝑡. Constraint (23) ensures that, in each
period, each employee can only operate one skill in a unique
experience level. Constraint (24) limits the working time that
the employee 𝑤 completes 𝑥

𝑤𝑠𝑡
workload units with skill 𝑠 in

period 𝑡. Constraints (25) and (26) describe the relationships
of decision variables 𝑥

𝑤𝑠𝑡
, 𝜂
𝑤𝑠𝑡

, and 𝜇
𝑤𝑠𝑡

. Constraints (27)–
(30) identify the decision variables.

3.4. Model Improvement. The model MLP1 can be further
improved in the following two ways.

Firstly, in a period 𝑡 ∈ 𝑇, the amount of workload that
employee 𝑤 can complete with skill 𝑠 has an upper bound;
namely,

𝑥
𝑤𝑠𝑡

≤ 𝑥
max
𝑤𝑠𝑡

, 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, (31)

where 𝑥
max
𝑤𝑠𝑡

represents the maximum workload employee
𝑤 can complete using skill 𝑠, assuming that employee 𝑤

devotes full time to the task which requires skill 𝑠 in period
𝑡. Accordingly, the experience upper bound 𝑧max

𝑤𝑠𝑡
of employee

𝑤 in skill 𝑠 at the start of period 𝑡 can be calculated as

𝑧
max
𝑤𝑠𝑡

= 𝑧
𝑤𝑠0

+

𝑡−1

∑

𝜏

𝑥
max
𝑤𝑠𝜏

, 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇,

𝑧
𝑤𝑠𝑡

≤ 𝑧
max
𝑤𝑠𝑡

, 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇.

(32)

It is evident that only dividing the experience level in the
interval [𝑧

𝑤𝑠0
, 𝑧

max
𝑤𝑠𝑇

] can further improve the accuracy of the
linearization of learning curve.

Secondly, senior employees’ experience levels can be
treated as constants. A subset of employees 𝑊∗ = {𝑤 |

𝜏
𝑤𝑠
(𝑧
𝑤𝑠0
) − 𝜏

lb
𝑤𝑠
≤ 𝜀, 𝑠 ∈ 𝑆} is defined, to represent the group

of the senior employees, where the workload that a senior
employee completes is assumed as qualified.
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Based on the above analysis, the MLP1 can be updated as
follows:
MLP2: min ∑

𝑤∈𝑊

∑

𝑠∈𝑆

∑

𝑡∈𝑇

𝑐
𝑤
𝜔
𝑤𝑠𝑡

s.t. ∑

𝑤∈𝑊\𝑊
∗

𝜂
𝑤𝑠𝑡

+ ∑

𝑤∈𝑊
∗

𝑥
𝑤𝑠𝑡

≥ 𝑟
𝑠𝑡

𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

∑

𝑠∈𝑆

𝜔
𝑤𝑠𝑡

≤ 𝑅
𝑤𝑡

𝑤 ∈ 𝑊, 𝑡 ∈ 𝑇

𝑧
𝑤𝑠(𝑡−1)

− 𝑧
𝑄

𝑤𝑠𝑡
𝜇
𝑤𝑠𝑡

≥ 0

𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝑧
𝑤𝑠𝑡

= 𝑧
𝑤𝑠0

+

𝑡

∑

𝜏=1

𝑥
𝑤𝑠𝜏

𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝑧
𝑘

𝑤𝑠
𝑦
𝑤𝑠𝑡𝑘

≤ 𝑧
𝑤𝑠(𝑡−1)

≤ 𝑧
𝑘+1

𝑤𝑠
+𝑀
1
(1 − 𝑦

𝑤𝑠𝑡𝑘
)

∀𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 \ {𝑘
max

}

∑

𝑘∈𝐾\{𝑘
max
}

𝑦
𝑤𝑠𝑡𝑘

= 1

𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝜔
𝑤𝑠𝑡

≥

1

2

(𝜏
𝑘

𝑤𝑠
+ 𝜏
𝑘+1

𝑤𝑠
) ⋅ 𝑥
𝑤𝑠𝑡

−𝑀
2
(1 − 𝑦

𝑤𝑠𝑡𝑘
)

∀𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 \ {𝑘
max

}

𝜔
𝑤𝑠𝑡

= 𝜏
𝑤𝑠
(𝑧
𝑤𝑠0
) ⋅ 𝑥
𝑤𝑠𝑡

𝑤 ∈ 𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝜂
𝑤𝑠𝑡

≤ 𝑥
𝑤𝑠𝑡

∀𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝜂
𝑤𝑠𝑡

≤ 𝑀
3
𝜇
𝑤𝑠𝑡

∀𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝑥
𝑤𝑠𝑡

≥ 0 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝜂
𝑤𝑠𝑡

≥ 0 ∀𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝜇
𝑤𝑠𝑡

∈ {0, 1}

∀𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝑦
𝑤𝑠𝑡𝑘

∈ {0, 1}

∀𝑤 ∈ 𝑊 \𝑊
∗

, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 \ {𝑘
max

} .

(33)

The models MLP2 and MLP1 have the same objective
function and similar constraints. Considering the senior
employees, with the expense of a little lower model accuracy,
a greater degree of reduction in the amount of variables and
constraints can be obtained in the model.

4. Orthogonal Experiment

To test the performance of the models, plenty of instances
generated randomly are calculated using models of MNLP,
MLP1, and MLP2. The MNLP model is solved using LINGO
with a global solver, and the MLP1 and MLP2 models are
solved using CPLEX 12.61.The experiments are conducted on
a PC with the 2.50GHz processors and 4GB memory.

4.1. Instances Generation. In the experiments, 27 instance sets
are generated and each set contains 10 random instances.
The experiment contains two types of parameters: constant
parameters (CP) and orthogonal parameters (OP). They are
shown in Tables 1 and 2, respectively.

The CPs contain project quality standard, parameters
of individual employee’s production and quality learning
curves, limit of work time per period, wages, and initial
experience interval for different educated employees. The
values of CPs stay the same in all instances. The OPs
contain scale parameters, turnover rates, average number of
skills each employee masters, task tightness, and variation
coefficient. The values of OPs differ in different instance sets.
The data are provided according to the investigation to a
software company. In order to explain the project quality
standard, the defect rate has to be firstly introduced. The
defect rate can be measured by the number of coding errors
per kilo-line of code (KLOC) in completed software, and
the expected defect rate can be determined by customers.
Hence, the project quality standard can be defined as one
minus the expected defect rate. The project cycle has several
periods and each period length is assumed as a week. Then,
each employee is supposed to have 40 available hours in each
period. Note that, three levels for each OP are designed, as
shown in Table 2.The definitions of the task tightness and the
coefficient of variation are described in Appendices A and B,
respectively.

Based on the turnover rate of employee, the proportion of
junior employee, middle employee, and senior employee can
be generated, shown in Table 3.

An orthogonal experiment design with the seven OPs
and three levels for each parameter is generated according
to Table 2, shown in Appendix C. There are 27 sets of values
assigned to OPs in the orthogonal design, and for each set, 10
instances are generated randomly.

4.2. Computational Results. The original MNLP model is
firstly calculated using Lingo. However, most of the instances
failed to reach optimal solutions within two hours. Then,
MLP1 and MLP2 models are handled using CPLEX 12.61.
When the maximum experience level 𝑘max equals 5, all the
instances can obtain optimal solution within 1 hour. Then,
Constraint (31) is incorporated into MLP1 and MLP2, and
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Table 1: Constant parameters.

Parameter Parameter definition Value
𝑄
𝑠𝑡

Project quality standard 98.7%
𝜏
ub
𝑤𝑠

First-unit production time (h/LOC) 0.065
𝜏
lb
𝑤𝑠

Steady-state unit production time (h/LOC) 0.015
𝜆
𝑤𝑠

Learning rate of learning curve (efficiency) 0.000064
𝑞
ub
𝑤𝑠

Steady-state production quality 1
𝑞
lb
𝑤𝑠

First-unit production quality 0.96
𝛼
𝑤𝑠

Learning rate of learning curve (quality) 0.00117
𝑐
𝑤
, 𝑤 ∈ 𝑊

1
Wage for junior employee (Yuan/h) 20

𝑐
𝑤
, 𝑤 ∈ 𝑊

2
Wage for middle employee (Yuan/h) 40

𝑐
𝑤
, 𝑤 ∈ 𝑊

3
Wage for senior employee (Yuan/h) 60

𝑅
𝑤𝑡

Limit of work time per period (h) 40
𝑧
𝑤𝑠0

, 𝑤 ∈ 𝑊
1
, 𝑠 ∈ 𝑆

𝑤
Initial experience interval for junior employee (LOC) [700, 1000]

𝑧
𝑤𝑠0

, 𝑤 ∈ 𝑊
2
, 𝑠 ∈ 𝑆

𝑤
Initial experience interval for middle employee (LOC) [5000, 10000]

𝑧
𝑤𝑠0

, 𝑤 ∈ 𝑊
3
, 𝑠 ∈ 𝑆

𝑤
Initial experience interval for senior employee (LOC) [100000, 300000]

𝑧
𝑤𝑠0

, 𝑤 ∈ 𝑊, 𝑠 ∉ 𝑆
𝑤

Initial experience interval for amateur skill (LOC) 100

Table 2: Orthogonal parameters.

Parameter Definition Level 1 Level 2 Level 3
|𝑊| The number of employees 6 9 12
|𝑆| The number of skills 3 4 5
|𝑇| Project cycle (weeks) 8 12 16
𝑝
𝑡

Turnover rate of employee 10% 20% 30%
󵄨
󵄨
󵄨
󵄨
𝑆
𝑤

󵄨
󵄨
󵄨
󵄨

Average number of skills each employee masters [1, 1.4] [1.6, 2] [2.2, 2.6]
𝜙 Task tightness 0.85 0.9 0.95
𝑉 Coefficient of variation [0, 0.3] [0.4, 0.7] [0.8, 1.1]

Table 3: Employee structure (%).

Turnover Junior Middle Senior
10 10 17.1 72.9
20 20 28.8 51.2
30 30 35.7 34.3

the updated models MLP1+(31) andMLP2+(31) succeeded to
reduce themaximumcomputing time to less than 40 seconds.

Table 4 shows the computational results obtained by
solving the models. Column 2 shows the average gaps
between objective values and lower bounds of MNLP model
calculated by Lingo within the time limitation of 7200
seconds. Columns 3–7 show the average computation time
taken by different models. Column 8 shows the average gaps
between the optimal solution obtained byMLP2+(31) and the
lower bound obtained byMNLPwithin the time limitation of
7200 seconds.

According to Table 4, the calculation results are sum-
marized as follows. (1) The piecewise linearization method
can effectively improve the calculation performance ofMNLP
model. When using MNLP model, only 4 small-sized sets of
instances can obtain optimal solutions within 7200 seconds.
Using piecewise linearization method, in contrast, all of the
instances can get optimal results within an average of 2-3

minutes. (2) After the incorporation of Constraint (31), the
calculation performance of the updated MLP1 and MLP2
models is further improved; that is, the average computation
time is decreased to 5-6 seconds. (3) The piecewise lineariza-
tion method may effectively improve the accuracy of MNLP
model in a limited time. Through the comparison between
Column 2 andColumn 8, it can be observed that the solutions
obtained by MLP models are mainly closer to the lower
bound than that obtained by MNLP model.

On the basis of data in Table 4, MLP2+(31) model has the
best performance for the instances in this study. Then, the
effect of OPs on computation time are analyzed based on the
MLP2+(31) model’s experimental results, shown in Table 5.

Table 5 shows the average calculation time for the model
MLP2+(31) in handling instances with combinations of dif-
ferent values of OPs. The value 𝐾

𝑖𝑗
represents the calculation

time for the model MLP2+(31) to handle instances with
parameter 𝑗 at level 𝑖. If𝐾

1𝑗
,𝐾
2𝑗
, and𝐾

3𝑗
are equal, parameter

𝑗 has no effect on computation time. 𝑅
𝑗
denotes the range

of 𝐾
𝑖𝑗
, that is, 𝑅

𝑗
= max

𝑖
𝐾
𝑖𝑗
− min

𝑖
𝐾
𝑖𝑗
. OPs can be ranked

according to their effects on the computing time, 𝑅
𝑗
.

As shown in Table 5, the project cycle, the number of
employees, and the number of skills will lead to the increasing
of problem scale. Compared with the other two parameters,
the project cycle has more participation in constraints, and
this may be the reason why the project cycle is more
influential. Except for the project cycle, the turnover rate
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Table 4: Results for models.

Instance set Gap-I CPU (s) Gap-II
MNLP MLP1 MLP2 MLP1+(31) MLP2+(31)

1 0 404 0.53 0.52 0.53 0.38 0.08%
2 0 634 0.54 0.53 0.46 0.37 0.10%
3 0 479 0.52 0.44 0.44 0.41 0.06%
4 1.76% 7200 13.83 7.80 2.80 2.54 1.62%
5 1.55% 7200 10.47 14.35 3.19 3.40 1.47%
6 2.03% 7200 44.37 31.81 7.80 6.50 1.89%
7 1.57% 7200 5.57 6.80 1.78 1.72 1.48%
8 3.45% 7200 191.85 331.13 32.95 38.90 2.91%
9 4.32% 7200 1997.34 3446.71 35.75 34.95 4.19%
10 4.23% 7200 14.08 11.82 2.78 2.82 3.85%
11 4.27% 7200 6.04 7.30 2.25 2.31 3.80%
12 4.96% 7200 46.70 45.74 15.09 14.35 3.29%
13 0.04% 7200 39.69 13.28 1.71 1.28 0.05%
14 # 7200 23.82 14.83 2.11 1.76 0.30%
15 0 1352 21.59 9.42 0.86 0.59 0.00%
16 1.93% 7200 1.76 1.35 1.31 1.06 1.87%
17 1.64% 7200 1.93 1.48 1.69 1.39 1.05%
18 1.48% 7200 1.60 1.38 1.40 1.23 1.41%
19 2.66% 7200 132.45 115.70 6.52 5.55 1.75%
20 1.07% 7200 141.75 243.43 12.26 12.15 0.97%
21 1.65% 7200 135.26 163.46 6.53 5.62 0.85%
22 4.57% 7200 4.02 3.58 2.04 1.86 4.20%
23 6.06% 7200 7.89 7.27 2.24 2.27 2.74%
24 3.27% 7200 2.30 2.08 1.56 1.48 3.16%
25 # 7200 21.15 2.13 1.93 1.72 0.06%
26 0.07% 5293 22.82 11.79 2.26 1.98 0.81%
27 # 7200 30.96 12.61 4.52 4.07 0.16%
Average 2.19% 6168.96 108.18 166.99 5.73 5.65 1.63%

Table 5: Average computation time on different parameter levels.

𝐾
𝑖𝑗

|𝑊| |𝑆| |𝑇| 𝑝
𝑡

󵄨
󵄨
󵄨
󵄨
𝑆
𝑤

󵄨
󵄨
󵄨
󵄨

𝜙 𝑉

𝐾
1𝑗

9.91 4.88 1.16 1.40 2.10 4.13 2.36
𝐾
2𝑗

2.98 2.41 4.41 4.38 7.17 6.55 7.55
𝐾
3𝑗

4.08 9.67 11.39 11.18 7.69 6.27 7.05
𝑅
𝑗

6.93 7.26 10.23 9.79 5.59 2.42 5.19

parameter 𝑝
𝑡
is the second major factor. Its increasing will

require more junior employees involved into an instance.The
less computation time will be taken if each employee masters
fewer average number of skills, because the fewer skills that
employeemasters, the fewer options needed to be considered.
The parameters of CV and the tightness are the factors with
less influence to calculation time.

5. Conclusions

Taking learning effect and project quality into consideration,
a modified MLP model is put forward to describe MSWSP-
LE&PQ. Firstly, a detailed description of learning effects and

a MNLP model is provided by considering the project qual-
ity and individual learning curves of employees. Secondly,
linearization approaches are introduced to transform the
MNLP model into MLP1. After that, characteristics of senior
employees are taken into account to reduce the number of
variables and constraints.Then,MLP2 is put forward. Finally,
in order to further improve the efficiency of optimizing
processes and cut the feasible solution space, the upper
bounds of theworkload and the experience of employeeswith
each skill in each period are defined. And consequently, the
MLPmodels are improved through incorporating Constraint
(31). The proposed models are testified through orthogonal
experiments.

According to the experiment results, the original MNLP
model has limitations to solve practical problems, because it
is hard to demonstrate that the obtained solution is global
optimal. Especially for large-scale cases, even a feasible
solution can hardly be found out in an acceptable time.
To overcome these limitations, the proposed linearization
approaches can guarantee the solution global optimal. After
that, the modifiedMLPmodels have more accurate solutions
and notably less computation time than the original MNLP
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Figure 4: Distribution patterns of requirement.

model in which learning effects are described by continuous
nonlinear curves.

It can be concluded from the orthogonal experiments
that junior employee scheduling appearsmainly in long-term
projects, when the project cycle is more than 3months.There
are two reasons that lead to this phenomenon. On one hand,
the initial production quality of junior employee is probably
lower than the project quality standard. It will take lots of time
for junior employees to promote their production quality to
meet the standard. On the other hand, due to the training
cost (the work which is not qualified), the average unit cost
of qualified work which is performed by a junior employee is
mainly higher than that of the middle and senior employees.
Based on the modified MLP model, the average unit cost of
qualifiedwork can be calculated by∑

𝑡
𝑐
𝑤
𝜔
𝑤𝑠𝑡
/∑
𝑡
𝜂
𝑤𝑠𝑡

. Hence,
the junior employees’ average unit cost of qualified work will
fall below the average in long-term project.

This study also has limitations. To simplify the modeliza-
tion, forgetting effect and relearning processes are not taken
into account. The parameters in learning curves may change
referring to specific situations. The skills of employees in this
research are considered as mutually independent. However,
there may be correlations between similar skills, and similar
skills may partially share some experiences.

Further research could extend the model to long-term
scheduling. And in this case, employees’ wages may vary
according to their experiences. After that, the senior employ-
ees may have extra requirements in reality, such as a senior
employee may prefer to work in favorite tasks in appropriate
periods with suitable mates. In addition, the model may
extend to handlemultiproject workforce scheduling problem,
in which projects may have heterogeneous quality require-
ments.

Appendices

A. Task Tightness

Formula (A.1) is used to generate demands for skills in each
project period. In order to ensure the workload allocation
𝑥
∗

𝑤𝑠𝑡
is feasible to Constraint (19), the time allocation 𝜎∗

𝑤𝑠𝑡
∈

[0, 1] is firstly generated by formulas (A.2) and (A.3), that is,
the percent of the available hours𝑅

𝑤𝑡
that employee𝑤 takes to

perform skill 𝑠 in period 𝑡. Note that, although employeesmay
have the free time in reality, formula (A.2) is tightened to be
an equation here to guarantee the task tightness. Accordingly
the 𝑥

∗

𝑤𝑠𝑡
may be calculated by formulas (A.4) and (A.5).

Furthermore, the 𝜇∗
𝑤𝑠𝑡

can be deduced by formulas (20) and
(21) to determine whether the workload 𝑥∗

𝑤𝑠𝑡
is qualified. 𝜙

is defined as the task tightness, influencing the size of the
feasible solution space:

𝑟
𝑠𝑡
= 𝜙 ⋅ ∑

𝑤∈𝑊

𝑥
∗

𝑤𝑠𝑡
𝜇
∗

𝑤𝑠𝑡
∀𝑠, 𝑡, (A.1)

∑

𝑠∈𝑆

𝜎
∗

𝑤𝑠𝑡
= 1 ∀𝑤, 𝑡, (A.2)

𝜔
∗

𝑤𝑠𝑡
= 𝜎
∗

𝑤𝑠𝑡
𝑅
𝑤𝑡

∀𝑤, 𝑠, 𝑡, (A.3)

𝑥
max
𝑤𝑠𝑡

∗

=

𝑅
𝑤𝑡

𝜏 (𝑧
∗

𝑤𝑠(𝑡−1)
)

∀𝑤, 𝑠, 𝑡, (A.4)

𝑥
∗

𝑤𝑠𝑡
= 𝜎
∗

𝑤𝑠𝑡
𝑥
max
𝑤𝑠𝑡

∗

∀𝑤, 𝑠, 𝑡. (A.5)

B. Coefficient of Variation

After generating project tasks, there still lie differences in
the distribution pattern of task, that is, status of requirement
for each skill in each period. Figure 4 shows some kinds of
distribution patterns of a certain skill.
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Table 6

Test number

Experimental factor

Number of
employees

Number of
skills Duration Turnover rate

Average number of
skills each

employee masters
Tightness CV

1 6 3 8 10% [1, 1.4] 0.85 [0, 0.3]
2 6 3 8 10% [1.6, 2] 0.9 [0.4, 0.7]
3 6 3 8 10% [2.2, 2.6] 0.95 [0.8, 1.1]
4 6 4 12 20% [1, 1.4] 0.85 [0, 0.3]
5 6 4 12 20% [1.6, 2] 0.9 [0.4, 0.7]
6 6 4 12 20% [2.2, 2.6] 0.95 [0.8, 1.1]
7 6 5 16 30% [1, 1.4] 0.85 [0, 0.3]
8 6 5 16 30% [1.6, 2] 0.9 [0.4, 0.7]
9 6 5 16 30% [2.2, 2.6] 0.95 [0.8, 1.1]
10 9 3 12 30% [1, 1.4] 0.9 [0.8, 1.1]
11 9 3 12 30% [1.6, 2] 0.95 [0, 0.3]
12 9 3 12 30% [2.2, 2.6] 0.85 [0.4, 0.7]
13 9 4 16 10% [1, 1.4] 0.9 [0.8, 1.1]
14 9 4 16 10% [1.6, 2] 0.95 [0, 0.3]
15 9 4 16 10% [2.2, 2.6] 0.85 [0.4, 0.7]
16 9 5 8 20% [1, 1.4] 0.9 [0.8, 1.1]
17 9 5 8 20% [1.6, 2] 0.95 [0, 0.3]
18 9 5 8 20% [2.2, 2.6] 0.85 [0.4, 0.7]
19 12 3 16 20% [1, 1.4] 0.95 [0.4, 0.7]
20 12 3 16 20% [1.6, 2] 0.85 [0.8, 1.1]
21 12 3 16 20% [2.2, 2.6] 0.9 [0, 0.3]
22 12 4 8 30% [1, 1.4] 0.95 [0.4, 0.7]
23 12 4 8 30% [1.6, 2] 0.85 [0.8, 1.1]
24 12 4 8 30% [2.2, 2.6] 0.9 [0, 0.3]
25 12 5 12 10% [1, 1.4] 0.95 [0.4, 0.7]
26 12 5 12 10% [1.6, 2] 0.85 [0.8, 1.1]
27 12 5 12 10% [2.2, 2.6] 0.9 [0, 0.3]

Although the standard deviation can be very objective
and accurate to reflect the degree of the dispersion of a set
of data, for different projects or different samples of the same
project, the standard deviation has a lack of comparability.
Here, a coefficient of variation 𝑉 is introduced to tackle this,
which can measure the differences in the standardization
distribution of task. As formulas (B.1) and (B.2) show, 𝐸

𝑠
and

𝜎
𝑠
are the mean and the standard deviation of requirement

for skill 𝑠, respectively. Where formula (B.3) is the definition
of coefficient of variation 𝑉

𝑠
, the maximum of 𝑉

𝑠
is taken as

the coefficient of variation of a certain case, through formula
(B.4). However, it is hard to find an approach to generate a
case directly with precise coefficient of variation as expec-
tation. A loop is adopted to generate cases randomly where
the expected coefficient of variation is set as termination
condition. To prevent infinite loop, random parameters of
𝜎
∗

𝑤𝑠𝑡
need to be adjusted after each inappropriate generation,

where 𝜎
∗

𝑤𝑠𝑡
is generated by normal distribution random

function. While the coefficient of variation of inappropriate
generation is smaller than expectation, the deviation of the

𝜎
∗

𝑤𝑠𝑡
generating function will be increased slightly. While

bigger, it will be decreased corresponding and finally altered
into uniform distribution:

𝐸
𝑠
=

1

|𝑇|

∑

𝑡

𝑟
𝑠𝑡

∀𝑠, (B.1)

𝜎
𝑠
= √

1

|𝑇|

∑

𝑡

(𝑟
𝑠𝑡
− 𝐸
𝑠
)
2

∀𝑠, (B.2)

𝑉
𝑠
=

𝜎
𝑠

𝐸
𝑠

∀𝑠, (B.3)

𝑉 = max {𝑉
𝑠
} . (B.4)

C. Orthogonal Experiment Design

See Table 6.
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