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This study proposes an adaptive graph algorithm for collision-freemotion planning of articulated robots in dynamic environments.
For this purpose, deformations of the configuration space were analyzed according to the changes of the workspace using various
simulations. Subsequently, we adopted the principles of gas motion dynamics in our adaptation algorithm to address the issue of
the deformation of the configuration space. The proposed algorithm has an adaptation mechanism based on expansive repulsion
and sensory repulsion, and it can be performed to provide the entire adaptation using distributed processing.The simulation results
confirmed that the proposed method allows the adaptation of the roadmap graph to changes of the configuration space.

1. Introduction

Robot motion planning in dynamic environments has been
regarded by researchers as a challenging problem.Themotion
planning problem, particularly for articulated robots, is
known to be difficult because of the geometrical and algebraic
complexities resulting from the increase in the degrees of
freedom (DOFs) of the robot.The representative statement of
this motion planning problem is known as the configuration
space formulation. The key function of a configuration space
is to represent the robot as a point in an appropriate space and
map the obstacles in this space. This mapping transforms the
problem of planning themotion of a dimensioned object into
a planning problem for the motion of a point. It also makes
the motion constraints of the robot more explicit [1–3].

For collision-free manipulation, especially in dynamic
environments, planning algorithms must overcome addi-
tional challenging problems [4, 5]. The first problem is the
unpredictable radical deformation of the configuration space
owing to the change of the workspace. Various simulations
have shown that the extent of the changes in the shape of
the obstacles in the configuration space is closely related
to the distance between the robot and the obstacles in the
workspace. As a result, small changes in the workspace
could cause extreme deformation of the configuration space

when the body of the robot approaches the obstacles in
the workspace. Thus, it is essential to manage these radical
deformations of the configuration space.The second problem
is the large processing time required for reconstructing the
configuration space, because articulated robots generally
have high-DOF kinematic structures.

Although extensive work has been performed on robot
motion planning, most of the widely used algorithms uti-
lize sampling-based methodologies. These sampling-based
methods construct geometric graphs in collision-free con-
figuration spaces to obtain solutions to motion planning
problems; moreover, they employ a variety of strategies for
generating samples and connecting the samples with paths.
Sampling-based algorithms, such as probabilistic roadmaps
(PRM) [6] and rapidly exploring random trees (RRT) [7],
have been shown to perform well in practice [8–11] and have
theoretical guarantees, including probabilistic completeness
[12, 13]. Recently, with the increasing requirements for the
use of robots in dynamic or time-varying environments, the
extension of the motion planning problem to dynamic envi-
ronments has emerged as an important issue.The application
of sampling-based planning algorithms is mostly limited
to static environments because they cannot guarantee fast
responses to the processing time constraints and do not have
the computing abilities to manage the deformation of the
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Figure 1: Mapping relations between the workspace and the configuration space.

configuration space. Some studies have attempted to extend
sampling-basedmethods to dynamic environments by incor-
porating the notion of time as an additional dimension in
the configuration space [14, 15]. Other approaches are based
on the replanning method, which interleaves planning with
execution, in order to study unpredictable environments [5,
16, 17]. Nevertheless, it may be difficult for these algorithms
to handle dynamic constraints in real applications because the
amount of computation can increase exponentially with the
extension of the configuration space dimensions.

In this paper, we propose an algorithm for geometric
graphs that can adapt to a changeable configuration space
topology. We contrived this algorithm via inspiration from
recent investigations, such as multiagent systems [18–20],
consensus control [21–24], and distributed computing [25–
27]. In the proposed adaptation algorithm, each node moves
in a free configuration space independently, similar to the
intelligent agent of multiagent systems, by detecting the
deformation of the configuration space; then, the graph
updates its topology with respect to the changed node
information. It was confirmed that the graph can perform the
entire adaptation to the change of configuration space using
the adaptation algorithm. Moreover, the algorithm is based
on the distributed computation algorithm; hence, it could be
executed in parallel by many-core systems.

2. Dynamic Environments

2.1. Configuration Space Formulation. The configuration space
Q is the space of all possible configurations of the system; a
point q in this space fully describes the volume of the robot
R(q) in the workspace W [1, 2]. Figure 1 shows the map-
ping relations between the workspace and the configuration
space for a two-link manipulator. In articulated robots, the
configuration space Q generally represents the joint space,
which is a compact subset of the 𝑛-dimensional Euclidean
space R𝑛, where 𝑛 is the DOF of the robot. The configuration
space can be partitioned into two regions, one representing

the collision-free space Qfree and the other representing the
regionQcollide, in which the robot collides with the workspace
obstacles. Every obstacle𝑊𝑂

𝑖
in the workspace is mapped as

a configuration space obstacle 𝑄𝑂
𝑖
:

𝑄𝑂
𝑖
= {q ∈ Q | R (q) ∩ 𝑊𝑂

𝑖
̸= 𝜙} . (1)

The union of all the configuration space obstacles

Qcollide =
𝑚

⋃
𝑖=1

𝑄𝑂
𝑖

(2)

is called the configuration obstacle region, and the set

Qfree = Q \Qcollide = Q \

𝑚

⋃
𝑖=1

𝑄𝑂
𝑖

= {q ∈ Q | R (q) ∩ (

𝑚

⋃
𝑖=1

𝑊𝑂
𝑖
) = 𝜙}

(3)

is called the free space or free configuration space Qfree.
Any configuration q in Qfree is called a free configuration,
indicating that the robot does not collide with any obstacles
in the workspace.

2.2. Deformation of Configuration Space. Dynamic envi-
ronments are workspaces in which various changes can
occur. Changes in the workspace lead to deformation of
the configuration space; this relationship between the two
spaces is determined by the robot kinematics equation R(q).
In general, the relationship between the workspace and the
configuration space is nonlinear because almost all robot
kinematics equations are described by nonlinear functions.
Thus, the relations between the two spaces are difficult to
describe and analyze mathematically. By observing various
deformations of the configuration space, we can categorize
them into scaling, translation, andmerging deformations.
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Figure 2: Free configuration space ratio with respect to the distance
of the robot base from an obstacle in the workspace.

2.2.1. Scaling Deformation. Obstacles in the configuration
space change in size according to the change of the
workspace. The size of an obstacle is determined by the
distance between the coordinate of the robot base and that
of the obstacle in the workspace. Figure 2 shows the ratio of
free configuration space in the two-dimensional workspace
and in the configuration space as a function of the distance
between the obstacle and the robot base in the workspace.
Obstacles placed outside the working area of the robot do
not exist in the configuration space. However, if an obstacle
moves toward the robot base within the robot working area,
the ratio of free configuration space is gradually decreased. In
particular, the ratio of configuration space rapidly decreases
when the obstacle and the robot base are close. In Figure 2,
there is a radical decrease of 70% to 10% in the ratio of free
configuration space when the distance decreases from 30 cm
to 10 cm. These results confirm that the change of distance
between the obstacle and the robot base changes the scale of
the obstacle in the configuration space; in particular, when
the distance is small, the change of scale could be radical.

Figure 3 shows the deformation of the configuration
space for varying obstacle distances in the workspace. The
left and right images show the configuration space and
the corresponding workspace, respectively. In Figure 3(a),
the entire space is the free configuration space because all
objects are placed outside the working area of the robot.
Figure 3(b) shows the introduction of an obstacle into the
configuration space caused by the movement of the obstacle
in the workspace. As a result, the ratio of free configuration
space decreases to 93.3%. Furthermore, Figure 3(c) shows the
more radical deformation of the configuration space by the
approach of the obstacle to the robot base. Note that while
the movement distances from Figures 3(a) to 3(b) and from
Figures 3(b) to 3(c) are similar, the changes of the obstacle size
and the free configuration space ratio are larger in Figure 3(c).

2.2.2. Translation Deformation. The position of an obstacle
in the configuration space is determined by the direction
of the obstacle in the workspace with respect to the robot
base coordinate. Thus, if the obstacle position changes while
preserving the distance from the robot base in the workspace,

a translation motion of the obstacle occurs in the config-
uration space. Figure 4 shows a simplified example of the
result of the translation motion in the configuration space.
In Figure 4(a), the obstacle is placed at 0∘ with respect to the
robot base coordinate in the workspace; in the configuration
space, the obstacle is located at the origin. If the obstacle
moves to the direction of 90∘ while maintaining the same
distance, there is a translation motion to the right direction
of the obstacle in the configuration space without a notable
change of size, as in Figure 4(b). In contrast, as shown in
Figure 4(c), if the obstacle moves to the direction of −90∘,
there is a translation motion to the left of the obstacle in
the configuration space. From these results, it is evident that
the change of direction of the object with respect to the
robot base coordinate in the workspace produces transla-
tion motions of the obstacle position in the configuration
space.

2.2.3. Merging Deformation. Obstacles in the configuration
space consist of the union set of all obstacles converted from
the workspace. In general, there is no merging phenomenon
in the workspace because changes in the workspace are
rigid body motions without a scale change. However, in the
configuration space, there can be a merging phenomenon
with respect to the change of scale and position of the
obstacles. Figure 5 shows a merging process in the con-
figuration space according to the movements of multiple
objects in the workspace. The merging phenomenon can
be more prominent if the objects and the robot are close;
this complicates the prediction of the deformation of the
configuration space.

In themobile manipulation problem, which is a challeng-
ing task in robot motion planning, the robot position and
direction change by the movement of the mobile robot. If the
robot moves by turning, the obstacles near the robot move
by turning in the opposite direction in the workspace; thus,
it can be predicted that all these obstacles move in the same
direction. In addition, if the robot base coordinate moves by
the motion of the mobile base, some obstacles will be closer,
and some will be farther from the robot base. In this case,
some obstacles in the configuration space will be expanded,
and some will be contracted, according to their distances.
Therefore, in mobile manipulation problems involving the
movement of the mobile base, the environments become
dynamic even when the workspace is a fixed environment.
Figure 6 shows the deformation of the configuration space
when the robot base moves in different directions. As shown
in Figures 6(b) and 6(c), closer obstacles in the workspace
undergo expansion, and farther obstacles undergo contrac-
tion; furthermore, somemerging occurs by the expansions of
an obstacle.

In dynamic environments, the deformations of the con-
figuration space are combinations of the three nonlinear
deformations of scaling, translation, andmerging. Sometimes,
small changes in the workspace can generate considerable
deformations in the configuration space; the combined
changes frommultiple obstacle movements in the workspace
appear as a complex deformation in the configuration space.
These radical deformations of the configuration space further
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Figure 3: Scaling deformation of the configuration space caused by the movement of a workspace object. (a) No object in the configuration
space; (b) appearance of the configuration space object; (c) expansion of the configuration space object by movement toward the robot in the
workspace.
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Figure 4: Translation of a configuration space object generated by a moving workspace object. (a) Object at 0∘; (b) positive translation of the
configuration space object (object at 90∘); (c) negative translation of the configuration space object (object at −90∘).
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Figure 6: Expansion and contraction of configuration space objects by the movement of the robot base. (a) Robot placed at (0, 0); (b) robot
moves to (24, 23); (c) robot moves to (−21, −23).
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complicate the motion planning problem in dynamic envi-
ronments.

2.3. Processing Time for Modified Configuration Space.
Another important problem that complicates motion plan-
ning in dynamic environments is the processing time
required for the reconstruction of a modified configuration
space [28, 29]. Three-dimensional sensors in the workspace
can detect free ranges that are not occupied by obstacles.
However, in the configuration space of articulated robots,
there are no methods of detecting free ranges that are a
set of collision-free motions. A motion of the robot in the
workspace is expressed as a point in the configuration space;
a collision test result for a robot motion in the workspace
provides only the binary information of whether collision
occurs or not for a point of the configuration space. Thus,
the entire free configuration space can be constructed by the
mapping of the binary collision test results for all config-
uration space points. However, this mapping is impossible
in actual problems; hence, the free configuration space is
represented with abstracted graphs that consist of nodes and
edges.

Most robot motion planning algorithms have been
derived from sampling-based algorithms, such as PRM and
RRT; these methods describe the complex configuration
space with geometric graphs through the construction of
nodes and edges. In the PRM method, after a learning
phase in which a graph for the entire configuration space is
constructed, the optimal path between a given starting point
and a goal point can be obtained from the learned graph.
In contrast, the RRT method identifies a reachable path by
expanding the graph using a tree-type approach. In the PRM
method, the obtained path is the optimal path based on the
previously constructed graph; the PRM method cannot be
applied in dynamic environments because the graph must
be reconstructed if the configuration space changes. Because
the RRT method constructs a new graph for every path-
finding query, it can be applied in changeable environments.
However, the path obtained by theRRTmethod is not optimal

Repulsion
factor

Neighbor area

Soft sphere model (diameter r𝜂)

r

r𝜂

Figure 8: Expansive repulsion factor between two nodes in a
neighbor area.

and requires considerable time for constructing the new
graph. In addition, sampling-based algorithms perform tests
for the construction of nodes and edges; particularly, tests
for edge construction require significantlymore time because
collisions for line segments are determined by tests per-
formed for numerous points on the edge. With the purpose
of resolving these problems, a faster edge-test algorithm that
uses the upper bound of robot motion has been proposed
[30, 31]. Recently, with the development of parallel computing
technologies [32–34], some approaches use GPU technology
to improve processing time of robot collision checking [35–
37]. Nevertheless, the reconstruction of updated graphs in
real time to represent changes in dynamic environments
remains a difficult problem.

3. Adaptive Roadmap Algorithm

In this study, we attempt to solve the problem of motion
planning in dynamic environments. For this purpose, we
propose an adaptation algorithm of geometric graphs, called
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the adaptive roadmap algorithm, for collision-free motion
planning in a deformable configuration space. The motion
planning algorithm uses graphical information previously
constructed by methods, such as PRM, to rapidly determine
the optimal path from the learned roadmap. However, the
learning or constructing process of the roadmap consumes
much time; thus, it has been impossible to apply PRM
algorithms to the motion planning problem in dynamic
environments.

The proposed adaptive roadmap algorithm performs the
adaptation process by changing the structure of the graph
according to the deformation of the configuration space. To
adjust the roadmap to changeable environments, each node
in the graph moves automatically to the free configuration
space. Then, the node updates its edge information with
respect to the changed node information.These processes are
distributed and performed in parallel for all nodes. Hence,
this algorithm can adapt the roadmap to the change of the
configuration space by changing the graph structure. In the
proposed method, some new concepts, such as the neighbor
node, neighbor radius, and sensing node, are introduced.

3.1. Definitions. Definitions used are as follows:

(i) Node (q
𝑖
): a sampled point in the 𝑛-dimensional free

configuration space Qfree as a vertex of the graph;

(ii) Edge (e
𝑖𝑗
): a line segment that connects nodes q

𝑖
and

q
𝑗
in the graph; the connection between nodes q

𝑖

and q
𝑗
is established when a route from q

𝑖
to q
𝑗

exists through a local planner or a navigation control
function in the configuration space;

(iii) Roadmap (G): an abstract geometric graph that rep-
resents the complex shape and structure of the free
configuration space; a roadmap consists of a set of

nodes V and a set of edges E, where𝑁 is the number
of nodes of the graph:

G = {V,E | V = {q
1
, q
2
, . . . , q

𝑁
} , E

= {e
12
, e
15
, . . . , e

𝑁𝑘
}} ;

(4)

(iv) Neighbor node: a node located near node q
𝑖
, within a

distance 𝑟
𝜂
; neighbor nodes can interact with node q

𝑖
,

and the set of neighbor nodes 𝜂
𝑖
can be represented as

follows:

𝜂
𝑖
= {q
𝑗
∈ V |

󵄩󵄩󵄩󵄩󵄩
q
𝑗
− q
𝑖

󵄩󵄩󵄩󵄩󵄩2
≤ 𝑟
𝜂
, 𝑗 ̸= 𝑖} ; (5)

(v) Sensing node (Δq
𝑗
∈ R𝑛): a node that is sampled by

Poisson-disk sampling [38] on 𝜕B
𝑟𝑆

= {x ∈ R𝑛 |

‖x‖
2
= 𝑟
𝑠
}, which is the surface of an 𝑛-dimensional

hypersphere of radius 𝑟
𝑠
; sensing nodes detect the

deformation of the configuration space around each
node; the set of sensing nodes S can be represented as
follows:

S = {Δx
𝑙
∈ 𝜕B
𝑟𝑆

| 𝑙 = 1, . . . , 𝑛
𝑠
,
󵄩󵄩󵄩󵄩󵄩
Δx
𝑗
− Δx
𝑘

󵄩󵄩󵄩󵄩󵄩2

> 𝑟
𝑝
, ∀𝑗, 𝑘 ∈ {1, . . . , 𝑛

𝑠
}} ,

(6)

where 𝑟
𝑝
and 𝑛

𝑠
denote the Poisson-disk sampling

radius and the number of sensing nodes, respectively.

Figure 7 illustrates the concepts of neighbor node and
sensing node for a node q

𝑖
.

3.2. Strategies for Adaptation of Roadmap. The roadmap
method is an abstract representation of the complex topology
of the configuration space, with geometric graphs that consist
of nodes and edges. In the previous section, we confirmed
that a radical deformation of the configuration space can
appear in dynamic environments. When changes occur in
the workspace, they create various deformations of the
configuration space; then, the constructed roadmap becomes
useless. Thus, in this research, we propose an adaptation
algorithm for roadmaps by adjusting the graph topology to
the changed environments.

In the proposed adaptation algorithm, we adopted the
motion dynamics of gases [39]. Gases are distributed evenly
in the entire space of a container, regardless of its shape, by
physical phenomena, such as diffusion and internal interac-
tions, and collisions with the surface of the space boundary.
The adaptation mechanism of the proposed algorithm is
based on two repulsion factors: the expansive repulsion
factor and the sensory repulsion factor. The expansive repul-
sion factor is a repulsive interaction between nodes in the
roadmap. This factor can diffuse the distribution of nodes
throughout the configuration space. The sensory repulsion
factor represents the repulsion from sensing nodes around
a node; these sensing nodes can detect the deformation of
the configuration space. Because of the repulsion from the
sensing nodes, nodes canmove naturally toward the free area
of the configuration space.
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3.2.1. Expansive Repulsion Factor. The expansive repulsion
factor expresses an interaction between nodes that can
repel other nodes within the effective close area. Nodes
in the effective close area are defined as neighbor nodes,
and the threshold value that determines neighbor nodes
is the neighbor radius 𝑟

𝜂
. Figure 8 shows the interactions

between neighbor nodes in the neighbor area, which can be
represented by the soft sphere model with diameter 𝑟

𝜂
.

If the distance 𝑟 between two nodes is smaller than the
neighbor radius 𝑟

𝜂
, expansive repulsion occurs. The strength

of the interaction between the two nodes is determined by the
repulsive potential function, which increases with decreasing
node distance 𝑟. If the distance 𝑟 is larger than 𝑟

𝜂
, the repulsive

potential function has a very small value that cannot affect
other nodes. In this study, we adopted the potential function
proposed by Khatib [40]:

𝑓rep (𝑟, 𝑟𝜂) =

{{

{{

{

1

2
(
1

𝑟
−

1

𝑟
𝜂

)

2

, (0 < 𝑟 ≤ 𝑟
𝜂
) ,

0, (otherwise) .
(7)

The expansive repulsion factor results from all such inter-
actions between neighbor nodes. Thus, using the repulsive

potential function 𝑓rep(𝑟, 𝑟𝜂), the expansive repulsion factor
for node q

𝑖
can be represented as follows:

F𝑖expansive = ∑
𝑗

𝑓rep (𝑟𝑖𝑗, 𝑟𝜂) ⋅
q
𝑖
− q
𝑗

𝑟
𝑖𝑗

,

(𝑟
𝑖𝑗
=
󵄩󵄩󵄩󵄩󵄩
q
𝑖
− q
𝑗

󵄩󵄩󵄩󵄩󵄩2
, q
𝑗
∈ 𝜂
𝑖
) ,

(8)

where 𝑟
𝑖𝑗
and 𝜂

𝑖
are the distance of nodes 𝑖 and 𝑗 and the set

of neighbor nodes, respectively.

3.2.2. Sensory Repulsion Factor. Sensory repulsion represents
the repulsive interactions from sensing node Δq, which
are distributed evenly around a node and can detect the
deformation of the configuration space. Because of the repul-
sion from sensing nodes, nodes can move naturally toward
the free area of the configuration space. Three-dimensional
sensors in the workspace can detect free ranges that are not
occupied by obstacles. However, in the configuration space
for articulated robots, there are no methods of detecting
the free range. A motion of the robot in the workspace is
expressed as a point in the configuration space; a collision
test result for a robot motion in the workspace gives only
the binary information of whether collision occurs or not
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for a point in the configuration space. Thus, the data from
the sensing nodes produce a binary-type random vector.
Therefore, the sensory repulsive factor is similar to the bang-
bang controller. Figure 9 shows the sensory repulsion factor
generated by the sensing nodes, where 𝑠(q) is the collision
detection function in the workspace. The result of 𝑠(q) is
simple binary information; however, complex procedures are
required to obtain this result, such as kinematic analysis in
the workspace, generation of a collision check model, and
collision testing with the environment model:

𝑠 (q) =
{

{

{

1, (collision detected) ,

0, (otherwise) .
(9)

The sensing nodes generate repulsion factors in the
opposition direction for node q

𝑖
.The sensory repulsion factor

results from all such repulsive interactions of the sensing
nodes. Thus, it can be represented as follows:

F𝑖sensory = −

𝑛𝑆

∑
𝑗=1

(𝑠 (q
𝑖
+ Δq
𝑗
) ⋅ Δq

𝑗
) (Δq

𝑗
∈ S) , (10)

where S is the set of sensing nodes.

3.2.3. Difference Equation for Adaptive Roadmap Algo-
rithm. The adaptation mechanism of the proposed adaptive

roadmap algorithm is based on two repulsion factors: the
expansive repulsion factorFexpansive and the sensory repulsion
factor Fsensory. Figure 10 shows the overall interactions of the
proposed algorithm for a node. In Figure 10(a), the expan-
sive repulsion is illustrated as interactions with neighbor
nodes. Figure 10(b) shows the sensory repulsion by detecting
collision states in the configuration space. The red color of
the sensing node indicates detection of a collision in the
workspace. Figure 10(c) displays the total repulsion factors
applied to the node, and Figure 10(d) shows the movement
of the node caused by various interactions. Thus, based on
this adaptation mechanism, the difference equation of node
q
𝑖
can be expressed as follows:

q
𝑖
[𝑘 + 1] = q

𝑖
[𝑘] + 𝐺

1
⋅ F𝑖expansive [𝑘] + 𝐺

2

⋅ F𝑖sensory [𝑘] ,
(11)

where 𝐺
1
and 𝐺

2
are the gain of the expansive and sensory

repulsion factor, respectively, and

F𝑖expansive [𝑘] = ∑
q𝑗∈𝜂𝑖

𝑓rep (𝑟𝑖𝑗 [𝑘] , 𝑟𝜂)

𝑟
𝑖𝑗
[𝑘]

⋅ (q
𝑖
[𝑘] − q

𝑗
[𝑘]) ,

(𝑟
𝑖𝑗
[𝑘] =

󵄩󵄩󵄩󵄩󵄩
q
𝑖
[𝑘] − q

𝑗
[𝑘]

󵄩󵄩󵄩󵄩󵄩2
) ,
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𝑓rep (𝑟, 𝑟𝜂) =

{{

{{

{

1

2
(
1

𝑟
−

1

𝑟
𝜂

)

2

, (0 < 𝑟 ≤ 𝑟
𝜂
) ,

0, (otherwise) ,

F𝑖sensory [𝑘] = − ∑
Δq𝑗∈S

(𝑠 (q
𝑖
[𝑘] + Δq

𝑗
) ⋅ Δq

𝑗
) ,

𝑠 (q) =
{

{

{

1, (collision detected) ,

0, (otherwise) .

(12)

Figure 11 shows an example of the total adaptive roadmap,
which consists of 12 nodes, and each node has eight sensing
nodes. The adaptive roadmap algorithm performs the entire
adaptation using distributed processing of these complex
procedures in eachnode.Thus, the computation of (11) should
be performed in parallel at each node. Figure 12 shows the
flowchart for processing the adaptive roadmap algorithm.
In the flowchart, four procedures in the blue boxes can be
performed dispersively at each node by parallel computing
techniques, such as multithreading or GPU processing.

4. Simulation Results

4.1. Adaptation Results for Workspace Change. To verify
the feasibility of the proposed adaptive roadmap method,
simulations were performed in a simplified test environment.
If the robot has three or more DOFs, the free configuration
space becomes a complex high-dimensional space, which is
difficult to visualize and identify. Thus, we considered a test
environment with a two-link robot with a two-dimensional
configuration space. In the test simulations, we set the
number of nodes𝑁 to 100 for constructing the roadmap, and
the gain of the expansive and sensory repulsion factor were
set to 40 and 1.0, respectively. To perform the adaptation at
each node, distributed computing with the multithreading
technique was implemented, and 100 threads were allocated
for the processing of each node.

Each joint of the robot was set to have an operating limit
range of −170∘–170∘; thus, the configuration space had the
same topology as the Euclidean space. If the two-link robot
has no operating limit, the configuration space is a torus-type
space; in the case of higher dimensions, the configuration
space becomes a more complex space that is difficult to
handle.Thus, we assumed that the robot had operating limits
to simplify the configuration space, because most actual
robots have joint limits.

Figure 13 shows the test environments for the simulations.
Figure 13(a) shows the workspace conditions, a two-link
robot, and five movable obstacles. Figure 13(b) shows the
configuration space with respect to the workspace displayed
in Figure 13(a). Obstacles in the configuration space are
illustrated with the same colors as in the workspace.

Figure 14 shows the processing procedures of the adaptive
roadmap algorithm. Figure 14(a) displays the initial state of
the roadmap, in which 100 nodes were scattered randomly
in the configuration space. Figures 14(b) and 14(c) illustrate

Searching neighbor nodes

Getting sensing node data
((collision checking on sensing nodes)(

g gg g

Updating node information

Updating edge informati

g(computing equation (p g q 11) for qqiii)

ion

Initialize nodes

Constructing sensing nodes
(Poisson-disk sampling on n-sphere)

Creating distributed threads

Start

Resume threads

Synchronize and
suspend threads

Terminate

Quit?

Destroying distributed threads

Distributed
processing

Searching neighbor nodes 

Getting sensing node data
(collision checking on sensing nodes)

Updating node information

Updating edge information

No

Yes

Timer event

(random sampling on Qfree)

(computing (11) for qi)

· · ·

Figure 12: Flowchart for processing the adaptive roadmap algo-
rithm.

the states of the adaptive roadmap after the 5th and 10th
iterations, respectively, in which the nodes disperse in the
free configuration space. Figure 14(d) shows the state of the
adaptive roadmap at equilibrium, after 100 iterations; at this
state, the nodes are distributed evenly in most of the free
configuration space. Thus, the coverage, designated by the
yellow area, of the distribution of the nodes is almost com-
plete, and the edges are well connected throughout the free
configuration space. These processing procedures confirmed
that the adaptive roadmap can change the structure of a
random initial state to adapt to the changed configuration
space.

Figure 15 shows the motion planning results for two test
cases using the roadmap information after performing the
adaptation. Figures 15(a) and 15(c) represent the roadmap
graphs and the planned paths of the robot motion in the con-
figuration space. Figures 15(b) and 15(d) show the operational
trajectories of robotmotion in theworkspace according to the
planned paths. From themotion planning results of Figure 15,
it can be confirmed that the collision-free robotmotions were
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Figure 13: Test workspace and the corresponding configuration space. (a) Two-link robot and obstacles in workspace; (b) configuration space
for the workspace in (a).
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Figure 14: Running procedures of the adaptive roadmap algorithm. (a) Initial state; (b) state of the roadmap after the 5th iteration; (c) state
of the roadmap after the 10th iteration; (d) state of the roadmap after the 100th iteration.

obtained easily using the adapted roadmap graph, and the
planned motion paths were similar to the optimal path.

Next, we tested the behavior of the adaptive roadmap
algorithm for changes of the workspace. Figure 16 shows the
modified test workspace and the corresponding configura-
tion space. In the changed workspace of Figure 16(a), the
positions of five obstacles were changed, and the configura-
tion space of Figure 16(b) was largely deformed, accordingly.

Figure 17 shows the processing procedures of the adap-
tive roadmap algorithm for the changes of the workspace.
Figure 17(a) displays the initial state of the roadmap. Figures
17(b) and 17(c) show the states of the adaptive roadmap after
the 5th and 10th iterations, respectively, in which the nodes
disperse in the changed configuration space. Figure 17(d)
shows the state of the adaptive roadmap at equilibrium, after
100 iterations. In this state, the coverage with respect to the
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Figure 15: Motion planning results and trajectories of robot motion for two test cases (start motion (green); goal motion (red)). (a) Roadmap
graph and the plannedmotion (blue) in the configuration space for the collision-free path from [155∘, 78∘] to [−85∘,−39∘]; (b)motion trajectory
in the workspace for (a); (c) roadmap graph and the planned motion (blue) in the configuration space for the collision-free path from [−9∘,
10∘] to [−160∘, −33∘]; (d) motion trajectory in the workspace for (c).

(a)

q2

q1

(b)

Figure 16: Changed workspace and the corresponding configuration space. (a) Two-link robot and obstacles in the workspace; (b)
configuration space of the workspace shown in (a).

distribution of nodes is almost complete, and the edges are
well connected throughout the changed configuration space.
The results of this simulation confirmed that the adaptive
roadmap can perform a successful adaptation in the case of
a radical deformation of the configuration space.

Figure 18 shows the motion planning results in the
changed workspace, shown in Figure 16, for two test cases
using the adapted roadmap information. Figures 18(a) and
18(c) represent the roadmap graphs and the planned paths of
robot motion in the configuration space. Figures 18(b) and
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Figure 17: Adaptation procedures for the changed configuration space. (a) Initial state; (b) state of the roadmap after the 5th iteration; (c)
state of the roadmap after the 10th iteration; (d) state of the roadmap after the 100th iteration.

18(d) show the operational trajectories of robot motion in
the workspace according to the planned paths. Similar to the
results of Figure 15, the paths of robot motion for the two
test cases were obtained for the changed workspace, and the
acquired motion paths seem to be close to the optimal path.

4.2. Adaptation Results for Various Deformations. Subse-
quently, the behavior of the adaptive roadmap was observed
in dynamic environments. To generate continuous changes
of the workspace, the positions of all obstacles were modified
slightly and randomly for every simulation step, and consid-
erable obstacle position changes were applied at every 50th
step.

Figure 19 shows the results of the adaptive roadmapunder
dynamic environment conditions. Figure 19(a) presents the
results for the total expansive repulsion. The red line shows
the free configuration ratio, and the green line shows the
total expansive repulsion. When a radical change occurs, the
total expansive repulsion exhibits a spiky transient pattern;
however, it returns to a stable state after some iterations.
The gray line in Figure 19(b) represents the coverage for
the configuration space. When a radical change occurs,
the coverage briefly decreases; however, it stays near 100%
throughout the running of the adaptive roadmap algorithm.

Figure 20 shows the steady state of the adaptive roadmap
for various configuration space conditions. The free

configuration space ratio ranged from 89.6% to 38.7%,
which confirmed that the adaptive roadmap converged to
equilibrium for various environments. Further, we have
published a video of the continuous behavior of the adaptive
roadmap algorithm. The detailed adaptation process of the
roadmap graph can be seen at [41].

5. Conclusions

In this paper, we propose an algorithm that can adapt to a
radically changeable configuration space. For this purpose,
we first analyzed the deformation of the configuration space
with respect to the change of the workspace. To address
the issue of the deformation of the configuration space, we
presented an adaptation algorithm for the roadmap graph
based on distributed processing. In this algorithm, each
node in the graph moves in the free configuration space by
detecting the deformation of the configuration space; then,
the node updates its edge information with respect to the
changed node information.The adaptationmechanism of the
proposed algorithm is based on two basic repulsion factors:
the expansive repulsion factor and the sensory repulsion
factor. Moreover, the adaptive roadmap can perform the
entire adaptation by distributed processing of the complex
procedure in each node. To verify the effectiveness of the
proposed method, simulations of a continuously changing
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Figure 18: Motion planning results and trajectories of robot motion for two test cases (start motion (green); goal motion (red)). (a) Roadmap
graph and the plannedmotion (blue) in the configuration space for the collision-free path from [−155∘, 35∘] to [37∘, 157∘]; (b)motion trajectory
in the workspace for (a); (c) roadmap graph and the planned motion (blue) in the configuration space for the collision-free path from [−4∘,
59∘] to [−165∘, 62∘]; (d) motion trajectory in the workspace for (c).

0
200
400
600
800

1000
1200
1400
1600
1800

Total expansive repulsion
Free configuration space ratio 

1 101 201 301 401 501 601 701 801 901 1001

(a)

0
20
40
60
80

100
120

Coverage

1 101 201 301 401 501 601 701 801 901 1001

Free configuration space ratio 

(b)

Figure 19: Simulation results of the adaptive roadmap for various conditions of the configuration space volume (red). (a) Total expansive
repulsion (green); (b) coverage of the roadmap (gray).

workspace were performed in a test environment of a two-
link manipulator case. The simulation results confirmed that
the graph could perform the entire adaptation with respect
to the change of the configuration space using the proposed
algorithm.

As future work, high-dimensional configuration space
and complex problems, such as redundancy and mobile
manipulation for actual robots, will be considered. Thus,
to overcome these problems, we should deliberately uti-
lize massively parallel processing technology using GPUs.
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Figure 20: Topologies of the adaptive roadmap at equilibrium for various conditions of the free configuration space ratio. (a) 89.6%; (b)
69.3%; (c) 79.5%; (d) 59.9%; (e) 59.3%; (f) 54.1%; (g) 57.8%; (h) 48.68%; (i) 38.7%.

Moreover, the application of the current results to the
study of complex systems will require further investiga-
tion. The adaptive roadmap algorithm is strongly related
to the complex system that interacts with many indepen-
dent agents internally. Therefore, the further development
of the adaptive algorithm by combining it with complex
systems science should be considered as important future
work.
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