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The total variation (TV)model has been studied extensively because it is able to preserve sharp attributes and capture some sparsely
critical information in images. However, TV denoising problem is usually ill-conditioned that the classical monotone projected
gradient method cannot solve the problem efficiently. Therefore, a new strategy based on nonmonotone approach is digged out as
accelerated spectral project gradient (ASPG) for solving TV. Furthermore, traditional TV is handled by vectorizing, which makes
the scheme farmore complicated for designing algorithms. In order to simplify the computing process, a new technique is developed
in view of matrix rather than traditional vector. Numerical results proved that our ASPG algorithm is better than some state-of-
the-art algorithms in both accuracy and convergence speed.

1. Introduction

Blur and noise are unavoidable during the acquisition and
transmission of images, and this may be introduced by the
poor lighting conditions, faulty camera or unperfect trans-
mission channels, and so on. It is interesting and challenging
to restore the ideal image from its degraded version. Several
effective mathematical models and algorithms have emerged
such as partial differential equations [1], sparse-land models
[2, 3], and regularization [2].

This paper mainly elaborated on one of the most popular
and effective tools for image denoising problem named TV
[3–5], as it has been shown to preserve sharp edges both
experimentally and theoretically. In view of the good perfor-
mance in image processing, TV has been extensively studied
in many image processing fields such as denoising [3, 4],
deblurring [6], and inpainting [5, 7]. Meanwhile, various
algorithms [3, 5–8] for solving TV are also proposed. Even
though there are so many algorithms, most of them are
merely related to vectorization [3, 6]. As images are two-
dimensional signals, it is more intuitive and suitable to proc-
ess by matrix than by vector. Furthermore, it is more efficient
and simpler for image processing in a matrix view. In this

work, some universal and useful properties of TV are given in
matrix version, while it also applies to other algorithms even
without any modification.

Over the last few decades, there have been many different
variations of the projected gradient method (PG) to solve
TV denoising problems [9–11]. Generally, the classical PG
method has complexity result of 𝑂(1/𝑘) as one of its draw-
backs [12], where 𝑘 is the iteration counter. Many authors
devoted themselves into enhancing PG. Birgin et al. [13, 14]
imposed a nonmonotone technique to classical PG and devel-
oped the spectral projected gradient (SPG)method. Nesterov
[15] gave a concise and efficient strategy which improved the
convergence speed of PG to 𝑂(1/𝑘

2
). Recently, similar tech-

niques were tactfully managed to different traditional algo-
rithms [8, 10, 11, 16, 17] and corresponding optimal complexity
results were obtained: Beck and Teboulle [10] proposed a
fast duality-based gradient projection methods to solve TV;
Chambolle and Pock [11] and Goldfarb et al. [16] accelerated
the classical primal-dual algorithm and alternating direction
augmented Lagrangian methods, respectively; more recently,
Ouyang et al. [17] adopted the same technique to enhance the
convergence of alternating direction method of multipliers
(ADMM). Though so many studies have been done based
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on Nesterov’s theory, to the best of our knowledge, no work
explores the possibility between Nesterov’s scheme [15] and
the spectral projected gradient algorithm. Although the SPG
approach is interesting, the strong disturbance always occurs
before its convergence and thus casts a shadow over the
approach;meanwhile, the key thought inNesterov’s work [15]
is that a combination of past iterates is used to compute the
next iterate.This work is purposed to reduce the SPG’s distur-
bance byNesterov’s method and propose an accelerated spec-
tral projected gradient (ASPG) for TV denoising problem.

2. Primal-Dual Framework of
Total Variation Denoising

In this section, we consider the TV denoising problem which
is formulated as

min
𝑢∈Ω

‖𝑢 − 𝑏‖
2
+ 2𝜆 ‖𝑢‖TV , (1)

where 𝑢 and 𝑏 denote an ideal and the noised image,
respectively, the box region Ω is practically selected as
[0, 1] or [0, 255] to constrain the value of 𝑢, and ‖𝑢‖TV
is called TV seminorm usually divided into isotropic and
anisotropic types which are, respectively, defined as the paper
of Chambolle [9]. It is worth mentioning that our approach
can be applied to TV

𝐼
and TV

𝐴
. However, for the sake of

compactness, we will put emphasis on TV
𝐼
.

2.1. Notations and Outline. To smooth the process, some
main notations are introduced here. The standard inner
product in Euclidean space 𝑅

𝑚×𝑛 is defined as ⟨𝐴, 𝐵⟩ =

tr(𝐴𝑇𝐵). Denote the right linear space in Euclidean space
𝑅
(𝑚−1)×𝑛

× 𝑅
𝑚×(𝑛−1)

= {[𝐴, 𝐵] | 𝐴 ∈ 𝑅
(𝑚−1)×𝑛

, 𝐵 ∈ 𝑅
𝑚×(𝑛−1)

}.
For convenience, we writeC = 𝑅

(𝑚−1)×𝑛
× 𝑅
𝑚×(𝑛−1). Thus, we

can define the inner product as

⟨[𝐴
1
, 𝐵
1
] , [𝐴
2
, 𝐵
1
]⟩ = tr (𝐴𝑇

2
𝐴
1
) + tr (𝐵𝑇

2
𝐵
1
) ,

∀ [𝐴
𝑖
, 𝐵
𝑖
] ∈ 𝑅
(𝑚−1)×𝑛

× 𝑅
𝑚×(𝑛−1)

, (𝑖 = 1, 2) .

(2)

The rest of this paper is organized as follows: In the follow-
ing subsections, some important operators in matrix version
for solving TV, followed by the algorithm for TV-based image
denoising, are explained. In Section 3, the spectral projected
gradient algorithm is first recapped and then the accelerated
version ASPG is derived by it. To show the effectiveness of
the proposed approach, numerical comparisons with existing
state-of-the-art methods are carried out in Section 4. Finally,
Section 5 contains the conclusion.

2.2. Some Preliminaries for TV Denoising. In this section, we
will define some useful operators which are necessary for
our algorithm. The operators are defined in matrix version

instead of the traditional vector version [3, 6], which makes
TV more understandable and concise.

(a) Subset. 𝑆 is a subset in the inner product space C as
follows:

𝑆 = {(𝑃
1
, 𝑃
2
) | (𝑃
1
, 𝑃
2
) ∈ C, 𝑝

2

1(𝑖,𝑗)
+ 𝑝
2

2(𝑖,𝑗)

≤ 1 (for 𝑖 = 1 : (𝑚 − 1) , 𝑗 = 1 : (𝑛 − 1)) , 𝑝
1(𝑖,𝑛)

≤ 1, (for 𝑖 = 1 : (𝑚 − 1)) , 𝑝
2(𝑚,𝑗)

≤ 1, (for 𝑗 = 1 : (𝑛 − 1))} ,

(3)

where 𝑝
𝑘,(𝑖,𝑗)

is the entry of 𝑃
𝑘
(for 𝑘 = 1, 2).

(b) Projected Operator. In this paper, two kinds of projection
operators 𝑃

Ω
(𝑢) and 𝑃

𝑆
(P) are necessary: An image 𝑢 pro-

jected onto a box setΩ ≡ [𝑏
1
, 𝑏
2
] is easily computed:

(𝑃
Ω
𝑢)
𝑖,𝑗
=

{{{{

{{{{

{

𝑏
1

if 𝑢
𝑖,𝑗
< 𝑏
1

𝑢
𝑖,𝑗

if 𝑏
1
≤ 𝑢
𝑖,𝑗
≤ 𝑏
2

𝑏
2

if 𝑢
𝑖,𝑗
> 𝑏
2
.

(4)

Taking P = (𝑃
1
, 𝑃
2
) ∈ C, for TV

𝐼
problem, (𝑃

𝑆
P)
𝑖,𝑗

∈ 𝑆 is
given by

(𝑃
𝑆
𝑃
1
)
𝑖,𝑗

=

{{{{{{{{

{{{{{{{{

{

(𝑃
1
)
𝑖,𝑗

max {1, (𝑃1)𝑖,𝑛

}

if 𝑖 = 1 : (𝑚 − 1)

(𝑃
1
)
𝑖,𝑗

max {1,√(𝑃
1
)
2

𝑖,𝑗
+ (𝑃
2
)
2

𝑖,𝑗
}

otherwise,

(𝑃
𝑆
𝑃
2
)
𝑖,𝑗

=

{{{{{{{{

{{{{{{{{

{

(𝑃
2
)
𝑖,𝑗

max {1, (𝑃2)𝑖,𝑛

}

if 𝑖 = 1 : (𝑚 − 1)

(𝑃
2
)
𝑖,𝑗

max {1,√(𝑃
1
)
2

𝑖,𝑗
+ (𝑃
2
)
2

𝑖,𝑗
}

otherwise,

(5)

while for TV
𝐴
problem the projected operator is defined as

(𝑃
𝑆
𝑃
1
)
𝑖,𝑗
=

(𝑃
1
)
𝑖,𝑗

max {1,

(𝑃
1
)
𝑖,𝑗


}

;

(𝑃
𝑆
𝑃
2
)
𝑖,𝑗
=

(𝑃
2
)
𝑖,𝑗

max {1,

(𝑃
2
)
𝑖,𝑗


}

.

(6)
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(c) Gradient Operator. If an image 𝑢 ∈ 𝑅
𝑚×𝑛, the gradient is

an element inDu ∈ C defined as Du = (𝐷
𝑥
𝑢,𝐷
𝑦
𝑢) with

(𝐷
𝑥
𝑢)
𝑖,𝑗
= 𝑢
𝑖,𝑗
− 𝑢
𝑖+1,𝑗

, 𝑖 = 1 : (𝑚 − 1) , 𝑗 = 1 : 𝑛;

(𝐷
𝑦
𝑢)
𝑖,𝑗
= 𝑢
𝑖,𝑗
− 𝑢
𝑖,𝑗+1

, 𝑖 = 1 : 𝑚, 𝑗 = 1 : (𝑛 − 1) .

(7)

(d) Divergence Operator. The divergence of a vector P =

(𝑃
1
, 𝑃
2
) ∈ 𝑆 is an array in 𝑅

𝑚×𝑛 computed by

(div P)
𝑖,𝑗
= 𝑝
1,(𝑖,𝑗)

− 𝑝
1,(𝑖−1,𝑗)

+ 𝑝
2,(𝑖,𝑗)

− 𝑝
2,(𝑖,𝑗−1)

, (8)

which implies that 𝑝
1,(0,𝑗)

= 𝑝
1,(𝑚,𝑗)

= 𝑝
2,(𝑖,0)

= 𝑝
2,(𝑖,𝑛)

≡ 0 for
𝑖 = 1 : 𝑚, 𝑗 = 1 : 𝑛.

It should bementioned that the operators (b), (c), and (d)
are defined with the assumption of periodic boundary which
is adopted in the rest of this paper.

2.3. The Primal Dual Solution of TV. As the denoising prob-
lem (1) is not differentiable, the traditional optimal methods
are not applicable. Though there are so many techniques to
overcome the difficulty, we employ the scheme of Chambolle
[9, 18] for its effectiveness and simpleness.

Now, we give the TV-based image denoising algorithm in
primal-dual view which mainly contains two steps.

Algorithm 1 (TV-based image denoising (TVID)).
Input:
𝑏: observed image
𝜆: regularization parameter
Step 0: Take P

0
= (0
(𝑚−1)×𝑛

, 0
𝑚×(𝑛−1)

).
Step 1: 𝑢 = 𝑃

Ω
(𝑏 − 𝜆 div P) Compute

Step 2: P∗ = argminP∈𝑆‖𝑏 − 𝜆 div P‖2
𝐹
− ‖𝑢
∗
− 𝑏 +

𝜆 div P‖2
𝐹

Output: 𝑢∗ = 𝑃
Ω
(𝑏 − 𝜆 div P∗)

Theorem 2. The TVID algorithm can obtain an analytic
solution of the TV image denoising problem (1).

Proof. According to the primal-dual approach [9, 18], the TV
seminorm can be written as follows:

‖𝑢‖TV = sup
P∈𝑆

⟨𝑢, div P⟩ . (9)

Substituting (9) into (1), then we get

min
𝑢∈Ω

max
P∈𝑆

‖𝑢 − 𝑏‖
2
+ 2𝜆 ⟨𝑢, div P⟩ . (10)

By the min-max theorem, the above equation is equivalent to

max
P∈𝑆

min
𝑢∈Ω

‖𝑢 − 𝑏‖
2
+ 2𝜆 ⟨𝑢, div P⟩ . (11)

Obviously, the inner part of the above equation,

min
𝑢∈Ω

‖𝑢 − 𝑏‖
2
+ 2𝜆 ⟨𝑢, div P⟩ , (12)

has an analytic solution:

𝑢
∗
= 𝑃
Ω
(𝑏 − 𝜆 div P) , (13)

where 𝑃
Ω
(𝜁) denotes the projection of 𝜁 onto the convex set

Ω.

3. Accelerated Spectral Projected
Gradient Based TV Denoising

In this section, first there will be a brief on spectral projected
gradient method [14]. Next an accelerated strategy will be
used to enhance SPG.

3.1. Introduction to Spectral Projected Gradient Method. By
combining Barzilai-Borwein nonmonotone [19] ideas with
traditional projected gradient algorithm, Birgin et al. [13, 14]
developed a new gradient algorithm that is SPG,which is suit-
able for convex optimization problemswith projection easy to
be computed on feasible set. By incorporating a spectral step
length and anonmonotone globalization strategy, SPG speeds
up the traditional PG and maintains it to be simple and easy
to code.

The SPG method aims to minimize 𝑓 on a closed and
convex setΩ; that is,

min
𝑥∈Ω

𝑓 (𝑥) . (14)

As the traditional projection method, the SPG method has
the form

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (15)

where 𝛼
𝑘
is the step length, and the search direction 𝑑

𝑘
has

been defined as [14]

𝑑
𝑘
= 𝑃
Ω
[𝑥
𝑘
− 𝜆
𝑘
∇𝑓 (𝑥

𝑘
)] − 𝑥

𝑘
. (16)

In the classical SPG method, the nonmonotone decrease
criterion is realized by an integer parameter 𝑀 ≥ 1 which
guarantees the object function decrease every 𝑀 iterations.
In the line search stage, a sufficient decrease parameter 𝛾 ∈

(0, 1) is used to satisfy Armijo criterion. Besides, some other
parameters are also required: safeguarding parameters 0 <

𝛼min < 𝛼max < ∞ for the spectral step length and safeguard-
ing parameters 0 < 𝜎

1
< 𝜎
2
< 1 for the quadratic interpola-

tion. For later reference, we now recall the theorem by Birgin
et al. [14] in which convergence of classical SPG is shown.

Theorem 3 (see [14]). The spectral projected algorithm is well
defined, and any accumulation point of the sequence {𝑥

𝑘
} that

it generates is a constrained stationary point of (14).

3.2. Accelerated SPG for TVID. In this section, we will
elaborate our algorithm on TV denoising problem (1). From
algorithm TVID, problem (1) can be solved if and only if
Step 2 is solved. Thus, we proposed an accelerated spectral
projected gradient (ASPG) for solving Step 2. The proposed
ASPGmainly consists of two parts: a nonmonotone projected
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gradient for finding the feasible solutions and a combination
of the former two iterations for reducing the turbulence of the
algorithm and accelerating the convergence speed. In order to
solve Step 2 in algorithmTVID, substituting (13) into (11) and
simplifying yield

min
P∈𝑆

𝐺 (P) = ‖𝑏 − 𝜆 div P‖2
𝐹
−
𝑢
∗
− 𝑏 + 𝜆 div P

2

𝐹
. (17)

And the gradient of (17) is

∇𝐺 (P) = −2𝜆𝐷 (𝑃
Ω
(𝑏 − 𝜆 div P)) , (18)

where 𝐷(⋅) can be computed by the gradient operator in
Section 2.2. Substituting (18) into (16) and simplifying them
together with (13), we get the search direction of ASPG:

𝑑
𝑘
= 𝑃
𝑆
(P
𝑘
+ 2𝜆𝛼

𝑘
𝐷(𝑢
𝑘
)) − P

𝑘
, (19)

where𝑃
𝑆
(⋅) is defined as the projected operator in Section 2.2.

The nonmonotone linear search and the spectral step
length are updated just as the classical SPG [14]. Following
nonmonotone line search, ASPG adopts Nesterov’s [15] tech-
nique to improve the performance of classical SPG. Finally, it
should be mentioned that the ASPG algorithm is used for the
dual step in TVID algorithm; that is, the variation P in ASPG
is an element of the inner product spaceC. Consequently, the
inner product involving ASPG should be computed as (2).

Algorithm4 (accelerated spectral projected gradient (ASPG)).

Input:Q
0
∈ C, integer𝑀 ≥ 1, 𝛼

0
∈ [𝛼min, 𝛼max]

the regularization parameter 𝜆
an integer Iter and the observed image 𝑏

Step 0: Take P
1
= Q
0
= (0
(𝑚−1)×𝑛

, 0
𝑚×(𝑛−1)

), 𝑡
1
= 1

Step 1: (𝑘 = 1, . . . , Iter) Compute

Step 2: Iterate

𝑢
𝑘
= 𝑃
Ω
(𝑏 − 𝜆 div P

𝑘
)

𝑑
𝑘
= 𝑃
𝑆
(P
𝑘
+ 2𝜆𝛼

𝑘
𝐷(𝑢
𝑘
)) − P

𝑘
;

Step 2.1: Nonmonotone Line Search
Compute
𝐺max = max{𝐺(P

𝑘−𝑗
) | 0 ≤ 𝑗 ≤ min(𝑘,𝑀 − 1)}

and set 𝜏 ← 1

Step 2.1.1:

If 𝐺(P
𝑘
+ 𝜏𝑑
𝑘
) ≤ 𝐺max − 2𝛾𝜏𝜆⟨𝑑

𝑘
, 𝐷(𝑢
𝑘
)⟩

then set 𝜏
𝑘
← 𝜏 and stop

Step 2.1.2: Compute

𝜏
𝑡
= 𝜆𝜏
2
⟨𝑑
𝑘
, 𝐷(𝑢
𝑘
)⟩/2[𝐺(P

𝑘
+ 𝜏𝑑
𝑘
) − 𝐺(P

𝑘
) +

2𝜆𝜏⟨𝑑
𝑘
, 𝐷(𝑢
𝑘
)⟩]

If 𝜏
𝑡
∈ [𝜎
1
, 𝜎
2
𝜏] then set 𝜏 ← 𝜏

𝑡

Otherwise, set 𝜏 ← 𝜏/2.
Go to Step 2.1.1
Step 2.2:Q

𝑘
= 𝑃
𝑆
(P
𝑘
+ 𝛼𝑑
𝑘
)

Step 3:

𝑡
𝑘+1

= (1 + √1 + 4𝑡
2

𝑘
)/2;

P
𝑘+1

= Q
𝑘
+ ((𝑡
𝑘
− 1)/𝑡

𝑘+1
)(Q
𝑘
−Q
𝑘−1

);

Step 4: Compute the spectral step length

𝑆
𝑘
= P
𝑘+1

− P
𝑘
;

𝑌
𝑘
= −2𝜆(𝐷(𝑢

𝑘+1
) − 𝐷(𝑢

𝑘
))

If ⟨𝑌
𝑘
, 𝑆
𝑘
⟩ ≤ 0 then set 𝛼

𝑘+1
← 𝛼max

Otherwise
𝛼
𝑘+1

= max{𝛼min,min{⟨𝑆
𝑘
, 𝑆
𝑘
⟩/⟨𝑌
𝑘
, 𝑆
𝑘
⟩, 𝛼max}}

Output: 𝑢∗ = 𝑃
Ω
(𝑏 − 𝜆 div PIter)

3.3. Convergence Analysis of ASPG. Since our method can be
seen as an accelerated version of classical SPG in the dual
space, its convergence can be deduced fromTheorem 3. Now,
we summarize the convergence of ASPG in the following
theorem.

Theorem 5. The ASPG for TVID is well defined, and any
accumulation point of the sequence {P

𝑘
} is a constrained

stationary point of (17); furthermore, the output 𝑢∗ of ASPG
is a stationary point of TVID problem (1).

Proof. By (13), 𝑢∗ generated by ASPG is a stationary point of
(1) if and only if P is a stationary of (17).

Equation (18) shows that the 𝑘th gradient of (17) can be
gotten by 𝑢

𝑘
; that is, ∇𝐺(P

𝑘
) = −2𝜆𝐷(𝑃

Ω
(𝑢
𝑘
)). Substituting

it into (16), we get the search direction of ASPG that is (19).
This means that the search direction of ASPG is the same
as that of the SPG direction except that (19) is in the dual
space C. Furthermore, the definition of gradient operator
𝐷(⋅) shows that𝐷(𝑢

𝑘
) is an element ofC.Therefore, the inner

product ⟨𝑑
𝑘
, 𝐷(𝑢
𝑘
)⟩ can be computed by (2). Moreover, both

the nonmonotone line search and the spectral step length
mainly involve the inner products ⟨𝑑

𝑘
, 𝐷(𝑢
𝑘
)⟩, ⟨𝑆
𝑘
, 𝑆
𝑘
⟩, and

⟨𝑆
𝑘
, 𝑌
𝑘
⟩. Consequently, the nonmonotone line search and the

spectral step length of ASPG are just different from those of
the classical SPG in the inner product.

Step 3 in ASPG is an additional step besides the classical
SPG. It can be known that the step is a linear combination
of the previous two results, which will not change the con-
vergence of the whole algorithm.Therefore, fromTheorem 3,
it follows that P is a stationary of (17). This implies the
conclusion.

4. Numerical Experiments

In this section, the proposed ASPG algorithm (ASPG
Proposed) is employed to solve the TVID problem, fol-
lowed by the comparison with some state-of-the-art algo-
rithms: the classical projected gradient given by Chambolle
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(a) Barbara (b) Boats

(c) Satellite (d) Pepper

Figure 1: Original image.

(PG Chambolle) [9], Birgin’s spectral projected gradient [13,
14] (SPG Birgin), and the fast gradient projection byBeck and
Teboulle [10] (FPG Beck). The effect of these experiments is
measured by relative error, peak signal-to-noise ratio (PSNR),
and structural similarity index measurement (SSIM). The
test images are 256-by-256 images as shown in Figure 1: (a)
Barbara, (b) Boats, (c) Satellite, and (d) Peppers. All the image
pixel values are scaled to the interval [0, 1].

In the following, the applicability of the proposed
algorithm on image denoising problems is illustrated. The
degraded images are generated by adding Gaussian noise
with zero mean and standard deviation of size 0.05 to the
original images (Figure 1). Throughout the experiments, the
parameters involved in SPG and ASPG are set as follows:
𝛼min = 10

−30, 𝛼max = 10
30, 𝜎
1
= 0.1, 𝜎

2
= 0.9, 𝛾 = 10

−4,
and 𝑀 = 3. For the value of the regularization parameter 𝜆
for all schemes, tune itmanually and choose the one that gives
the most satisfactory results for all four images.

The PSNR and the relative error of the four images with
different algorithms are shown in Table 1. To exclude the
random fact to the results, the last column of Table 1 shows
the average metrics of the four tested images, and the metrics
of the best method for each test case are highlighted in
boldface. Similar to FPG Beck improving PG Chambolle by
Nesterov’s strategy, the proposedASPG improves the classical
SPG Birgin. Table 1 illustrates that ASPG and FPG Beck are
better than SPG Birgin and PG Chambolle, respectively.This
fact shows that the accelerated scheme is valid for the ASPG
as well as the FPG Beck. Furthermore, we can find that ASPG
is superior to FPG Beck in that the former is based on the
nonmonotonic line search. Table 1 shows that, among all the
algorithms, the proposed ASPG algorithm performs the best
in both PSNR and relative error.

The following goes with a deep comparison of the
mentioned algorithms. To illustrate this more clearly, in
Figure 2, relative error, PSNR, and SSIM value are introduced
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Figure 2: The evaluation index.

Table 1: Numerical comparison for images (a)–(d) in Figure 1.

Barbara Boats Satellite Pepper Average
PSNR Error PSNR Error PSNR Error PSNR Error PSNR Error

PG Chambolle 28.8919 0.0735 29.1882 0.0654 29.5731 0.1077 29.4148 0.0662 29.2670 0.0782
SPG Birgin 29.7996 0.0662 30.4961 0.0562 32.4344 0.0775 30.8096 0.0564 30.8849 0.0641
FPG Beck 28.9254 0.0732 29.2779 0.0647 31.2876 0.0884 29.4227 0.0661 29.7284 0.0731
ASPG 30.2991 0.0625 31.3927 0.0507 32.6485 0.0756 32.0317 0.0490 31.5930 0.0594

here, which are related to the iterative times for noised
Barbara (generated from Figure 1(a)). From Figure 2, we
can see that the classical SPG has strong disturbance before
its convergence while the ASPG reduces the disturbance
and accelerates the convergence speed. Meanwhile, Figure 2

also illustrates that the nonmonotone line search improves
all the metrics PSNR, relative error, and SSIM. One more
point to mention is that here we only show the relative
error, PSNR, and SSIM value which are generated from the
degraded version of Figure 1(a), while, for the other figures
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(a) Barbara, noised (b) Denoised, SPG

(c) Denoised, FPG (d) Denoised, ASPG

Figure 3: Denoised by different algorithms.

(i.e., Figures 1(b), 1(c), and 1(d)), they are just different in
value compared with that of Figure 1(a), but the perfor-
mance priority of PG Chambolle, SPG Birgin, FPG Beck,
and ASPG is the same, which all verify that ASPG is the
best. Finally, Figure 3(a) is corrupted fromFigure 1(a). Figures
3(b)–3(d) illustrate the denoised results which processed by
SPG Birgin, FPG Beck, and ASPG.

Remote sensing images are widely used in so many fields
[20–23]. However, noise is unavoided during the acquisition
and transmission of images. To restore the the ideal image
from its degraded version is an interesting field of remote
sensing image processing. Here, we employ the proposed
ASPG algorithm to denoise a remote sensing image (Fig-
ure 4). The results are shown as that from Figures 4(a)–4(f),
and a selected area is magnified to better prove them in more
detail. Both the original and magnified areas are highlighted
in green.

5. Conclusions

In this paper, an accelerated scheme for spectral project gra-
dient is proposed for TV denoising problems. To handle TV

in matrix space, a concise version for total variation model is
introduced. Numerical examples have been done to verify the
performance of algorithm, which show that it is much better
than that of some existing state-of-the-art methods.
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