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A mechanism for topology optimization of 3-DOF parallel peristaltic structure robot with vector continuous mapping matrix
using Solid Isotropic Material with Penalization (SIMP) method is presented in this paper. We focus on how to prevent the
differential motion consistency between parallel prototype mechanisms with peristaltic structure. As the conventional parallel
robot joints/hinges are no longer needed after topology optimization, therefore, we renamed this kind of 3-DOF robot structures
as peristaltic structure. In the proposed method, the vector continuous mapping matrix is built as stress/strain transfer direction
conditions for topology optimization of peristaltic structure, and SIMP method is used for multi-inputs and multioutputs decided
by parallel prototype mechanisms. Some numerical examples are presented to illustrate the validity of the proposed method.

1. Introduction

Substantial researchers have been spent on the design of
micro-/nanoequipment in recent years. Flexure joints are
typically manufactured monolithically, therefore avoiding
assembly errors. In terms of operation, flexure joints have
little friction loss and do not require lubrication.They gener-
ate smooth and continuous displacement without backlash.
So flexure joints are usually used to compose the structure
of micro-/nanoequipment named as compliant mechanisms
[1, 2]. However, compliant mechanisms cannot finish spatial
multidimensional motion characteristics. To overcome the
shortcoming, the structure of parallel mechanisms with
flexure joints is investigated called compliant parallel mech-
anism. Yun and Li [3] presented the design and modeling of
a new 6-DOF 8-PSS/SPS compliant dual redundant parallel
robot with wide-range flexure joints, and the kinematics
model of the macro parallel mechanism system via the
stiffness model and Newton-Raphson method are adapted
to build the dynamic’s model for the micromotion system.
Dong et al. [4] proposed a compliant ultraprecision parallel
positioner based on the coarse/fine dual architecture, and
flexure hinges are adopted as compliant passive joints. Choi

et al. [5] proposed a compliant parallel mechanism for
two translations and applied it to 𝑋𝑌 fine motion stage
driven by piezo actuators, and four flexure-based prismatic
joint chains are arranged in four sides of a target platform
to implement the compliant parallel mechanism. Gao and
Zhang [6] designed a novel three-DOF compliant parallel
mechanism and its performance characterization is analyzed
which affects the application potential. Treatments of the
characterization and design of compliant parallel mecha-
nismsmay also be found in literatures [7–9]. By using the flex-
ure hinges instead of the conventional rigid joints, although
this kind of structure composed method has spatial mul-
tidimensional motion characteristics, the whole stiffness is
decent obviously. It is important to design a perfect structure
satisfying the two subjects: high stiffness and multidimen-
sional operation ability. In terms of high stiffness, topology
optimization method is proposed for compliant mechanism.
The advantages of topology optimization approach are that
it does not require a rigid-link mechanism configuration
as a starting point and it can be used to design single-
piece fully compliant mechanisms. Ever since Bends Φ𝑒
introduced the homogenization method [10], many topology
optimization methods have been developed such as the solid
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Figure 1: 3-RRR planar parallel prototype mechanism: (a) 3D model of 3-RRR; (b) description of 3-RRR kinematics.

isotropic material with the penalization (SIMP) method [11],
the ground structuremethod [12], and level set basedmethod
[13]. Although topology optimization has been a matured
tool for optimization design problem, most of topology
optimizationmethods are focusing on the single input-output
condition. In reality, parallel compliant mechanisms with
multiple inputs and multiple outputs are widely used in
the fields of micropositioning and micromanipulation. The
relationship between multiple inputs and multiple outputs is
vectormappingmatrixwith certain connection. Zhu et al. [14,
15] presented a hinge-free compliant mechanism which has
one input and two outputs based on level set method. Jones
[16] presented a wavelet-based topology optimization formu-
lation by implicitly imbeddingwavelet shrinkagemethod into
optimization formulation based on SIMP method. Topology
optimization methods for parallel compliant mechanisms
may also be found in other literatures [17–19]. In those
methods, compared with conventional parallel prototype
mechanisms, themotion characteristics of designed structure
are ambiguous. On the other hand, the mechanism has not
included the hinge form after the topology optimization
process. In this paper, we called this structure peristaltic
structure.

In this paper, we proposed a new method for topology
optimization of planar 3-DOF peristaltic structure parallel
robot based on differential kinematic vector continuous
mapping matrix with conventional prototype parallel mech-
anism. The remainder of the paper is organized as follows.
In Section 2, the differential kinematic vector continuous
mapping matrix with conventional prototype parallel mech-
anism is built. In Section 3, the optimization problems of
design peristaltic structure are proposed based on SIMP
method.The shape sensitivity analysis is applied to obtain the
displacement field for the optimization combined with the
vector mapping matrix. In Section 4, numerical examples are
presented to demonstrate the effectiveness of the proposed
method. Finally, conclusions and a discussion for further
work are developed.

2. Differential Kinematics with Vector
Continuous Mapping Matrix

In order to keep the differential kinematic characteristics
with the prototype of parallel mechanism, the differential
kinematic equations with vector continuous mapping of
microelastic deformation mechanism should be set. Without
loss of generality, we select the 3-RRR prototype of planar
parallel mechanism as an example. As shown in Figure 1, the
structure of 3-RRR prototype planar parallel mechanism is
established.

Constraint equations are described as

𝑥𝐵 = 𝑥𝐴 + ℎ ⋅ cos𝜑𝑦𝐵 = 𝑦𝐴 + ℎ ⋅ sin𝜑𝑥𝐶 = 𝑥𝐴 + ℎ ⋅ cos (𝜑 + 𝜋)𝑦𝐶 = 𝑦𝐴 + ℎ ⋅ sin (𝜑 + 𝜋) .
(1)

Vector equation of the limb 𝑃𝐷𝐴may be described as→𝑂𝐴 = →𝑂𝑃 + →𝑃𝐷 + →𝐷𝐴, (2)

where 𝑥𝑝 = 𝑦𝑝 = 0. Substituting (1) into (2), we obtain
𝑥𝐴 = 𝑎1 ⋅ cos 𝜃1 + 𝑏1 ⋅ cos (𝜃1 + 𝜓1)𝑦𝐴 = 𝑎1 ⋅ sin 𝜃1 + 𝑏1 ⋅ sin (𝜃1 + 𝜓1) . (3)

Vector equation of the limb 𝐵𝐸𝑄 can be described as→𝑂𝐵 = →𝑃𝑄 + →𝑄𝐸 + →𝐸𝐵, (4)

where 𝑥𝑞 = 𝑐, 𝑦𝑞 = 0. Substituting (1) into (4), we have
𝑥𝐴 = 𝑐 − 𝑎2 ⋅ cos 𝜃2 − 𝑏2 ⋅ cos𝜓2 − ℎ ⋅ cos𝜑𝑦𝐴 = 𝑎2 ⋅ sin 𝜃2 + 𝑏2 ⋅ sin𝜓2 − ℎ ⋅ sin𝜑𝑥𝐵 = 𝑐 − 𝑎2 ⋅ cos 𝜃2 − 𝑏2 ⋅ cos𝜓2
𝑦𝐵 = 𝑎2 ⋅ sin 𝜃2 + 𝑏2 ⋅ sin𝜓2.

(5)



Mathematical Problems in Engineering 3

Vector equation of the limb 𝑅𝐹𝐶 can be described as

→𝑂𝐶 = →𝑃𝐶 + →𝑅𝐹 + →𝐹𝐶, (6)

where 𝑥𝑅 = 𝑐/2, 𝑦𝑅 = 𝑙. Substituting (1) into (6) yields
𝑥𝐴 = 𝑐2 − 𝑎3 ⋅ cos 𝜃3 − 𝑏3 ⋅ cos𝜓3 − ℎ ⋅ cos(𝜑 + 𝜋3 )
𝑦𝐴 = 𝑙 − 𝑎3 ⋅ sin 𝜃3 − 𝑏3 ⋅ sin𝜓3 − ℎ ⋅ sin(𝜑 + 𝜋3 )
𝑥𝐶 = 𝑐2 − 𝑎3 ⋅ cos 𝜃3 − 𝑏3 ⋅ cos𝜓3
𝑦𝐶 = 𝑙 − 𝑎3 ⋅ sin 𝜃3 − 𝑏3 ⋅ sin𝜓3.

(7)

We assumed that the displacements of each limb are equal
to infinity and can be defined as 𝜃𝑖 = 𝜃𝑖 + Δ𝜃𝑖, 𝑖 = 1, 2, 3, and
then (3), (5), and (7) can be rewritten as follows with infinite
displacements R𝑀:

R

𝑀 =

[[[[[[[[[[[[

𝑥𝐴𝑦𝐴𝑥𝐵𝑦𝐵𝑥𝐶𝑦𝐶

]]]]]]]]]]]]

=
[[[[[[[[[[[[

𝑎1 ⋅ cos (𝜃1 + Δ𝜃1) + 𝑏1 ⋅ cos ((𝜃1 + 𝜓1) + (Δ𝜃1 + Δ𝜓1))𝑎1 ⋅ sin (𝜃1 + Δ𝜃1) + 𝑏1 ⋅ sin ((𝜃1 + 𝜓1) + (Δ𝜃1 + Δ𝜓1))𝑐 − 𝑎2 ⋅ cos (𝜃2 + Δ𝜃2) − 𝑏2 ⋅ cos (𝜓2 + Δ𝜓2)𝑎2 ⋅ sin (𝜃2 + Δ𝜃2) + 𝑏2 ⋅ sin (𝜓2 + Δ𝜓2)𝑐2 − 𝑎3 ⋅ cos (𝜃3 + Δ𝜃3) − 𝑏3 ⋅ cos (𝜓3 + Δ𝜓3)𝑙 − 𝑎3 ⋅ sin (𝜃3 + Δ𝜃3) − 𝑏3 ⋅ sin (𝜓3 + Δ𝜓3)

]]]]]]]]]]]]

.

(8)

Let Δ𝑥 = 𝑥𝐴 − 𝑥𝐴 and Δ𝑦 = 𝑦𝐴 − 𝑦𝐴, and the
three parameters Δ𝑥, Δ𝑦, and Δ𝜑 can be defined as output
displacement of the moving platform.

The formulas of the active joints displacement and tasks
displacement are included with (3), (5), (7), and (8), and
the vector continuous mapping matrix between the joints
displacement and task displacement can be expressed as
follows:

Δ𝑥 ⋅ cos (𝜃1 + 𝜓1) + Δ𝑦 ⋅ sin (𝜃1 + 𝜓1) − 𝑎1 ⋅ Δ𝜃1
⋅ sin𝜓1 = 0

Δ𝑥 ⋅ cos𝜓2 + Δ𝑦 ⋅ sin𝜓2 + ℎ ⋅ Δ𝜑 ⋅ sin (𝜑 + 𝜓2) + 𝑎2
⋅ Δ𝜃2 ⋅ sin (𝜃2 − 𝜓2) = 0

Δ𝑥 ⋅ cos𝜓3 + Δy ⋅ sin𝜓3 − ℎ ⋅ Δ𝜑 ⋅ sin(𝜑 + 𝜋3 − 𝜓2)
− 𝑎3 ⋅ Δ𝜃3 ⋅ sin (𝜃3 − 𝜓3) = 0.

(9)

Then the formulations can be rearranged and simplified
as follows:

[[[
Δ𝑥Δ𝑦Δ𝜑

]]]
= 𝐽𝐷 ⋅ [[[

Δ𝜃1Δ𝜃2Δ𝜃3
]]]
, (10)

where

𝐽𝐷 =
[[[[[[[[[

𝑎1 ⋅ 𝑠𝜓1 ⋅ (𝑠 (𝛼) ⋅ 𝑠𝜓2 + 𝑠 (𝛾) ⋅ 𝑠𝜓3)−𝑀 𝑎2 ⋅ 𝑠 (𝛽) ⋅ 𝑠 (𝜎) ⋅ 𝑠 (𝛼)−𝑀 𝑎3 ⋅ 𝑠 (𝛽) ⋅ 𝑠 (𝛾) ⋅ 𝑠 (𝜃3 − 𝜓3)−𝑀𝑎1 ⋅ 𝑠𝜓1 ⋅ (𝑠 (𝛼) ⋅ 𝑠𝜓2 ⋅ 𝑐𝜓2 + 𝑠 (𝛾) ⋅ 𝑐𝜓3)𝑀 𝑎2 ⋅ 𝑐 (𝛽) ⋅ 𝑠 (𝜎) ⋅ 𝑠 (𝛼)𝑀 𝑎3 ⋅ 𝑐 (𝛽) ⋅ 𝑠 (𝛾) ⋅ 𝑠 (𝜃3 − 𝜓3)−𝑀𝑎1 ⋅ 𝑠𝜓1 ⋅ 𝑠 (𝜓3 − 𝜓2)ℎ ⋅ 𝑀 𝑎2 ⋅ 𝑠 (𝜃2 − 𝜓2) ⋅ 𝑠 (𝜓3 − 𝜃1 − 𝜓1)ℎ ⋅ 𝑀 𝑎3 ⋅ 𝑠 (𝜃3 − 𝜓3) ⋅ 𝑠 (𝜓2 − 𝜃1 − 𝜓1)ℎ ⋅ 𝑀

]]]]]]]]]
,

𝛼 = 𝜑 + 𝜋3 − 𝜓3
𝛽 = 𝜃1 + 𝜓1
𝛾 = 𝜑 + 𝜓2
𝜎 = 𝜃2 − 𝜓2
𝑀 = 𝑠(𝜑 + 𝜋3 − 𝜓3) ⋅ 𝑠 (𝜃1 + 𝜓1 − 𝜓2) + 𝑠 (𝜑 + 𝜓2) ⋅ 𝑠 (𝜃1 + 𝜓1 − 𝜓3)
𝑠 (∗) = sin (∗) ,
𝑐 (∗) = cos (∗) .

(11)
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3. Topology Optimization of 3-DOF
Peristaltic Structure

3.1. SIMP Model of Topology Optimization with Vector Con-
tinuous Mapping Matrix. The kinematic characteristics of 3-
DOF peristaltic structure have three input parameters and
three output parameters, respectively. By using the vector con-
tinuous mapping matrix, the model of SIMP can be built as

min 𝐶 = 3∑
𝑖=1

3∑
𝑗=1

(�̃�𝑇𝑗𝐾𝑈𝑖) = ∑
1≤𝑒≤𝑁
1≤𝑖≤3
1≤𝑗≤3

�̃�𝑇𝑒𝑗𝜌𝑝𝑒 𝐾𝐸𝑈𝑒𝑖
s.t. {𝐾�̃�𝑗 = 𝐹𝑗, 𝐾𝑈𝑖 = 𝐹𝑖, 𝐹𝑗 = 𝐽𝐷𝐹𝑖} ;

𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3
∀: → ∫

Ω
𝜌𝑒𝑑Ω ≤ 𝑉,
0 ≤ 𝜌min ≤ 𝜌𝑒 ≤ 1; 𝑒 = 1, 2, . . . , 𝑁.

(12)

In (12) 𝑈𝑗 is the companion displacement vector,𝐾 is the
whole postoptimality stiffness of creep structure, 𝑈𝑖 is the
displacement with actual load, 𝑉 is postoptimality volume
of creep structure, 𝐹𝑖 is 𝑖th actual load, 𝑈𝑒𝑖 is the unit
displacement vector under the 𝑖th actual load, 𝐹𝑖 is 𝑗th virtual
load, �̃�𝑒𝑖 is the unit displacement vector under the 𝑗th virtual
load, 𝐾𝐸 is unit stiffness, 𝜌𝑒 is unit density, and 𝑝 is penalty
factor and satisfies 𝑝 ≥ max{2/(1 − 𝑉0), 4/(1 + V0)}.
3.2. Sensitivity Analysis. Sensitivity analysis in topology opti-
mization includes the sensitivity of objective function and
constraint function.Differentiating the two types of functions
with respect to design variables, we can derive the direction
of iterative update during topology optimization process.

3.2.1. Sensitivity Analysis of Objective Function. Differentiat-
ing formulation (12) with respect to density 𝜌𝑒 yields

𝜕𝐶𝜕𝜌𝑒 =
𝜕 (∑3𝑖=1∑3𝑗=1 (�̃�𝑇𝑗𝐾𝑈𝑖))𝜕𝜌𝑒

= 𝜕 (∑3𝑗=1 �̃�𝑇𝑗 )𝜕𝜌𝑒 ⋅ 𝐾 ⋅ 3∑
𝑖=1

𝑈𝑖 + 3∑
𝑗=1

�̃�𝑇𝑗 ⋅ 𝜕𝐾𝜕𝜌𝑒 ⋅
3∑
𝑖=1

𝑈𝑖
+ 3∑
𝑗=1

�̃�𝑇𝑗 ⋅ 𝐾 ⋅ 𝜕 (∑3𝑖=1𝑈𝑖)𝜕𝜌𝑒
= (𝜕 (∑3𝑗=1 �̃�𝑇𝑗 )𝜕𝜌𝑒 ⋅ 𝐾 + 3∑

𝑗=1

�̃�𝑇𝑗 ⋅ 𝜕𝐾𝜕𝜌𝑒) ⋅ 3∑
𝑖=1

𝑈𝑖

+ 3∑
𝑗=1

�̃�𝑇𝑗 ⋅ (𝜕𝐾𝜕𝜌𝑒 ⋅
3∑
𝑖=1

𝑈𝑖 + 𝐾 ⋅ 𝜕 (∑3𝑖=1𝑈𝑖)𝜕𝜌𝑒 )
− 3∑
𝑗=1

�̃�𝑇𝑗 ⋅ 𝜕𝐾𝜕𝜌𝑒 ⋅
3∑
𝑖=1

𝑈𝑖.
(13)

From a macro perspective, without loss of generality, we
assumed that the input and output are unconcerned with
design variables, and then differentiating formulation (12)
with respect to design variables, we obtain

𝜕𝐾𝜕𝜌𝑒 ⋅
3∑
𝑗=1

�̃�𝑇𝑗 + 𝐾 ⋅ 𝜕 (∑3𝑗=1 �̃�𝑇𝑗 )𝜕𝜌𝑒 = 𝜕 (∑3𝑗=1 𝐹𝑗)𝜕𝜌𝑒 = 0
𝜕𝐾𝜕𝜌𝑒 ⋅

3∑
𝑖=1

𝑈𝑖 + 𝐾 ⋅ 𝜕 (∑3𝑖=1𝑈𝑖)𝜕𝜌𝑒 = 𝜕 (∑3𝑖=1 𝐹𝑖)𝜕𝜌𝑒 = 0.
(14)

Substituting (14) into (13), we have

𝜕𝐶𝜕𝜌𝑒 = − 3∑
𝑗=1

�̃�𝑇𝑗 ⋅ 𝐾 ⋅ 3∑
𝑖=1

𝑈𝑖. (15)

Substituting𝐾 = ∑𝑁𝑒=1 𝜌𝑝𝑒 ⋅𝐾𝐸 into (15), the computational
formula for objective function sensitivity analysis is given by

𝜕𝐶𝜕𝜌𝑒 =
𝑁∑
𝑒=1

3∑
𝑖=1

3∑
𝑗=1

𝑝�̃�𝑇𝑗 𝜌𝑝−1𝑒 𝐾𝐸𝑈𝑖. (16)

3.2.2. Sensitivity Analysis of Constraint Function. Differenti-
ating the volume function with respect to the unit density 𝜌𝑒,
sensitivity of constraint function can be derived as

𝜕𝑉𝜕𝜌𝑒 =
𝜕 (∫
Ω
𝜌𝑒𝑑𝑉)𝜕𝜌𝑒 = 1. (17)

We find that the sensitivity of constraint function com-
putational result is a constant. It denotes that the direction of
iterative update of volume with design variables is ensured.

3.3. Solution toOptimizationModel. Weapply Lagrangemul-
tiplier to construct the Lagrange function including objective
function and constraint function simultaneously. By solving
the extreme value of the Lagrange function, we can construct
the steady state condition of Lagrange’s function on design
variables using KKT conditions, so the optimization value of
objective function can be derived.The optimization criterion
algorithm is proposed for iterative update described as

𝜌(𝑘+1)𝑒 = {{{{{{{{{
min {(𝑚 + 1) 𝜌(𝑘)𝑒 , 1} s.t. min {(1 + 𝑚) ⋅ 𝜌(𝑘)𝑒 , 1} ≤ (𝐷(𝑘)𝑒 )𝜁 ⋅ 𝜌(𝑘)𝑒(𝐷(𝑘)𝑒 )𝜁 ⋅ 𝜌(𝑘)𝑒 s.t. max {(1 − 𝑚) ⋅ 𝜌(𝑘)𝑒 , 𝜌min} < (𝐷(𝑘)𝑒 )𝜁 ⋅ 𝜌(𝑘)𝑒 < min {(1 + 𝑚) ⋅ 𝜌(𝑘)𝑒 , 1}
max {(1 − 𝑚) 𝜌(𝑘)𝑒 , 𝜌min} s.t. (𝐷(𝑘)𝑒 )𝜁 ⋅ 𝜌(𝑘)𝑒 ≤ max {(1 − 𝑚) ⋅ 𝜌(𝑘)𝑒 , 𝜌min} ,

(18)
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Figure 2: Design conditions of topology optimization for 3-DOF robot of peristaltic structure (a) and the experimental mechanism (b).

where 𝜌(𝑘)𝑒 is the iteration value of 𝑘 step, 𝜌(𝑘+1)𝑒 is the iteration
value of 𝑘 + 1 step, and𝑚 is the moving limit constant.𝑚 denotes the appropriate constraint to design variables
for stabilizing the iteration process. Based on literature [10],
the range of parameter 𝑚 may be selected within 0.1∼0.3. 𝜁
is damping factor and in the range of 0.4∼0.5, and 𝐷(𝑘)𝑒 is
expressed as follows:

𝐷(𝑘)𝑒 = 𝑝𝜌(𝑝−1)𝑒 ∑3𝑗=1 �̃�𝑇𝑗 ⋅ 𝐾𝐸 ⋅ ∑3𝑖=1𝑈𝑖 ⋅ Δ𝐸Λ(𝑘)𝑉𝑒
= (max (0, −𝜕𝐶/𝜕𝜌𝑒))Λ(𝑘)𝑉𝑒 ,

(19)

where Λ(𝑘) is the Lagrange multiplier with volume constraint
of 𝑘 step iteration and the update of Lagrange multiplier is
adapted double convex linear programming algorithm. And𝑉𝑒 is the unit volume of 𝑘 step iteration.

3.4. Heaviside Filter. We adapt Heaviside function to modify
the linear filter for peristaltic structure in 3-DOF robot. As
the range of minimum filter radius, if �̃�𝑒 > 0, then 𝜌𝑒 = 1;
otherwise, �̃�𝑒 = 0; then 𝜌𝑒 = 0. The resulting expression of
linear filter can be given by

�̃�𝑖 = ∑
𝑗

𝜔𝑖𝑗𝜌𝑗, ∑
𝑗

𝜔𝑖𝑗 = 1, (20)

where 𝜔𝑖𝑗 is filter weight factor of the 𝑗th unit to the 𝑖th unit.
To get the better discrete 0/1 distribution optimization

results and decent middle density unit, second weight cal-
culation equation and Heaviside function are adopted as
follows:

𝜔𝑖𝑗 =
{{{{{{{{{{{

𝑟min − 𝑑 (𝑖, 𝑗)∑𝑘∈𝑁𝑖 (𝑟min − 𝑑 (𝑖, 𝑘)) 𝑗 ∈ 𝑁𝑖
0 𝑗 ∉ 𝑁𝑖𝑁𝑖 = {𝑗: 𝑟min − 𝑑 (𝑖, 𝑘) ≥ 0} ,

(21)

where𝑑(𝑖, 𝑗) is the displacement between 𝑖th unit and 𝑗th unit
and 𝑟min is the minimum filter radius.

We adapt again theHeaviside function to approximate the
original linear density filter.TheHeaviside filter functionmay
be expressed as

𝜌𝑒 = 1 + exp (−𝛽 ⋅ �̃�𝑒) + �̃�𝑒 ⋅ exp (−𝛽) , (22)

where 𝛽 is the control parameter for flat degree of Heaviside
function. If 𝛽 = 0, then Heaviside filter can be changed to
linear filter; if 𝛽 = ∞, Heaviside filter can be changed to
maximum density filter. 𝜌𝑒 is unit physical density, and �̃�𝑒 is
linear result of unit density.

Heaviside function filter can be freely switched between
linear density filter andmaximumdensity filter in themethod
of parameters selection.

4. Design Conditions of
Topology Optimization for 3-DOF
Peristaltic Structure

Based on linear elastic relationship between force and dis-
placement, the 3 DOF of peristaltic structure have been
changed to force output, as shown in Figure 2. 𝐹in1, 𝐹in2, and𝐹in3 are the force inputs in the fixed basement, and𝐹out1,𝐹out2,
and 𝐹out3 are the force outputs in the motion platform center.

5. Simulations and Experimental
Results Analysis of 3-DOF Peristaltic
Structure Robot

Assuming that the topology optimization yield of peristaltic
structure is a square profile with 14 × 14 unit size and the
number of discrete grids is 140 × 140, the elastic modulus
of solid material is 2 × 1011 Pa, the elastic modulus of holes
is 10−3 Pa, Poisson’s ratio is 0.35, optimum volume ratio is
0.278, minimum filter radius is 1.4, input force 𝐹in1 is 1200N,
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Figure 3: The topological structure of 3-DOF peristaltic structure
robot optimization result.
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Figure 4: Objective function 𝐶 and convergence history of 3-DOF
peristaltic structure switched curve.

input force 𝐹in2 is 1200N, and input force 𝐹in3 is 1200N.
Based on the relationship between input forces and output
forces denoted as 𝐽𝐷, 𝐹𝑗 = 𝐽𝐷 ⋅ 𝐹𝑖, the output forces can be
solved as 𝐹out1 = 478N, 𝐹out2 = 1570N, and 𝐹out3 = 1240N,
respectively. The optimization was run for 180 iterations, and
the topology optimized result of 3-DOF peristaltic structure
robot is shown in Figure 3, and the iterative process of the
objective function 𝐶 optimization is shown in Figure 4.

We adapt the general curve fitting for the contour of
3-DOF peristaltic structure robot and the median filtering
method to smooth the boundary of peristaltic structure
optimized result. Import the contour data into SolidWorks�
3D software; the modeling structure is shown in Figure 5.

And then, CAE software by ANSYS� is used for static
simulations of 3-DOF peristaltic structure robot. Import the
3Dmodel of the optimized result intoANSYS software, divid-
ing finite elementmesh and setting boundary conditions, and
carry on static analysis. The simulations method of 3-DOF
peristaltic structure robot is shown in Figure 6. According
to the previous conditions set, the fixed basement is in the
diagonal of the simulation domain. The input forces 𝐹1, 𝐹2,
and 𝐹3 in acting points of 3-DOF peristaltic structure robot
are transferred to the output region (the moving platform) in
its elastic deformationmethod, including the displacement of
direction 𝑥/𝑦 and rotational direction 𝑧.

Figure 5: Modeling of 3-DOF peristaltic structure robot with
median filtering method.
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Figure 6: 3-DOF peristaltic structure robot static simulations
analysis.
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Figure 7: Differential displacement of 3-DOF peristaltic structure
robot with direction 𝑥.

The differential displacement of directions 𝑥 and 𝑦 in the
center of moving platform is shown in Figures 7 and 8 with
the maximum values −2.15 nm and 1.80 nm, respectively. The
differential rotational displacement of direction 𝑧 is shown in
Figure 9 with the maximum value −4.15 𝜇rad.

According to Section 2, 3-DOF peristaltic structure dif-
ferential kinematic analysis, we set initial condition in certain
steady state in Table 1.
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Table 1: 3-DOF peristaltic structure differential kinematic parameters.

𝜃1 𝜃2 𝜃3 𝜓1 𝜓2 𝜓3 𝜑 𝑎1 𝑎2 𝑎3 ℎ23𝜋 49𝜋 16𝜋 112𝜋 19𝜋 13𝜋 536𝜋 6 6 6 10

Table 2: Differential displacements of the 3-DOF peristaltic structure robot in theory and simulation.

Differential displacement of 𝑥 Differential displacement of 𝑦 Differential displacement of 𝑧
Value of theory −2.15 nm 1.80 nm −4.15 𝜇rad
Value of simulation −6.15 nm 2.93 nm −3.55 𝜇rad
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Figure 8: Differential displacement of 3-DOF peristaltic structure
robot with direction 𝑦.
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Figure 9: Differential displacement of 3-DOF peristaltic structure
robot with direction 𝑧.

Substituting these parameters shown in Table 1 into (10),
we obtain

[[[
−2.0109 −2.3827 2.54322.1459 −0.6673 0.29890.9943 −0.1023 −0.6925

]]]
[[[
Δ𝜃1Δ𝜃2Δ𝜃3

]]]
= [[[

Δ𝑥Δ𝑦Δ𝜑
]]]
. (23)

Substituting input parameters (Δ𝜃1 Δ𝜃2 Δ𝜃3) =(2.5 2.5 2.5) into (23), the displacement of moving
platform may be given by

[[[
Δ𝑥Δ𝑦Δ𝜑

]]]
= (−6.15 2.93 −3.55) . (24)

Comparing the simulation results in Figures 7∼9 with
theoretical calculation results (24) in the same computational
scale, the proposed 3-DOF peristaltic structure robot no
longer suffers the high stress concentration and is more
suitable for real world applications, as shown in Table 2.

FromTable 2, we can see that the results of orders of mag-
nitude and symbols are the same in all directions/rotations,
and the differential displacement of 3-DOF peristaltic struc-
ture has the same characteristic with the parallel prototype
mechanism. The peristaltic structure robot realizes 3-DOF
planar kinematics, which is displacement 𝑥/𝑦 and rotational
displacement 𝑧 in micron level. So simulations verify the
correctness of vector continuous mapping topology opti-
mization design method.

However, we note that the quantitative errors between the
values of theory and simulation are so big, and analysis results
of error source are shown in two factors:

(1) The theoretical result and simulation result adopt the
structure of 3-RRR prototype planar parallel mech-
anism and the 3-DOF peristaltic structure robot,
respectively. The former transfers force and kinemat-
ics through rigid hinges, and the latter transfers force
and kinematics through its own elastic deformation.
Due to elastic potential energy in the latter own
inside, the output force 𝐹𝑗 displacement decreases.

(2) We assumed the elastic deformation and displace-
ment outputs approximate linearization and the stress/
strain transfer in peristaltic structure is isotropic.

6. Conclusions

In this paper, we presented a new formulation for synthesis of
peristaltic structure with vector continuous mapping matrix
based on topology optimization method. In the proposed
method, the vector continuous mapping matrix, derived
with 3-RRR parallel prototype mechanism, is taken into
account to make the peristaltic structure to inherit the same
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kinematic characteristic with parallel prototype mechanism.
Consequently, we proposed a new topology optimization
method combining SIMP with vector continuous mapping
matrix to synthesise 3-DOF peristaltic structure robot. Adopt
the Heaviside filter to modify optimization function depen-
dence of mesh grid division. We use curve fitting method
to smooth the contour for optimization result and modeling
3D peristaltic structure. Import the model into ANSYS and
implement static simulations analysis. Numerical simulations
with vector continuous mapping matrix are presented for
illustrating the validity of the presented method. Some
conclusions are obtained:

(1) 3-DOF peristaltic structure robot moving platform
realizes 𝑥-displacement −6.15 nm, 𝑦-displacement
2.93 nm, and 𝑧-rotational displacement −3.55 𝜇rad
and shows planar 3-DOF parallel mechanism differ-
ential kinematics.

(2) Compared with similar general parallel mechanism
kinematics, in approximately equal load conditions,
the results of orders of magnitude and symbols
are the same in all directions/rotations. The 3-DOF
peristaltic structure robot based on vector continuous
mapping matrix design method delivers the same
kinematic characteristic with similar general parallel
mechanism, which qualitatively verifies validity of the
method.
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