
Research Article
Dynamic Model and Fault Feature Research of
Dual-Rotor System with Bearing Pedestal Looseness

Nanfei Wang, Hongzhi Xu, and Dongxiang Jiang

State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Thermal Engineering,
Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Nanfei Wang; wnf14@mails.tsinghua.edu.cn

Received 28 February 2016; Accepted 4 May 2016

Academic Editor: Zhike Peng

Copyright © 2016 Nanfei Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper presents a finite element model of dual-rotor system with pedestal looseness stemming from loosened bolts. Dynamic
model including bearing pedestal looseness is established based on the dual-rotor test rig. Three-degree-of-freedom (DOF) planar
rigid motion of loose bearing pedestal is fully considered and collision recovery coefficient is also introduced in the model. Based
on the Timoshenko beam elements, using the finite element method, rigid body kinematics, and the Newmark-𝛽 algorithm for
numerical simulation, dynamic characteristics of the inner and outer rotors and the bearing pedestal plane rigid bodymotion under
bearing pedestal looseness condition are studied.Meanwhile, the looseness experiments under two different speed combinations are
carried out, and the experimental results are basically the same.The simulation results are compared with the experimental results,
indicating that vibration displacement waveforms of loosened rotor have “clipping” phenomenon. When the bearing pedestal
looseness fault occurs, the inner and outer rotors vibration spectrum not only contains the difference and sum frequency of the two
rotors’ fundamental frequency but also contains 2𝑋 and 3𝑋 component of rotor with loosened support, and so forth; low frequency
spectrum is more, containing dividing component, and so forth; the rotor displacement spectrums also contain fewer combination
frequency components, and so forth; when one side of the inner rotor bearing pedestal is loosened, the inner rotor axis trajectory
is drawn into similar-ellipse shape.

1. Introduction

Pedestal looseness is one of the common faults in rotating
machinery, which will lead to the severe vibration of the
whole system. Particularly, when the looseness fault is seri-
ous, it may cause the failure of equipment and even some
catastrophic accidents. Looseness fault is usually caused by
the poor quality of installation or long-term vibration. Under
the action of the imbalance force, the rotor system with
pedestal looseness will have a periodic beating. It is difficult to
detect pedestal looseness fault due to the complicated vibra-
tion phenomenon. Therefore, it is significant to diagnose the
existence and severity of pedestal looseness for the safe and
reliable operation of rotating machinery.

Aimed at the dynamics and fault diagnosis of rotor
systems with pedestal looseness, a large number of studies
have been carried out and many results have been achieved.

Goldman andMuszynska [1] established the bilinearmodel of
a rotating machine with one loose pedestal.The synchronous
and subsynchronous fractional components of the response
were demonstrated and conform to the experimental results.
Subsequently [2], they discussed the chaotic behaviour of the
system based on the bilinear model. Chu and Tang [3] inves-
tigated the vibration characteristics of a rotor-bearing system
with pedestal looseness by establishing a nonlinear mathe-
matical model. Stability of periodic solutions was analysed by
means of the shooting method and the Floquet theory. Ma
et al. [4] presented a finite element model of a rotor system
with pedestal looseness stemming from a loosened bolt, and
the effects of the looseness variables (foundation stiffness,
stiffness of nonloosened bolts, rotating speed, and looseness
clearance) on its dynamic characteristics were investigated.
When the rotating speed and imbalance of rotors varied, peri-
odic, quasiperiodic, and chaotic motions could be detected
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and three kinds of routes to or out of chaos were observed.
In some cases, pedestal looseness could cause 1𝑋/2 fractional
harmonic andmultiple harmonicmotions of rotor-bearing of
systems [5]. Ji and Zu [6] analysed the free and forced vibra-
tions of a nonlinear bearing system to illustrate the nonlinear
effect on the free and forced vibrations of the system by the
method of multiple scales. Ma et al. [7] built a mechanical
model of looseness of fastening bolt on the bearing pedestal
and analysed the dynamic characteristics of rotor by adopting
the nonlinear oil-film model developed by Adiletta. The
results illustrate that system motion state changes frequently
with the increase of the rotating speed. Lu et al. [8] set up the
model of seven-degree-of-freedom rotor system including a
pair of ball bearings with pedestal looseness at one end by
utilizingNewton’s second law and analysed the stability of the
model based on the known harmonic solution by the Floquet
theory. Qin et al. [9] investigated the bolt loosening at the
rotating joint interface and its influence on the rotor dynam-
ics, and the nonlinear FE simulations were performed to
calculate the time-varying stiffness at the joint interface with
bolt loosening. Fault diagnosis of rotor system with pedestal
looseness has been widely considered utilizing different
analytical methods, such as wavelet analysis, Hilbert-Huang
transform, and genetic algorithm [10–13].

Recently, many scholars studied pedestal looseness of
rotor system by using finite element method which may take
into account many factors, such as mass, moment inertia,
internal damping, bending, and torsion vibration coupling
effects. Ma et al. [14] investigated the nonlinear vibration
characteristics of a rotor system with pedestal looseness fault
under different loading conditions. Wang and Chen [15]
set up a whole rotor-support-casing model with looseness
fault for certain type of turbofan aeroengine. The casing
acceleration response characteristics were analysed. Behzad
and Asayesh [16] proposed a finite element code for studying
the effects of loose rotating disks on the rotor-bearing
systems’ response. The developed finite element model can
numerically calculate the response of rotors with any number
of loose discs at any location with isotropic or orthotropic
supports. Wang et al. [17] introduced two looseness fault
models, and the mechanism of the asynchronous vibration
response phenomenon caused by the looseness fault in the
whole aeroengine vibration system was analysed by numeri-
cal integration methods.

Many models with looseness fault involved in previous
researches focus on simple Jeffcott rotor system using the
lumpedmass model and finite element model without regard
to the dual-rotor structure of real aeroengine. Meanwhile,
translationmotion of pedestal is just considered in traditional
pedestal looseness models. In fact, pedestal not only does
plane motion but also does rotary motion around the axis
in radial plane when pedestal looseness occurs, which will
cause the pedestal’s collision with the foundation and bolts.
In our study, a nonlinear finite element model of the dual-
rotors-bearing-foundation system with pedestal looseness is
established. The research results may give deep insight into
looseness mechanism.

The motivation of the paper is to detect the dynamic
response under pedestal looseness status of the dual-rotor

system, which is widely used in aircraft engines and other real
rotating machines. In order to investigate the dynamic char-
acteristics of pedestal looseness, a dual-rotor system dynamic
model is established based on dual-rotor system test rig
and one-dimensional finite element model of the dual-rotor
system, in which loosened pedestal is considered a rigid body
doing plane motion and pedestal’s collision with foundation
and bolts is also considered. Furthermore, the dynamic char-
acteristics are verified by comparing them with the results
measured from experiments.

2. Mathematical Model of Pedestal
Looseness Fault

2.1. Introduction to the Dual-Rotor Experiment Rig. Figures
1(a) and 1(b) show the dual-rotor system test rig and structure
diagram, respectively. The inner rotor (1) passing through
the outer rotor (2) is connected to a flexible coupling that is
driven by a high-speed motor; the outer rotor is driven by a
high-speed motor with a belt. Every bearing is supported on
one pedestal (13), which is fixed on the foundation by several
bolts. The bearing pedestal and membrane coupling (12) can
reduce the influence of transverse force due to belt driven.
The inner rotor and outer rotor are, respectively, installed
withwheel disks to simulate the compressor and turbine load.
Both ends of inner rotor are supported by deep groove ball
bearing (4) and roller bearing (5), respectively; one end of
outer rotor is supported by deep groove ball bearing (6), and
the other end is supported on the inner rotor by means of
squirrel cage elastic support and roller bearing (7). Twowheel
disks (8, 9) aremounted on the inner rotor, and there are three
wheel disks (10, 11, 12) installed on the outer rotor.The elastic
support is installed on the wheel disk, the number of which
is (11).

One-dimensional finite element model of dual-rotor
system (excluding pedestal) is built based on Timoshenko
beam element, as presented in Figure 2, which is composed
of the inner rotor (node 1 to node 13) and the outer rotor
(node 14 to node 20). There are a total of four bearings in
the model, which are, respectively, located at node 1, node
14, node 9, and node 13, where node 1 and node 13 denote
the intershaft bearings. The disks, located in node 16, node
18, node 3, and node 11, represent the concentrations of high-
pressure compressor disks, high-pressure turbine disks, low-
pressure compressor disks, and low-pressure turbine disks,
respectively.

2.2. The Determination of Dual-Rotor Experimental Test
Normal/Fault State. In the initial period of dual-rotor exper-
imental rig operation, the normal status should be firstly
determined, and the specific practices are as follows: when
the fundamental frequencies 𝑋

1
and 𝑋

2
observed from

the test and control system written in LABVIEW are most
prominent (𝑋

1
represents the fundamental of inner rotor and

𝑋
2
represents the fundamental of outer rotor), it is considered

to be the normal status, as shown in Figure 3(a). If the
deviation with the state illustrated in Figure 3(a) is larger, the
experimental rig will be adjusted to conform to the normal
status. It should be noted that the spectrum also contains
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(a) Dual-rotor system test rig
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(b) Structure diagram of dual-rotor experiment setup

Figure 1: Dual-rotor system test rig and structure diagram.
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Figure 2: The node map of one-dimensional finite element model of dual-rotor system.

other frequency components with relatively small amplitude
under normal status, just because of inevitable noise and
mechanical assembly error.

When the pedestal looseness fault simulation is carried
out in the dual-rotor experimental rig, it can be clearly
seen that the spectrum diagram shown in Figure 3(b) not
only contains fundamental frequencies 𝑋

1
and 𝑋

2
, the sum

frequency, and difference frequency of two rotors’ funda-
mental frequencies but also contains some superharmonic
components (such as 2𝑋 and 3𝑋). Comparing with the
spectrum under normal status, the frequency components
circled in red ellipse are presented in Figure 3(b) due to
pedestal looseness.

2.3. The Description of Looseness Fault. The dual-rotor test
rig is employed in the study as shown in Figure 1, and the
bearing is mounted on the pedestal which is installed on
the foundation with bolts and disk springs. The analysis for
the case of unilateral looseness of pedestal which is used to
support the roller bearing of inner rotor is carried out in this
paper, as indicated in Figure 4. The position limit block is
applied to restrain the axis motion of bearing pedestal. The
force exerted on the bearing because of rotor vibration is
transferred to the pedestal when fastening bolts are loose,
resulting in the motion of pedestal. In general, the stiffness
and strength of pedestal are high, so the pedestal is considered
a rigid body to analyse. Nevertheless, in the local area of
the collision occurring between the pedestal and foundation,
the contact stiffness should be introduced to conform to
the actual situation. Collision and friction exist between the
pedestal and foundation as well as bolts, so the trajectory is
relatively complex. As for the dual-rotor system test rig in
the research, the fastening bolts on one side of the pedestal
are loosened to simulate the pedestal looseness. The motion

of pedestal in rotor axis direction (defined as 𝑍-direction)
is ignored, and only the translational motion and rotation
around the 𝑍-axis in the 𝑋𝑌 plane are considered.

2.4. The Dynamic Model of Pedestal Looseness. It is assumed
that the pedestal does rigid motion in 𝑋𝑌 plane. The bolt
bending in𝑋-direction is taken into account, and the friction
that existed between the pedestal and foundation in 𝑋-
direction is neglected; the stretching of bolt and the collision
that occurred between the pedestal and foundation in 𝑌-
direction is considered.Thepedestal can be treated to do rigid
motion including collision in the dynamic model, as shown
in Figure 5.

It can be seen from Figure 5 that A and B denote the left
edge and right edge of the pedestal; C represents the gravity
centre of the pedestal; D denotes the centre of bearing’s outer
ring; E represents the centre of rotormounted on the bearing’s
inner ring. The bolt fastenings that existed between the left
and right edges of pedestal and foundation are simplified
as spring connection. Similarly, the fastenings that existed
between the centre of bearing’s outer ring and rotor centre
are also simplified as spring connections in 𝑋-direction and
𝑌-direction.

The fastening bolts are stretched when the pedestal is
separated from the foundation to move upward, and 𝐾

2𝑦𝑚

and 𝐾
3𝑦𝑚

are corresponding spring stiffness, respectively.
The collision area can be seen as elastic collision involving
greater contact stiffness when the pedestal moves downward
and collides with the foundation, and the contact stiffness
between the left and right edges and foundation is 𝐾

2𝑦𝑑

and 𝐾
3𝑦𝑑

, respectively. Deformation lengths of the spring
are, respectively, defined as 𝑑

2𝑦
and 𝑑

3𝑦
in 𝑌-direction; their

values are greater than 0, which means that the pedestal
is separated from the foundation and moves upward; their
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(a) The spectrum under normal status
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(b) The spectrum with pedestal looseness

Figure 3: Vibration spectrum analysis of inner and outer rotor.

values are less than 0, indicating the sum of the elastic
deformation between the pedestal’s edges and the foundation
along the 𝑌-direction in the contact area. The distance
between the bolt cap and the foundation is defined as 𝛿
when looseness occurs. The corresponding contact stiffness

is expressed as𝐾
3𝑦𝑢

when the bolt cap contacts the pedestal’s
edge.The pedestal moves along𝑋-direction, which will cause
the bending of bolts and corresponding flexural stiffness
is defined as 𝐾

2𝑥
and 𝐾

3𝑥
, respectively. The stiffness of

spring connection between outer ring centre of pedestal and
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Figure 4: The unilateral loosening states of bearing pedestal.
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Figure 5: Dynamic model of bearing pedestal looseness.

rotor centre is considered supporting stiffness of bearing in
𝑋- and 𝑌-direction, and the lengths of spring tension or
compression are formulated as 𝑑

1𝑥
and 𝑑

1𝑦
, respectively. For

the convenience of drawing the diagram of dynamic model,
the spring connection points of rotor centre in 𝑋- and 𝑌-
direction are set at the edge of the rotor.Therefore, the spring
stiffness of pedestal’s edges in𝑌-direction can be expressed as
follows:

𝐾
3𝑦

=

{{{{
{{{{
{

𝐾
3𝑦𝑑

, 𝑑
3𝑦

< 0,

𝐾
3𝑦𝑚

, 0 < 𝑑
3𝑦

< 𝛿,

𝐾
3𝑦𝑢

, 𝛿 < 𝑑
3𝑦
,

𝐾
2𝑦

=
{
{
{

𝐾
2𝑦𝑑

, 𝑑
2𝑦

< 0,

𝐾
2𝑦𝑚

, 0 < 𝑑
2𝑦
.

(1)

According to the schematic diagram (Figure 4) and
geometrical relationship, the expressions of 𝑑

1𝑥
, 𝑑
2𝑥
, and 𝑑

3𝑥

are defined as

𝑑
1𝑥

= 𝑍
𝑥
− 𝑆
𝑥
− (𝐻 − ℎ) 𝜃,

𝑑
1𝑦

= 𝑆
𝑦
− 𝑍
𝑦
− (𝐻 − ℎ)(1 −

𝜃2

2
)

𝑑
2𝑥

= −𝑍
𝑥
− ℎ𝜃 −

𝐿𝜃2

4
,

𝑑
2𝑦

= 𝑍
𝑦
+ 𝐻 − ℎ −

𝐿𝜃

2
+

ℎ𝜃2

2

𝑑
3𝑥

= −𝑍
𝑥
− ℎ𝜃 +

𝐿𝜃2

4
,

𝑑
3𝑦

= 𝑍
𝑦
+ 𝐻 − ℎ +

𝐿𝜃

2
+

ℎ𝜃2

2
,

(2)
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where 𝑆
𝑥
and 𝑆

𝑦
represent the displacements of 𝑘 node unit

of rotor coupling the pedestal in𝑋- and 𝑌-direction.
Based on the dynamics principle and fundamental theory

of rigid motion [18, 19], the differential equations of motion
of the loosened pedestal can be obtained:

𝑚𝑍̈
𝑥
= −𝐶
𝑏𝑥
𝑑̇
1𝑥

− 𝐾
𝑏𝑥
𝑑
1𝑥

+ 𝐶
2𝑥
𝑑̇
2𝑥

+ 𝐾
2𝑥
𝑑
2𝑥

+ 𝐶
3𝑥
𝑑̇
3𝑥

+ 𝐾
3𝑥
𝑑
3𝑥

+ 𝐶
2𝑦
𝑑̇
2𝑥

+ 𝐾
2𝑦
𝑑
2𝑥

+ 𝐶
3𝑦
𝑑̇
3𝑥

+ 𝐾
3𝑦
𝑑
3𝑥
,

(3)

𝑚𝑍̈
𝑦
= 𝐶
𝑏𝑦
𝑑̇
1𝑦

+ 𝐾
𝑏𝑦
𝑑
1𝑦

− 𝐶
2𝑦
𝑑̇
2𝑦

− 𝐾
2𝑦
𝑑
2𝑦

− 𝐶
3𝑦
𝑑̇
3𝑦

− 𝐾
3𝑦
𝑑
3𝑦

− 𝑚𝑔,
(4)

𝐽𝜃̈ = 𝐶
𝑏𝑥
𝑑̇
1𝑥

⋅ (𝐻 − ℎ) + 𝐾
𝑏𝑥
𝑑
1𝑥

⋅ (𝐻 − ℎ) + 𝐶
2𝑥
𝑑̇
2𝑥

⋅ ℎ + 𝐾
2𝑥
𝑑
2𝑥

⋅ ℎ + 𝐶
2𝑦
𝑑̇
2𝑥

⋅ ℎ + 𝐾
2𝑦
𝑑
2𝑥

⋅ ℎ

+ 𝐶
3𝑦
𝑑̇
2𝑥

⋅ ℎ + 𝐾
3𝑦
𝑑
2𝑥

⋅ ℎ + 𝐶
3𝑥
𝑑̇
3𝑥

⋅ ℎ

+ 𝐾
3𝑥
𝑑
3𝑥

⋅ ℎ + 𝐶
2𝑦
𝑑̇
2𝑦

⋅
𝐿

2
+ 𝐾
2𝑦
𝑑
2𝑦

⋅
𝐿

2

− 𝐶
3𝑦
𝑑̇
3𝑦

⋅
𝐿

2
− 𝐾
3𝑦
𝑑
3𝑦

⋅
𝐿

2
,

(5)

where 𝐽 denotes the inertia moment of 𝑍-axis across the
gravity centre;𝑚 represents themass of pedestal; 𝜃 is included
in the moment expression and can be substituted by 𝜃

𝑖−1

when calculated. Arranging formulas (2)∼(5) the dynamic
equations can be rewritten as follows:

𝑀𝑍̈
𝑥
+ (𝐶
𝑏𝑥

+ 𝐶
2𝑥

+ 𝐶
3𝑥

+ 𝐶
2𝑦

+ 𝐶
3𝑦
) 𝑍̇
𝑥
+ (𝐾
𝑏𝑥

+ 𝐾
2𝑥

+ 𝐾
3𝑥

+ 𝐾
2𝑦

+ 𝐾
3𝑦
)𝑍
𝑥
− [𝐶
𝑏𝑥

(𝐻 − ℎ)

− (𝐶
2𝑥

+ 𝐶
2𝑦
) ℎ − (𝐶

3𝑥
+ 𝐶
3𝑦
) ℎ] 𝜃̇ − [𝐾

𝑏𝑥
(𝐻 − ℎ)

− (𝐾
2𝑥

+ 𝐾
2𝑦
) ℎ − (𝐾

3𝑥
+ 𝐾
3𝑦
) ℎ] 𝜃 − 𝐾

𝑏𝑥
𝑆
𝑥

− 𝐶
𝑏𝑥
𝑆̇
𝑥
= 0,

(6)

𝑀𝑍̈
𝑦
+ (𝐶
𝑏𝑦

+ 𝐶
2𝑦

+ 𝐶
3𝑦
) 𝑍̇
𝑦
+ (𝐾
𝑏𝑦

+ 𝐾
2𝑦

+ 𝐾
3𝑦
)𝑍
𝑦

−
𝐿

2
[𝐶
2𝑦

− 𝐶
3𝑦
] 𝜃̇ −

𝐿

2
[𝐾
2𝑦

− 𝐾
3𝑦
] 𝜃 − 𝐶

𝑏𝑦
𝑆̇
𝑦

− 𝐾
𝑏𝑦
𝑆
𝑦
= − (𝐻 − ℎ) (𝐾

𝑏𝑦
+ 𝐾
2𝑦

+ 𝐾
3𝑦
) − 𝑚𝑔,

(7)

𝐽𝜃̈ + [𝐶
𝑏𝑥

(𝐻 − ℎ)
2 + (𝐶

2𝑥
+ 𝐶
2𝑦
) ℎ2

+ (𝐶
3𝑥

+ 𝐶
3𝑦
) ℎ2] 𝜃̇ + [𝐾

𝑏𝑥
(𝐻 − ℎ)

2

+ (𝐾
2𝑥

+ 𝐾
2𝑦
) ℎ2 + (𝐾

3𝑥
+ 𝐾
3𝑦
) ℎ2] 𝜃

− [𝐶
𝑏𝑥

(𝐻 − ℎ) − (𝐶
2𝑥

+ 𝐶
2𝑦
) ℎ − (𝐶

3𝑥
+ 𝐶
3𝑦
) ℎ]

⋅ 𝑍̇
𝑥
− [𝐾
𝑏𝑥

(𝐻 − ℎ) − (𝐾
2𝑥

+ 𝐾
2𝑦
) ℎ

− (𝐾
3𝑥

+ 𝐾
3𝑦
) ℎ]𝑍

𝑥
−

𝐿

2
[𝐶
2𝑦

− 𝐶
3𝑦
] 𝑍̇
𝑦
−

𝐿

2
[𝐾
2𝑦

− 𝐾
3𝑦
] 𝑍
𝑦
+ 𝐶
𝑏𝑥

(𝐻 − ℎ) 𝑆̇
𝑥
+ 𝐾
𝑏𝑥

(𝐻 − ℎ) 𝑆
𝑥

=
𝐿

2
(𝐻 − ℎ) (𝐾

2𝑦
− 𝐾
3𝑦
) .

(8)

Formulas (6)∼(8) above can be described in the matrix
form as follows:

𝑀
𝐿
𝑍̈ + 𝐶

𝐿
𝑍̇ + 𝐾

𝐿
𝑍 = 𝑄

𝐿
, (9)

where 𝑀
𝐿

denotes the mass matrix; 𝐶
𝐿

represents the
damping matrix; 𝐾

𝐿
denotes the stiffness matrix; 𝑄

𝐿
denotes

the excitation force vector.
One-dimensional finite element model of dual-rotor is

established and the dynamic equation in the matrix form
is obtained based on the node map divided in Figure 2.
Consider

(𝑀
𝑇
+ 𝑀
𝑅
) 𝑍̈ + (Ω𝐺 + 𝐶) 𝑍̇ + (𝐾

𝐵
+ 𝐾
𝑏
) 𝑍 = 𝑄, (10)

where 𝑀
𝑇
and 𝑀

𝑅
represent mass matrix and mass iner-

tia matrix, respectively; 𝐺 represents gyroscopic matrix; 𝐶
denotes damping matrix; 𝐾

𝐵
is the bending stiffness matrix

of rotor;𝐾
𝑏
is the support stiffness matrix of rotor;𝑄 denotes

the excitation force vector exerted on the nodes of rotor.
Let 𝐾
𝑍

= 𝐾
𝐵
+ 𝐾
𝑏
, 𝑀
𝑍

= 𝑀
𝑇
+ 𝑀
𝑅
, and 𝐶

𝑍
= Ω𝐺 + 𝐶.

It is assumed that the rotor is divided into 𝑛 nodes and the
number of nodes of rotor coupled with the pedestal is 𝑘. 𝐾

𝐿
,

𝐶
𝐿
, 𝑀
𝐿
, and 𝑄

𝐿
and 𝐾

𝑍
, 𝐶
𝑍
, 𝑀
𝑍
, and 𝑄 are added together.

The transient response of the systemunder pedestal looseness
status can be integrally solved based on (6)∼(8) and dynamic
relationship of 𝑘th node. Consider

𝐾new

=

[
[
[
[
[
[
[
[

[

𝐾
𝑍

−𝐾
𝑏𝑥

𝐾
𝑏𝑥

(𝐻 − ℎ)

−𝐾
𝑏𝑦

−𝐾
𝑏𝑥

−𝐾
𝑏𝑦

𝐾
𝑏𝑥

(𝐻 − ℎ) 𝐾
𝐿

]
]
]
]
]
]
]
]

]

,

𝐶new

=

[
[
[
[
[
[
[
[

[

𝐶
𝑍

−𝐶
𝑏𝑥

𝐶
𝑏𝑥

(𝐻 − ℎ)

−𝐶
𝑏𝑦

−𝐶
𝑏𝑥

−𝐶
𝑏𝑦

𝐶
𝑏𝑥

(𝐻 − ℎ) 𝐶
𝐿

]
]
]
]
]
]
]
]

]

,

𝑀new = [𝑀
𝑍
,𝑀
𝐿
]
𝑇

,

𝑄new = [𝑄
1
, . . . , 𝑄

4𝑘−2
+ 𝐾
𝑏𝑦

(𝐻 − ℎ) , . . . , 𝑄
4𝑛
, 𝑄
𝐿
]
𝑇

.

(11)
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Figure 6: The collision schematic diagram of bearing pedestal and
foundation.

Therefore, the dynamic equation integrally solved is
obtained:

𝑀new𝑍̈ + 𝐶new𝑍̇ + 𝐾new𝑍 = 𝑄new. (12)

The collision impulse will be exerted on the pedestal
when it moves downward to collide with the foundation or
moves upward to collide with the bolt cap, which, at the
moment of impact, causes the increase of the velocity, but
the displacement remains the same in the collision region.
In addition, the instantaneous computing instability and even
divergencewill occur due to the sudden change in the support
stiffness of the pedestal. Hence, the collision process should
be treated separately. The pedestal and the foundation can
be regarded as rigid body, and the local contact deformation
is not considered at the moment of collision. The restitution
coefficient is defined as follows:

𝑒
𝑠
=
V󸀠
2
− V󸀠
1

V
1
− V
2

, (13)

where V
1
and V

2
are the speeds of the objects before the

collision and V
1
> V
2
; V󸀠
1
and V󸀠
2
are the speeds of the objects

after the collision.
In general, 0 < |𝑒

𝑠
| < 1, and its value is associated

with the material, collisional pattern, and so on, so it can
be determined by relevant references and experiments. The
pedestal is made of rigid material, and the collision that
existed between the pedestal and the foundation is considered
the frontal collision; let 𝑒

𝑠
= 0.6. The collision schematic

diagram of pedestal and foundation is illustrated in Figure 6.
Here, 𝑟 = (𝐿2/4 + ℎ2)1/2, and V

𝑛
is rotation linear velocity

component of contact point A along the foundation’s normal
direction before the collision, given by

V
𝑛
= 𝑟𝜃̇ sin𝜑. (14)

V󸀠
𝑛
is velocity component of contact point A along the

foundation’s normal direction after the collision.The founda-
tion is fixed on the ground, so it is suitable to assume that the
velocity of the foundation is equal to 0 during the collision.

Based on the definition of restitution coefficient, V󸀠
𝑛
can

be expressed as

V󸀠
𝑛
= −𝑒
𝑠
V
𝑛
. (15)

In addition, V
𝑛
and V󸀠
𝑛
can be also decomposed into two

parts, namely, the rotation linear velocity component of point
A in the normal direction and the velocity component ofmass
centre C, presented by

V
𝑛
= −𝑟𝜃̇ sin𝜑 + 𝑍̇

𝑦
,

V󸀠
𝑛
= −𝑟𝜃̇

󸀠 sin𝜑 + 𝑍̇
󸀠

𝑦
.

(16)

Since 𝜃 ≪ 1, the following formula can be obtained by
mean of the geometrical relationship:

𝑟 sin𝜑 =
𝐿

2
cos 𝜃 − ℎ sin 𝜃 ≈

𝐿

2
− ℎ𝜃. (17)

According to the momentum theorem and angular
momentum conservation theorem, the system can be des-
cribed by the following equations:

𝑚(V󸀠
𝑛
− V
𝑛
) = 𝐼
𝑛
,

𝐽 (𝜃̇
󸀠

− 𝜃̇) = 𝐼
𝑛
(
𝐿

2
cos 𝜃 − ℎ sin 𝜃) = 𝐼

𝑛
(
𝐿

2
− ℎ𝜃) .

(18)

Combining the above formulas, the solution can be
obtained by

𝑍̇
󸀠

𝑦

=
𝐽 (1 + 𝑒

𝑠
) (𝐿/2 − ℎ𝜃) 𝜃̇ − [𝐽𝑒

𝑠
+ 𝑚 (𝐿/2 − ℎ𝜃)2] 𝑍̇

𝑦

𝐽 − 𝑚 (𝐿/2 − ℎ𝜃)2
,

𝜃̇
󸀠

=
[𝐽 + 𝑚𝑒

𝑠
(𝐿/2 − ℎ𝜃)2] 𝜃̇ − 𝑚 (1 + 𝑒

𝑠
) (𝐿/2 − ℎ𝜃) 𝑍̇

𝑦

𝐽 − 𝑚 (𝐿/2 − ℎ𝜃)2
.

(19)

The dynamic equation can be similarly solved when the
edge of the bearing pedestal collides with the bolts.

3. The Simulation Calculation of
the Model and Comparison Analysis with
Experimental Results

3.1. The Simulation Calculation of Pedestal Looseness. In
this paper Newmark-𝛽 equation which has low requirement
for integral accuracy is utilized for numerical calculation.
Based on dynamic equations of dual-rotor system, systematic
transient dynamic simulation is accomplished.

Bearings are fastened to bearing pedestal by using
Belleville spring and fastening bolt. Bolt coupling stiffness
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The calculation of X,V, A of rotor and bearing

Calculation of ML,KL, CL, QL

Figure 7: Implemented procedure of the proposed dynamic model.

is calculated based on [20]. Under condition of looseness
coupling stiffness varieswith connection condition of bearing
block and bolt due to bearing block’s movement. When
surface of bolt head is connected to bearing block in its
upward movement, the stiffness is about 106. Otherwise
it is about 102. Connection stiffness of bearing block and
foundation, bending stiffness of fastening bolt, and bearing
support stiffness were calculated according to Hertz theory,
beambending theory, and [21], respectively. Bearing damping
value is defined based on [22]. Bolt connection damping value
is empirically set. Therefore values for the parameters 𝐾 and
𝐶 in the analysis are as follows:

𝐾
2𝑦𝑚

= 2.4𝑒9N/m,

𝐾
2𝑦𝑑

= 3.9𝑒10N/m,

𝐾
3𝑦𝑚

= 4𝑒2N/m,

𝐾
3𝑦𝑢

= 4𝑒6N/m

𝐾
2𝑥

= 2𝑒10N/m,

𝐾
3𝑥

= 2𝑒10N/m,

𝐾
𝑏𝑥

= 4.38𝑒8N/m,

𝐾
𝑏𝑦

= 4.38𝑒8N/m,

𝐶
𝑏𝑥

= 𝐶
𝑏𝑦

= 2𝑒4N ⋅ s/m,

𝐶
2𝑥

= 𝐶
2𝑦

= 𝐶
3𝑥

= 𝐶
3𝑦

= 2𝑒3N ⋅ s/m.

(20)

Calculate the following parameters: Δ𝑡 = 0.0001 s, 𝛼 =
0.5, 𝛽 = 0.5, and the total time of calculation 𝑇 = 10 s.

The loose situation is located in 13th node of the inner
rotor, as shown in Figure 2. The implemented procedure is
demonstrated in Figure 7.
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(a) Vibration displacement waveform (loose status)
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Figure 8: Dynamic response of inner and outer rotor (loose status).

The rotating speeds of inner rotor and outer rotor are,
respectively, set to 4200 rpm and 5400 rpm when the simu-
lation calculation is carried out. The vibration displacement
signals of inner rotor and outer rotor are, respectively,
collected from 13th node and 14th node to analyse fault
characteristics.

(1) The rotating speeds of inner rotor and outer rotor are,
respectively, set to 4200 rpm and 5400 rpm.

The time waveform of outer rotor and inner rotor with
pedestal looseness fault is shown in Figure 8(a); the axis
orbits of dual-rotor system with and without looseness
fault are illustrated in Figure 8(b); the frequency spectrum
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Figure 9: Vibration spectrum analysis of inner and outer rotor.

plots under normal status and fault status are illustrated in
Figure 9.

(2)The rotating speeds of inner rotor and outer rotor are,
respectively, set to 5200 rpm and 6500 rpm.

The time waveform of outer rotor and inner rotor with
pedestal looseness fault is shown in Figure 10(a); the axis

orbits of dual-rotor system with and without looseness
fault are illustrated in Figure 10(b); the frequency spectrum
plots under normal status and fault status are illustrated in
Figure 11.

It can be observed from the vibration displacement
waveforms and frequency spectrums of rotors under two
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Figure 10: Dynamic response of inner and outer rotor (loose status).

kinds of different speed combination that the vibration
displacement of the node located in the looseness position
of inner rotor presents the asymmetry in vertical direction
and waveform cutting phenomenon when pedestal looseness
fault occurs. At the fundamental frequency, the amplitudes
of inner rotor’s loose node in 𝑋-direction and 𝑌-direction
are greater than the amplitudes under normal condition; the

amplitudes of node located in the bearing that supported
the outer rotor basically remain the same. Besides, multiple
harmonic components 2𝑋

1
(1𝑋
1
represents the fundamental

of inner rotor) and 2𝑋
2
(1𝑋
2
represents the fundamental of

outer rotor) and sometimes difference frequency and sum
frequency components of inner rotor and outer rotor are
present; the low frequency components such as (1/2)𝑋

1
,
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Figure 11: Vibration spectrum analysis of inner and outer rotor.

(1/2)𝑋
2
, (1/3)𝑋

1
, and (1/3)𝑋

2
increase in the spectrums

of inner and outer rotor. The simulation results are in
accordance with the conclusions of the literature [23].

It may be further noticed from the axis orbits that the
axis orbit of inner rotor presents thin strips when the bearing
pedestal looseness fault of inner rotor occurs, but the axis
orbit of outer rotor has almost no change.

3.2. Experimental Verification. In order to verify the effi-
ciency of the theoretical model, the unilateral looseness fault
of inner rotor’s bearing pedestal is simulated in the dual-rotor
system test rig.The schematic of test rig is shown in Figure 12.

The loose position of pedestal of inner rotor is shown
in Figure 12, which is corresponding to the 13th node (the
roller bearing pedestal of inner rotor) shown in Figure 2.The
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Figure 12: Schematic diagram of dual-rotor system loose experiment.

eddy current displacement sensor utilized to collect vibration
displacement of inner rotor is installed in the vicinity of the
4th bearing, and vibration displacements of outer rotor are
measured by the other displacement sensor, as illustrated
in Figure 12. Two cases of different speed combination are
demonstrated for experiment, in order to correspond to the
model simulation: the rotating speed of inner rotor 4200 rpm
and the rotating speed of outer rotor 5400 rpm, respectively,
and the rotating speed of inner rotor 5200 rpm and the
rotating speed of outer rotor 6500 rpm, respectively.

(1) The rotating speed of inner rotor is 4200 rpm, and the
rotating speed of outer rotor is 5400 rpm.

The time waveforms, axis orbits, and spectrums of inner
and outer rotor are illustrated in Figures 13 and 14.

(2)The rotating speed of inner rotor is 5200 rpm, and the
rotating speed of outer rotor is 6500 rpm.

The time waveforms, axis orbits, and spectrums of inner
and outer rotor are illustrated in Figures 15 and 16.

It is observed from the experimental results that vibration
displacement waveforms of inner and outer rotor are accom-
panied with the “waveform cutting,” and the phenomenon
is more serious for inner rotor. The spectrums of inner
rotor vibration displacement exhibit complicated frequency
components. Comparing the spectrums of a rotor system
with pedestal looseness in the literature [3, 4], the spectrum
not only contains the fundamental frequencies of inner
and outer rotor, 1/2 fractional harmonic components, but
also contains sum frequency and difference frequency of
two rotors’ fundamental frequencies, and superharmonic
frequencies (such as 2𝑋, 3𝑋, and 4𝑋) are presented. In
addition, the spectrums also contain combined frequencies
of fundamental frequencies of inner and outer rotor. The
spectrum components of outer rotor vibration displacement
waveforms are relatively simple, and the amplitude is smaller.

It may be noted that the axis orbit of outer rotor has no
obvious change comparing to the axis orbit under normal

status. However, the axis orbit of inner rotor is drawn into
similar-elliptic shape.

4. Conclusions

In the study, the dynamic model of dual-rotor system
has been proposed to describe the mechanics of pedestal
looseness between the pedestal and the foundation and bolt
cap. The loose bearing pedestal is regarded as the rigid
body with three degrees of freedom. The dynamics equa-
tions are numerically integrated for cases with and without
pedestal looseness, and the vibration displacement signals are
obtained for the two cases. The vibration signals collected
from the dynamic analysis and experiments are treated
with the Fourier transformation. Comparing with the actual
experimental results, the dynamic model is shown to be
accurate and effective. Typical conclusions are summarized
as follows:

(1) A new dynamic model of dual-rotor system with
pedestal looseness considering the effects of the col-
lision is presented. The pedestal looseness model has
satisfactory accuracy under some conditions by com-
paring simulation with experiment, which provides
theoretical support for extracting pedestal looseness
fault characteristics.

(2) The vibration displacement waveforms of rotors
exhibit the “waveform cutting” characteristics. The
spectrums of vibration displacement of inner and
outer rotor not only contain the sum frequency
and difference frequency of two rotors’ fundamental
frequencies but also contain some superharmonic
components (such as 2𝑋 and 3𝑋), and, especially for
the loose rotor, the multiple harmonic components
are more prominent. Besides the low frequency spec-
trum is abundant; sometimes fractional harmonic
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Figure 13: Dynamic response of inner and outer rotor (loose status).
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Figure 14: Vibration spectrum analysis of inner and outer rotor.
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Figure 15: Dynamic response of inner and outer rotor (loose status).
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Figure 16: Vibration spectrum analysis of inner and outer rotor.
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components are present. Some combined frequency
components of fundamental frequencies in high fre-
quency are illustrated.
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