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Many algorithms can uniformly distribute data to storage nodes in a storage system. However, it cannot avoid load imbalance
because data has different popularity. To resolve this issue, we propose a novel dynamic replication scheme, namely, Active Replica
Management (ARM). ARM actively establishes optimal number of copies for hotspot data according to data access behaviors and
then efficiently distributes copies to other storage nodes based on current amount of copies related to hotspot data. To improve
storage utilization, ARM automatically and gradually dereplicates the useless copies of hotspot data when they become nonhotspot
data. ARM resolves load imbalance by allocating dynamic copies to adequate storage nodes, and hence it can prevent partial storage
nodes from overburdening. Simulation results demonstrate that ARM is an efficient scheme with excellent performance on load
balancing, significantly closer to Optimal Load Balancing (OLB). In addition, ARM’s performance outperforms both Static Load
Balancing (SLB) and No Replica schemes.

1. Introduction

With rapid growth of various storage applications such as
YouTube, Google Drive, and Megaupload, storage nodes that
store popular data will become a performance bottleneck.
Accordingly, load imbalance could lead to low resource
utilization, high request loss rate, and long-latency response.
In order to overcome such drawback, how to design an
efficient load balancing scheme is a critical issue. A two-phase
load balancing algorithm that combines opportunistic load
balancing and load balance min-min scheduling algorithms
achieves better executing efficiency in a system [1]. Unfor-
tunately, this algorithm has a fatal defect because it could
lead to system instability. A dynamic balancing algorithm
evaluates the residual load rate and considers the current
load condition of each server and processing capabilities
as a result of different hardware configurations [2]. This
algorithm has to maintain real-time state of each server,
which not only increases communication overheads among
different servers but also reduces deployment feasibility.
Currently, replication-based schemes are the mainstream
approach used to deal with load imbalance because they

are also beneficial to enhance data reliability and decrease
response time. A replica-aided load balancing scheme was
proposed to enable the nodes in overlay networks, which can
provide applications to users [3]. This scheme constructs a
cost model to evaluate load balancing cost by considering
the load, message number, and link latency at the same time.
Furthermore, a performance tuning method is proposed to
minimize cost while taking load balancing into account.

As for data reliability, if one node fails, users expect other
alternative nodes to work instead [4, 5]. As a result, users
can access their data all the time. In general, replication is
a general way to satisfy such requirement. In this paper, we
propose a simple and efficient load balancing scheme, namely,
ARM. ARM can uniformly distribute the requests of hotspot
data to other storage nodes by performing active replication
and efficiently utilize storage resources by executing on-
demand dereplication. By considering both short-term and
long-term data access behaviors, ARM achieves excellent
load balancing by establishing optimal number of copies for
hotspot data on adequate storage nodes. Besides, ARM is
beneficial for data reliability because of additional copies.
The rest of this paper is organized as follows: Section 2 gives
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a review of the related work. Section 3 presents the details of
ARM scheme. We analyze the load balancing performance
of the ARM and other compared schemes including OLB,
SLB, and No Replica under different data access patterns in
Section 4. Finally, Section 5 provides the concluding remarks
and future work.

2. Related Work

Replication strategies have multipurpose efficiency on data
reliability, response latency, and load balancing. Static replica
strategy is easy to implement, which allocates first copy on
a default node, and then randomly allocates other copies
on some nodes [6]. This strategy improves data reliability
while speeding up the data access operations. However, it
does not consider available storage spacewhenever additional
copies are needed. A block placement strategy is proposed
to resolve above problem, which determines the replication
nodes according to their real-time conditions [7]. This
strategy achieves better load balancing but the allocated
copies are permanently stored on the nodes which decreases
the storage utilization. More importantly, the data access
behaviors change frequently so that it cannot cope with
dynamic environments. In addition, static strategies often
ignore dynamic variations at run-time so that they do not
have the ability to deal with load changes throughout run-
time [8]. Central Load Balancing Decision Model (CLBDM)
is a modification of Round Robin algorithm [9]. Unfortu-
nately, it is unreliable because of unforeseen loops. Moreover,
static strategies generally transfer only certain amount of data
[10]. As a result, they cannot support sufficient fault tolerance
[11].

Undoubtedly, a replication strategy that can dynamically
allocate the copies is relatively useful to keep up with load
changes in the system [12]. Six replication strategies were
proposed including No Replica or Caching, Best Client,
Cascading Replication, Plain Caching, Fast Spread, and
Caching plus Cascading Replication. Only one original copy
is available in No Replica or Caching no matter whether data
belongs to hotspot data or not. Best Client creates one addi-
tional copy based on the number of requests. This strategy
still cannot get rid of influences from hotspot data access
because one copy is insufficient to improve load imbalance.
Cascading Replication is similar to the Best Client. The main
difference is that the new node for the copy is an ancestor
of the Best Client. The mentioned strategies are infeasible
to be deployed in current storage environments. Fast Spread
strategy stores a copy on each node along its path to the
client and hence the copy size is limited. A new optimization
strategy utilizes a prediction function to evaluate the relative
worth of files based on file access patterns [13]. It mainly
creates and deletes a copy from a node with low storage
space so as to avoid storage shortage. In another word, it
mainly considers efficiency on storage management not load
balancing. Dynamic strategies use some properties of the
nodes inclusive of processing capabilities, load conditions,
and network bandwidth.These strategies have to periodically
check the node status and therefore they are too difficult
to implement [14, 15]. In cloud computing environment,

dynamic strategies can distribute work at run time and
assign different weights to servers [16]. However, they are
too complicated to achieve performance requirements [17].
Weight Least Connections (WLC) were proposed to assign
tasks based on the number of connections for existing nodes
[18]. In dynamic load balancing, if load balancer finds higher
load of a node the consequent requests will be dispatched to
the other nodes [19]. In order to efficiently control the load
conditions, current status of nodes in the system should be
maintained in time [20].

Two techniques were proposed to reduce the message
traffic under overloading conditions [21]. The first technique
replicates the messages at different topological regions of the
network based on distance. The second technique demon-
strates better performance by considering topology and
physical proximities of the peers based on landmarks. How-
ever, both are infeasible to cloud environments because of
network variations. A time-related replication algorithm was
proposed, which achieves high data availability and less copy
traffic by actively replicating the primary copy to reduce data
loss probability [22]. This algorithm does not take creation
and deletion of copies into account. A dynamic Minimum
Access Cost (MAC) based replication strategy was proposed
to improve dynamic minimum access cost by considering
access frequency, network status, and average response time
[23]. In order to accomplish optimal replication, MAC has to
determine popular files and evaluate corresponding average
response time. Next, MAC judges which files should be
replicated. Finally, an appropriate node is selected to store
files and hence it achieves low response time. MAC strategy
is too difficult to be implemented because of inherently huge
data and traffic. A load balancing mechanism based on ant
colony and complex network theory in cloud computing
federation is proposed to improve performance of current ant
colony algorithms [24]. In addition, they qualitatively analyze
the mechanism based on a prototype. A new content aware
load balancing policy that consists of a hybrid approach of
client aware policy and workload aware request distribution
policy was proposed [25]. Moreover, a central load balancing
policy for virtual machines was proposed to uniformly
balance the load in a distributed environment [26]. In order
to allocate data center resources to each virtual machine,
statistic-based load balance scheme was proposed to balance
the workload in the cloud [27].This scheme makes use of the
statistical prediction and resource evaluation and determines
online storage resource allocations. As a result, it improves
load balancing by predicting the resource demand of virtual
machines not depending on Service Level Agreement (SLA)
of each virtual machine.

In general, replication strategies could be classified based
on their control policies, namely, centralized control and
distributed control. Using centralized control, all jobs will
arrive at a single control entity, which is in charge of
determining which server is assigned to handle the job [28].
Using distributed control, jobs may arrive at any server in
the system, which then needs to carry out specific scheduling
policy to determine which server should be responsible for
processing the job [29, 30]. Dynamic replication strategies
that use distributed control have to collect information from
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Figure 1: Storage system architecture.

the nodes in the distributed system and hence could lead
to significant communication overheads and longer response
time. A fully distributed implementation of the supermarket
model performs well with appropriate tuning. In addition,
it takes communication overheads into account. Centralized
control is unsuitable for huge data processing centers because
the single control entity will become the performance bottle-
neck, resulting in a single point of failure, longer response
time, higher request loss rate, and so on. Therefore, ARM
works with distributed control. Some strategies try to guess
the required information when jobs are being processed,
while other strategies require a priori knowledge so that
they can effectively process jobs [31]. Although they do not
require any such knowledge, they depend on other specific
information such as the state of the system or the number of
jobs awaiting in each server.

The work that we presented in this paper is an efficient
scheme, namely, Active Replica Management (ARM). ARM
utilizes active replica management to enhance load balancing
while using distributed control. We verify the ARM’s per-
formance in a storage system. Particularly, two important
features distinguish our approach from the other proposed
approaches. First, ARM actively establishes optimal number
of copies for hotspot data so that it can timely balance the
load among storage nodes under time-varying data access
patterns. Second, we further propose a dereplication method
that can enhance storage utilization by eliminating unneces-
sary copies. In a word, our approach achieves approximately
optimal load balancing by using dynamic copy assignment.

3. Active Replica Management

Figure 1 depicts a storage system architecture consisting
of a metadata server and 𝑛 storage nodes. When a user

would like to access data, a query message is sent to the
metadata server. Next, the metadata server will issue a
response message to the user with the physical location of
the required data. Finally, the user directly sends requests to
the default storage nodes. In general, the access pattern on
hotspot data often possesses short-term and unpredictable
characteristics, and consequently it leads to load imbalance.
According to the 80/20 rule, the load in the single metadata
server is relatively higher than in the storage nodes. In ARM,
the default storage nodes store original data and schedules
arriving requests to other storage nodes with the same
copies of data whenever hotspot data happens. Apparently,
ARM avoids additional burden on the metadata server. In
order to deal with excessive query messages from the users,
several metadata servers can be deployed in the storage
system. For instance, the quantity of metadata server may
be proportional to the number of storage nodes. In this
paper, a global namespace strategy was adopted to resolve
the naming problem. All storage nodes within the storage
system have an identical namespace. In another word, the
path and name of each set of data on one storage node
will be the same on every other storage nodes, regardless of
where actual location of stored data is. When a user accesses
desired data, the request is directed to the default storage
node. Next, the storage node uses a request scheduling to
determine which storage node is in charge of processing the
request.

First, the definition of hotspot data is as follows. If the
number of arriving requests for the same data exceeds 𝐻th
during a time interval 𝑇𝑑, then the data are identified as
hotspot data. Otherwise, it is identified as nonhotspot data.
𝐻th is denoted as a hotspot threshold. Furthermore, a copy of
the hotspot data represents that an amount𝐻th of requests is
assigned to another storage node. If count𝑇𝑐

𝑖,𝑗
> 𝐻th ∗ Repold

𝑖,𝑗
,

the current number of copies related to the original data 𝑗 in
storage node 𝑖 at time 𝑇𝑐 is insufficient to cope with hotspot
data access.The count𝑇𝑐

𝑖,𝑗
denotes the accumulating number of

arriving requests related to data 𝑗 in storage node 𝑖 at time
𝑇𝑐. By monitoring the number of arriving requests, ARM
can detect hotspot data in time. Repold

𝑖,𝑗
denotes the previous

number of storage nodes having replicas related to data 𝑗

in storage node 𝑖. Repold
𝑖,𝑗

is the value that exists before the
updating of Repnew

𝑖,𝑗
. We use (1) to estimate the newly required

number of copies while avoiding skew data access on storage
node 𝑖, denoted by Repincr

𝑖,𝑗
. The upper bound of Repincr

𝑖,𝑗
is

limited by the number of total storage nodes in a storage
system (SNsum) minus the number of storage nodes with the
copies:

Repincr
𝑖,𝑗

= min(max(0, ceil(
count𝑚𝑇𝑐

𝑖,𝑗
∗ (𝑇𝑑/ (𝑚 ∗ 𝑇𝑐)) − 𝐻th ∗ Repold

𝑖,𝑗

𝐻th
)) , SNsum − Repold

𝑖,𝑗
) . (1)

We estimate the average loads of storage node 𝑖 using
(2). 𝑇slot denotes the interarriving time of a request. The

value avgnew
𝑖

denotes the new average load of storage node
𝑖, and the value avgold

𝑖
is the value prior to the updating of
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avgnew
𝑖

. Additionally, we assume that each request has the
same processing time of 𝑇slot. Furthermore, storage node 𝑘

redirects the number of requests for hotspot data residing
in storage node 𝑖, denoted by 𝑅𝑅𝑘,𝑖 during 𝑇slot. If storage
node 𝑗 does not redirect any request to storage node 𝑖, then
𝑅𝑅𝑗,𝑖 = 0. Finally,𝛼 is a parameter that adjusts the estimates of
avgnew
𝑖

, and Request
𝑖
denotes the number of arriving requests

in storage node 𝑖 at the end of 𝑇slot:

avgnew
𝑖

= 𝛼 ∗ (avgold
𝑖

+ Request
𝑖
+

SNsum

∑

𝑘=1&𝑘 ̸=𝑖
𝑅𝑅𝑘,𝑖 − 1)

+ (1 − 𝛼) ∗ avgold
𝑖

.

(2)

By simplifying (2), we obtain

avgnew
𝑖

= avgold
𝑖

+ 𝛼 ∗ (Request
𝑖
+

SSsum
∑

𝑘=1&𝑘 ̸=𝑖
𝑅𝑅𝑘,𝑖 − 1) . (3)

Next, we classify the average loads of storage nodes by
using a particular partition method. This method should
support sufficient granularity to determine which color the
average loads should belong to. Assume that the maximum
number of requests that a storage node can process is 𝑅𝑄max.
The value 𝛾green denotes a ratio at which the load of the storage
node constitutes underutilization, and 𝛾red denotes a ratio
where the load of the storage node constitutes overutilization.
Therefore, the control zone is in the region surrounding
[𝑅𝑄max ∗ 𝛾green, 𝑅𝑄max ∗ 𝛾red]. We divide the control zone
into 𝑙𝑛 levels, and each level is further divided into color
layers. The number of color layers in each level depends on
their scales. We denote the scale in level 𝑖 by 𝑐𝑠𝑖. When the
loads of storage nodes are low, the scale should be larger
for coarse granularity. Otherwise, the scale should be smaller
for fine granularity. By comparing the color layers, the copy
residing in the storage node with the highest color layer
will be dereplicated first. The total number of color layers is
described in (4), denoted by colorsum. Under underutilization
and overutilization zone, they both have one level containing
one color layer. In (4), two represents two color layers
inclusive of underutilization and overutilization zone:

colorsum = 2 +

𝑙
𝑛

∑

𝑖=1

𝑅𝑄max ∗
(𝛾red − 𝛾green) /𝑙𝑛

𝑐𝑠𝑖

. (4)

To avoid excessive replication because of the burstiness
of arriving requests, ARM constrains the allowable number
of copies for each storage node according to their loads using
(5). The value color𝑖 denotes the color layer of storage node
𝑖, and 𝑍 denotes the set of copy limits in each level where
𝑍 = {𝑍1, 𝑍2, 𝑍3, . . . , 𝑍𝑙

𝑛

} and 𝑍𝑘−1 < 𝑍𝑘. There are many
ways to set the number of color layers in each level. The
simplest approach is to make equal number of color layers
in all levels. As we mentioned previously, the granularity can
be very coarse for relatively low load. Based on simulations
and analysis, we use nonlinear encoding in which lower
levels are given smaller number of color layers (and thus
finer granularity), while higher levels are given larger number

of color layers. As a result, we use exponentially increasing
model. Accordingly, 𝑍𝑘 = 𝑝

𝑘−1 where 𝑝 is a parameter used
to allocate the number of color layers in each level:

Repincr
𝑖,𝑗

=

{
{
{
{

{
{
{
{

{

0 if color𝑖 = 1

min (Repincr
𝑖,𝑗

, 𝑍⌈color
𝑖
/𝑙
𝑛
⌉) if 1 < color𝑖 < colorsum

Repincr
𝑖,𝑗

if color𝑖 = colorsum.

(5)

Next, the set of newly added storage nodes that possess
the minimum number of copies related to all hotspot data
are chosen according to (6). node𝑖 represents storage node
𝑖, and SScnt

𝑖,𝑗
denotes the set of current storage nodes that

already have a copy of data 𝑗 in storage node 𝑖. Hot𝑖 denotes
the number of copies of total hotspot data in storage node
𝑖, and SSadd

𝑖,𝑗
denotes a set of newly added storage nodes

that should be added to SScnt
𝑖,𝑗
. In addition, these copies of

hotspot data are identified as temporary items, whereas the
original hotspot data are identified as permanent items. The
difference is that permanent items are perpetually stored
in storage nodes unless they are deleted by users, whereas
temporary itemsmight be removedwhen the original hotspot
data became nonhotspot data. In a word, ARM distributes
the copies based on the residing number of copies of all
hotspot data in storage nodes. Traditionally, hash algorithms
can approximately fairly distribute data to each storage node
in a storage system, and hence all storage nodes have similar
loads until hotspot data occur. ARM eliminates the load
imbalance by allocating new copies according to the residing
number of copies of all hotspot data in storage nodes. A
new copy represents that a quota of arriving requests will be
allotted to another storage node. Thus, ARM can efficiently
achieve long-term load balancing. After the replication,
ARM continuously monitors the elapsed time to determine
whether more copies are needed:

SSadd
𝑖,𝑗

=

Repincr
𝑖,𝑗

∑

𝑖=1

{node𝑖 | min (Hot𝑖) and node𝑖 ∉ SScnt
𝑖,𝑗

} . (6)

Finally, the number of copies (including temporary and
permanent items of the hotspot data) related to data 𝑗 in
storage node 𝑖 is updated using (7). In ARM, default storage
node is in charge of dispatching the requests of hotspot data
to other storage nodes with the same copy using a round
robin fashion. In the end, ARM fairly distributes the requests
among all storage nodes:

Repnew
𝑖,𝑗

= Repold
𝑖,𝑗

+ Repincr
𝑖,𝑗

. (7)

When the access frequencies of hotspot data decrease,
ARM could invoke a dereplication method to enhance stor-
age utilization. However, excessive dereplication will cause
unnecessary resource waste. If count𝑏∗𝑇𝑑

𝑖,𝑗
≤ min((Repold

𝑖,𝑗
−

𝑓𝑑) ∗ 𝐻th, 0) is satisfied under each value of 𝑏, where 𝑏 =

{1, 2, 3, . . . , 𝑘𝑏}, then (8) is used to choose a storage node
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with the highest color layer, where 𝑘𝑏 denotes the number
of continuous time intervals 𝑇𝑑. Additionally, a dereplication
factor 𝑓𝑑 is used to achieve gradual removal of the copies of
hotspot data. Therefore, 𝑓𝑑 ≥ 1:

SSdelete
𝑖,𝑗

= {node𝑖 | max (color𝑖) and node𝑖 ∈ SScnt
𝑖,𝑗

} . (8)

In addition to time changes, different hotspot data have
various access frequencies, and therefore the dereplication
method should not depend on the number of copies as
the replication method does. Herein, ARM eliminates the
imbalance access of requests by removing copies based on
the current loads of storage nodes.With this, ARM efficiently
achieves short-term load balancing. After a copy has been
removed, default storage node will remove this record from
its round robin list. ARMconsiders long-term and short-term
data access behaviors so that it can provide stable and fair load
sharing among storage nodes in a storage system. At the end,
Repnew
𝑖,𝑗

is updated by

Repnew
𝑖,𝑗

= Repold
𝑖,𝑗

− 1. (9)

4. Simulation Results

We perform all simulations based on the storage system
architecture depicted in Figure 1.The generated user requests
consist of an ON-OFF model. Similarly, we also use an ON-
OFF model to simulate the request variations for nonhotspot
data in each storage node. Related to the requests generating
from the users, on off pb denotes an ON-OFF parameter
and off on pb denotes an OFF-ON parameter in the ON-
OFF model. In addition, on off factor is a parameter used
to adjust the load of requests. Related to the background
requests, decr load variation is a parameter used to control
the request’s decrement and incr load variation is a param-
eter used to control the request’s increment. The detailed
explanations of request generating models are depicted in
Algorithm 1.

In OLB, we assume the metadata server can obtain the
real-time load conditions of all storage nodes, and each
storage node in the storage system stores copies of all hotspot
data.Therefore, themetadata server always forwards requests
to the storage nodes with the lowest load. In another word,
metadata server should be involved in request dispatching.
SLB establishes fixed copies of hotspot data by selecting
the storage nodes with minimum copies of hotspot data.
Apparently, the SLB is a variant of the traditional static
replica strategy. Besides, themetadata server shouldmaintain
a round robin list to redirect the requests to corresponding
storage nodes. Thus, SLB could improve the load imbalance
caused by hotspot data. Although OLB imposes a huge
burden on the metadata server and requires the maximum
number of copies, it demonstrates the best load balancing. In
the following simulations, OLB serves as the benchmark of
optimal load balancing. Furthermore, we also consider that
hotspot data has no copy, namely, No Replica scheme.

Unless otherwise specified, we use the following parame-
ter settings to all simulations. The ARM’s parameters are set
as follows: 𝑇𝑑 = 5minutes, 𝑇slot = 0.3 seconds, SNsum = 128,
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Figure 2: The number of requests versus storage nodes where forty
storage nodes have hotspot data.

𝐻th = 50, 𝛼 = 0.6, 𝑅𝑄max = 20000, 𝛾red = 0.80,
𝛾green = 0.16, 𝑙𝑛 = 4, 𝑐𝑠𝑖 = 400 ∗ 𝑝

𝑖−1, where 𝑖 = {1, . . . ,

𝑙𝑛}, 𝑝 = 2, 𝑘𝑏 = 6, and 𝑓𝑑 = 3. In addition, we set
up the default number of requests in each storage node to
be between 3200 and 16000 in random. When a request
arrives at a storage node and the number of requests reaches
the maximum capacity, the new request will be discarded.
Also, the simulation time in the following experiments is
of 20 hours. The other related parameter’s settings in our
simulations are attached to corresponding figures.

In the first experiment, 40 storage nodes have hotspot
data and the simulation results are illustrated in Figure 2.
Storage node 1 has the largest mean load of arriving requests
(0.5) and storage node 40 has the lowestmean load of arriving
requests (0.1923). In other words, the storage nodes with
hotspot data are heavily congested (0.5 + 0.1 > 0.2375

and 0.1923 + 0.1 > 0.2375) if no request is redirected
to be processed by other storage nodes. In No Replica,
the number of requests on the storage nodes with hotspot
data reaches the maximum request capacity. However, those
storage nodes are underutilized if no hotspot data resides.
Although No Replica does not require any copies, it exhibits
the worst load balancing. In addition, many requests are
dropped which greatly degrades the service of quality. OLB
demonstrates the best load balancing because each storage
node has approximate number of requests. The reason is that
it can timely redirect the requests to the storage nodes with
the minimum number of requests because of full copies of
hotspot data. However, OLB is difficult to be implemented.
First, all storage nodes should keep a copy of data no matter
whether they are hotspot data or not. In another word, OLB
cannot recognize hotspot data. Second, OLB needs real-time
updates on load status. SLB still cannot recognize the hotspot
data so it wastes unnecessary storage space. SLB-5means that
each set of data has 5 copies (temporary copies), SLB-10 for 10
copies and so on.When the number of copies of hotspot data
increases from 5 to 20, SLB achieves better load balancing. In
SLB-5, storage nodes 1 to 20 have larger numbers of requests
because the number of copies is insufficient to redirect
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//pon off(𝑖): the probability that ON state changes to OFF state on hotspot data 𝑖
//poff on(𝑖): the probability that OFF state changes to ON state on hotspot data 𝑖
//on off pb: ON-OFF parameter
//off on pb: OFF-ON parameter
//on off factor: the parameter used to adjust the load of requests
//ON state: generates a new request to a storage node
//OFF state: no request is generated
pon off(𝑖) = l/(on off pb − on off factor ∗ (𝑖 − 1));
poff on(𝑖) = l/(off on pb + on off factor ∗ (𝑖 − 1));
//decr load variation: the parameter is used to control the request’s decrement
//incr load variation: the parameter is used to control the request’s increment
//ss on off prob(𝑗): the probability that ON state changes to OFF state in storage node 𝑗
//ss off on prob(𝑗): the probability that OFF state changes to ON state in storage node 𝑗
//burstiness factor: the parameter used to control the burstiness of request changes
//ON state: increases a request inside a storage node
//OFF state: a request has been processed inside a storage node
for 𝑗 = 1: storage node

request change(𝑗) = unifrnd(0, decr load variation + incr load variation);
if(request change(𝑗) <= decr load variation)

𝑏 = (1 − decr load variation)/2;
else

𝑏 = (1 − incr load variation)/2 + incr load variation;
end
ss on off prob(𝑗) = 1/ceil(𝑏 ∗ burstiness factor);
ss off on prob(𝑗) = 1/(burstiness factor-ceil(𝑏 ∗ burstiness factor));

end

Algorithm 1: Request generating models.
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Figure 3:Thenumber of requests versus storage nodeswhere thirty-
two storage nodes have hotspot data under higher loads.

requests to other storage nodes. Inversely, storage nodes 21
to 40 redirect excessive requests to other storage nodes.
As the number of copies increases, we find that the above
disadvantage is improved. In ARM, the average number of
copies of hotspot data is of 9.8585. However, this differs from
the SLB because SLB-10 needs to replicate 10 copies of each
set of data regardless of whether they belong to hotspot or
nonhotspot data. Apparently, ARM requires relatively fewer
number of copies but it tends to approach the load balancing
of OLB and outperforms the SLB and No Replica schemes.
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Figure 4: The number of requests versus storage nodes where
sixteen storage nodes have hotspot data under different request
conditions.

In the second experiment, we consider the effect on load
balancing where 32 storage nodes have hotspot data with
higher loads of arriving requests. The simulation results are
illustrated in Figure 3. OLB repeatedly demonstrates the
best load balancing and outperforms the other schemes. No
Replica exhibits the worst performance and the nodes with
hotspot data still encounter heavy congestion because the
amount of arriving requests exceeds their processing capa-
bility. SLB-5 demonstrates worse load balancing as compared
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with the first experiment because the variations of mean
load of arriving requests is higher. For instance, the storage
node 30 has the lowest number of requests. Apparently,
storage nodes 1 to 16 have higher number of requests because
their loads are higher than the average load. As compared
with SLB-5, SLB-10 and SLB-20 both have relatively low
effect because they both have more copies to resist the
higher mean load. It is obvious that five copies (SLB-5 to
SLB-10) have better improvement than ten copies (SLB-10
to SLB-20). Therefore, SLB cannot efficiently improve load
balancing by increasing the number of copies related to
hotspot data. ARM’s performance is still close to OLB while
demonstrating much better load balancing than SLB and No
Replica schemes. In a word, ARM is able to achieve load
balancing under higher loads.

In the third experiment, we consider the effect of derepli-
cationmethod on load balancingwhere 16 storage nodes have
hotspot data. In particular, no request is generated during
time intervals [3, 5], [6, 8], [9, 11], [12, 14], and [15, 17]hours.
The simulation results are illustrated in Figure 4. SLB-5, SLB-
10, and SLB-20 all demonstrate better load balancing as com-
pared with previous two experiments because the number
of storage nodes with hotspot data is reduced. In SLB-5, the
number of requests on storage nodes with hotspot data all
exceeds that of OLB because their mean loads are larger than
the overall mean load. OLB keeps the best load balancing
because it always dispatches requests to the storage node with
the lowest load. No Replica has better performance whose
reason is the same as SLB. Repeatedly, ARM’s performance
approaches to OLB. In other words, ARM can efficiently
replicate and dereplicate copies on demand while keeping
excellent load balancing.

In the fourth experiment, we consider the effect of all
storage nodes with higher load variations on load balancing
where 24 storage nodes have hotspot data. The simulation
results are illustrated in Figure 5. OLB demonstrates the best
load balancing. In addition, such condition almost has no
impact on load balancing. No Replica exhibits the worst
load balancing. SLB improves load balancing along with the
increment of copies but the improvement degrades quickly. In
SLB-5, the number of requests on storage nodes with hotspot
data randomly changes because of higher load variations.
We find that ARM’s performance still approaches to OLB. In
other words, ARM adapts well to higher load variations.

In the fifth experiment, we consider the effect on fair load
sharing when there are 64 storage nodes and all of them have
hotspot data. In addition, the default number of requests in
each storage node is between 6000 and 16000 in random.The
simulation results are illustrated in Figure 6. In No Replica
scheme, all storage nodes reach maximum capacity because
it cannot dispatch the requests to other storage nodes and the
default number of requests in each storage node is relatively
higher than the previous experiments. Besides,many requests
are dropped which greatly damages the performance of data
access. Apparently, SLB improves load balancing along with
the increasing number of copies because each storage node
has hotspot data access. Accordingly, SLB-20 is better than
SLB-10 and SLB-10 is better than SLB-5. In this experiment,
ARM allocates 12.45 copies for each hotspot data which
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Figure 5: The number of requests versus storage nodes where
twenty-four storage nodes have hotspot data under higher load
variations.

ARM
SLB-5
SLB-10

SLB-20
OLB
No Replica

×10
4

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
N

um
be

r o
f r

eq
ue

sts

20 30 40 50 6010
Storage nodes

Settings:
(1) on_off_pb = 160

(2) off_on_pb = 40

(3) on_off_factor = 2

(4) decr_load_variation = 0.6

(5) incr_load_variation = 0.1

Figure 6: The number of requests versus storage nodes where all
storage nodes have hotspot data.

is less than the SLB-20 with 20 copies. However, ARM
achieves better load balancing than SLB-20. It means that
ARM achieves better load balancing using smaller number of
copies. With that, ARM has less communication overheads.
More importantly, it is close to the OLB. From Figures 2–
6, we conclude that ARM achieves excellent load balancing
with adequate number of copies and less communication
overheads under various conditions. As a result, ARM is
suitable to be deployed in a storage system with performance
requirements.

In the final experiment, we study how the load balancing
is affected by different values of hotspot thresholds when
storage nodes 1 to 32 have hotspot data. Storage node 1 has the
largest average load of 800 requests per hour.The average load
of these storage nodes decreases as the storage node number
increases. Hence, storage node 32 has the smallest average
load of 490 requests per hour. We illustrate the number of
requests to storage nodes with hotspot data in Figure 7.When
𝐻th = 250, those nodes have an average of 3.9913 copies.
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Figure 7: The number of requests versus storage nodes where
thirty-two storage nodes have hotspot data under different hotspot
thresholds.

In addition, each storage node has an approximate number
of copies. There are two reasons for this phenomenon. First,
storage node 32 holds the burstiness of generating requests,
which results in a larger number of copies. Second, the
continuous requests mean that no dereplication method is
invoked. As a result, each copy of storage node 1 must handle
approximately 200 requests, whereas storage node 32 needs to
handle only approximately 120 requests.When𝐻th decreases,
each hotspot data hasmore copies.When𝐻th = 25,𝐻th = 50,
𝐻th = 100, or 𝐻th = 175, the average number of copies
is equal to 29.9650, 16.2359, 8.9849, or 5.7426, respectively.
When the number of copies increases, the number of requests
to each copy has an approximate value that enhances fair load
sharing in general. However, 𝐻th = 50 has better fair load
sharing than 𝐻th = 25 because too many copies can cause
burstiness in redirecting requests to a storage node. From
Figures 2–7, we conclude that ARM is applicable to various
load conditions while preserving excellent load balancing
accompanying with adequate copies of hotspot data.

5. Conclusions

In this paper, we propose a simple and efficient active
replica management scheme, namely, ARM, and the goal
is to leverage the loads among storage nodes in a storage
system. This scheme actively establishes optimal number
of copies for hotspot data according to data access con-
ditions. Moreover, ARM dynamically adjusts unnecessary
copies on demand. In a word, ARM not only improves load
imbalance but also enhances storage utilization. Simulation
results demonstrate that ARM can efficiently balance the
loads among storage nodes under a variety of scenarios as
compared with existing load balancing schemes inclusive of
OLB, SLB, and No Replica. In future work, we would like to
extend ARM by considering requests with different access
priorities and by investigating the effect of load balancing
while copies of hotspot data are stored across different storage
systems. Finally, we will further study request loss rate and
communication overheads.
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