
Research Article
The Numerical Analysis of Two-Sided Space-Fractional Wave
Equation with Improved Moving Least-Square Ritz Method

Rongjun Cheng,1 Hongxia Ge,1 and Yong Wu2

1Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
2Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China

Correspondence should be addressed to Yong Wu; wuyong@nit.zju.edu.cn

Received 17 December 2015; Accepted 22 February 2016

Academic Editor: Efstratios Tzirtzilakis

Copyright © 2016 Rongjun Cheng et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A numerical analysis of the space-fractional wave equation is carried out by the improved moving least-square Ritz (IMLS-Ritz)
method. The trial functions for the space-fractional wave equation are constructed by the IMLS approximation. By the Galerkin
weak form, the energy functional is formulated. Employing the Ritz minimization procedure, the final algebraic equations system
is obtained. In this numerical analysis, the applicability and efficiency of the IMLS-Ritz method are examined by some example
problems. Comparing the numerical results with the analytical solutions, the stability and accuracy of the IMLS-Ritz method are
also presented.

1. Introduction

Due to extensive use in the fields of dynamics [1], fluid
mechanics [2], viscoelasticity [3], materials [4], hydrology
[5], biology [6, 7], porous media [8], physics [9, 10], engi-
neering [11, 12], and so on, fractional partial differential
equations have become a hot research topic. Consequently,
scholars pay much attention to the analytical solutions of
fractional partial differential equation (PDE) of physical
interest. Unfortunately, a fractional PDEhas no exact solution
inmany cases owing to complex series or special functions. So
it is extremely important and necessary to resort to numerical
solutions.

The fractional diffusion-wave equation has been an inter-
esting topic to invest in during the past decades. There is
already some important progress for the fractional diffu-
sion equation or advection-diffusion equations. Deng [13–
15] presented the numerical method for fractional diffusion
equations, Liu et al. [16] used the difference method for
space-time fractional equation and presented the stability
and convergence, Meerschaert and Tadjeran [17] applied the
finite difference approximation for space-fractional equa-
tions, Meng [18] put forward a new approach for solving
fractional partial differential equations, Sousa [19] developed

numerical approximations for fractional diffusion equations
via splines, Zhou and Wu [20] proposed the finite ele-
ment multigrid method for the boundary value problem of
fractional advection dispersion equation. Nigmatullin [21]
presented the fractional diffusion equation to describe the
diffusion in porous media. Mainardi [22, 23] has shown that
the FWE describes the propagation of mechanical diffusive
waves in viscoelastic media. Much study has been done
for the time fractional PDE in [24–26]. In fact, most of
the works focus on the time fractional PDE. In another
latest paper, Sweilam et al. considered a 1D fractional wave
equation in [27], Deng et al. used the alternating direction
implicit algorithm for the space-fractional equation in [28],
Jia and Wang used the fast finite difference methods for
space-fractional PDE with fractional derivative boundary
conditions in [29], and Guan and Gunzburger applied the
finite element method (FEM) for the space-time fractional
PDE in [30].

In the past few decades, meshless methods have already
been a hot research topic in computational mechanics.
Meshlessmethods also become important and powerful tools
to research and analyze kinds of PDE. Researchers have
presented many kinds of meshless methods, including the
diffuse element method (DEM) [31], the smoothed particle
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hydrodynamics (SPH) method [32], the reproducing kernel
particle method (RKPM) [33], the element-free Galerkin
(EFG) method [34–37], the meshless local Petrov-Galerkin
method (MLPG) [38–40], the hp-meshless cloud method
[41], boundary element-free method (BEFM) [42, 43], the
complex variable meshless method [44, 45], radius basis
functions (RBF) [46], and LBIE method [47]. Now, meshless
methods are widely used in various fields.

TheMLS approximation originated fromdata fitting [48].
In recent years, the MLS technique is often used for analysis
of solid mechanics problems in the meshless method or EFG
method [48]. Unfortunately, the final algebraic equations
system obtained by EFG method may be ill-conditioned.
Thus, the ill-conditioned algebraic equations system should
be considered in the MLS approximation. Unless we solve
the equation, it is hard to confirm whether the algebraic
equations system is ill-conditioned or not.Therefore, it could
lead to poor or erroneous numerical results. In order to
overcome this problem, Cheng and Chen proposed the IMLS
approximation [49]. In the IMLS approximation, the orthog-
onal function system is chosen as the basis function, and
the resulting algebraic equation system is not ill-conditioned
any more. Based on the IMLS approximation, the boundary
element-free method is presented for elasticity, fracture,
elastodynamics, and potential problems [50–53]. The IEFG
method is a combination of IMLS approximation and EFG
method [54–57]. The IEFG method needs fewer nodes than
the conventional EFG method. Hence, the IEFG method is
bounded to increase the computational speed and has higher
accuracy than the EFG method.

As far as is known, the space-fractional PDE has never
been analyzed and researched by the IMLS-Ritz method.
We try to consider the one-dimensional two-sided space-
fractional equation with left and right Riemann-Liouville
fractional derivatives. The IMLS-Ritz method for the two-
sided space-fractional wave equation is put forward. In
this paper, the IMLS approximation is used to approximate
displacement field, the penalty method is applied to impose
the boundary conditions, and Ritz minimization procedure
is used to obtain the final algebraic equation system. In order
to verify the validity and stability of the proposed method,
numerical examples are presented compared with existing
results available in extant literature.

2. IMLS Shape Functions

The local approximation is defined in the IMLS approxima-
tion [49] as follows:

𝑢
ℎ

(x, x) =

𝑚

∑

𝑗=1

𝑝𝑗 (x) 𝑎𝑗 (x) ≡ pT (x) a (x) , (1)

where 𝑚 is the number of bases, 𝑝𝑗(x) are monomial basis
functions, and 𝑎𝑗(x) are corresponding coefficients. We can
define the following quadratic form:

𝐽 =

𝑛

∑

𝑖=1

𝑤 (x − x𝑖) [𝑢
ℎ

(x, x𝑖) − 𝑢 (x𝑖)]
2

, (2)

where 𝑤(x − x𝑖) are compact weight functions and x𝑖 are the
nodes. Equation (2) can be expressed in the matrix form

𝐽 = (pa − u)
T W (x) (pa − u) , (3)

where

uT = (𝑢1, 𝑢2, . . . , 𝑢𝑛) ,

p =

[

[

[

[

[

[

[

𝑝1 (x1) 𝑝2 (x1) ⋅ ⋅ ⋅ 𝑝𝑚 (x1)
𝑝1 (x2) 𝑝2 (x2) ⋅ ⋅ ⋅ 𝑝𝑚 (x2)

.

.

.

.

.

. d
.
.
.

𝑝1 (x𝑛) 𝑝2 (x𝑛) ⋅ ⋅ ⋅ 𝑝𝑚 (x𝑛)

]

]

]

]

]

]

]

,

W (x) =

[

[

[

[

[

[

[

𝑤 (x − x1) 0 ⋅ ⋅ ⋅ 0

0 𝑤 (x − x2) ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ 𝑤 (x − x𝑛)

]

]

]

]

]

]

]

.

(4)

In order to find the coefficients a(x), we take the extremum
of 𝐽 by

𝜕𝐽

𝜕a
= A (x) a (x) − B (x) u = 0 (5)

which will get the following equation system:

A (x) a (x) = B (x) u. (6)

If the functions 𝑝1(x), 𝑝2(x), . . . , 𝑝𝑚(x) meet with the
following conditions

(𝑝𝑘, 𝑝𝑗) =

𝑛

∑

𝑖=1

𝑤𝑖𝑝𝑘 (x𝑖) 𝑝𝑗 (x𝑖) =

{

{

{

0 𝑘 ̸= 𝑗

𝐴𝑘 𝑘 = 𝑗

(𝑘, 𝑗 = 1, 2, . . . , 𝑚) ,

(7)

it will be called a weighted orthogonal function set with
a weight function {𝑤𝑖} with points {x𝑖}. The orthogonal
function set p = (𝑝𝑖) can be obtained by using the Schmidt
method,

𝑝1 = 1,

𝑝𝑖 = 𝑟
𝑖−1

−

𝑖−1

∑

𝑘=1

(𝑟
𝑖−1

, 𝑝𝑘)

(𝑝𝑘, 𝑝𝑘)

𝑝𝑘, 𝑖 = 2, 3, . . . .

(8)
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Equation (6) can be rewritten as

[

[

[

[

[

[

[

(𝑝1, 𝑝1) 0 ⋅ ⋅ ⋅ 0

0 (𝑝2, 𝑝2) ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ (𝑝𝑚, 𝑝𝑚)

]

]

]

]

]

]

]

[

[

[

[

[

[

[

𝑎1 (x)

𝑎2 (x)

.

.

.

𝑎𝑚 (x)

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

(𝑝1, 𝑢𝐼)

(𝑝2, 𝑢𝐼)

.

.

.

(𝑝𝑚, 𝑢𝐼)

]

]

]

]

]

]

]

.

(9)

The coefficients 𝑎𝑖(x) can be easily founded as follows:

𝑎𝑖 (x) =

(𝑝𝑖, 𝑢𝐼)

(𝑝𝑖, 𝑝𝑖)

; (𝑖 = 1, 2, . . . , 𝑚) ; (10)

that is,

a (x) = A (x)B (x) u, (11)

where

A (x) =

[

[

[

[

[

[

[

[

[

[

[

[

1

(𝑝1, 𝑝1)

0 ⋅ ⋅ ⋅ 0

0

1

(𝑝2, 𝑝2)

⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅

1

(𝑝𝑚, 𝑝𝑚)

]

]

]

]

]

]

]

]

]

]

]

]

. (12)

From (1), 𝑢ℎ(x) is expressed as

𝑢
ℎ

(x) = Φ (x) u =

𝑛

∑

𝐼=1

Φ𝐼 (x) 𝑢𝐼, (13)

where shape functionΦ(x) is

Φ (x) = (Φ1 (x) , Φ2 (x) , . . . , Φ𝑛 (x))

= pT (x)A (x)B (x) .

(14)

Taking derivatives of (14), we will get derivatives of shape
function

Φ𝐼,𝑖 (x) =

𝑚

∑

𝑗=1

[𝑝𝑗,𝑖 (AB)
𝑗𝐼

+ 𝑝𝑗 (A,𝑖B + AB,𝑖)𝑗𝐼] . (15)

The cubic spline weight function is chosen as follows:

𝑤𝑖 = 𝑤 (x − x𝑖) ≡ 𝑤 (𝑟)

=

{
{
{
{
{

{
{
{
{
{

{

2

3

− 4𝑟
2

+ 4𝑟
3
, 𝑟 ≤

1

2

4

3

− 4𝑟 + 4𝑟
2

−

4

3

𝑟
3
,

1

2

< 𝑟 ≤ 1

0, 𝑟 > 1,

(16)

where

𝑟 =

𝑑𝑖

𝑑𝑚𝑖

, 𝑑𝑖 =
󵄩
󵄩
󵄩
󵄩
x − x𝑖

󵄩
󵄩
󵄩
󵄩

, 𝑑𝑚𝑖
= 𝑑max𝑐𝑖, (17)

where 𝑑max is called a scaling parameter and distance 𝑐𝑖 is
chosen to make matrix 𝑀(𝑥) which is no longer singular.

3. IMLS-Ritz Formulation for the Two-Sided
Space-Fractional Wave Equation

Consider the following two-sided space-fractional wave
equation:

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡
2

= 𝑐+ (𝑥)

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕+𝑥
𝛼

+ 𝑐− (𝑥)

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕−𝑥
𝛼

+ 𝑑 (𝑥, 𝑡) , 𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇

(18a)

with initial conditions
𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,

𝑢𝑡 (𝑥, 0) = 𝑢1 (𝑥)

(18b)

and boundary conditions
𝑢 (𝑎, 𝑡) = 𝑢 (𝑏, 𝑡) = 0, (18c)

where the parameter 𝛼 describes the fractional order of
spatial derivatives with 1 < 𝛼 ≤ 2. Function 𝑑(𝑥, 𝑡) refers
to a source term, and the coefficient functions 𝑐+(𝑥) > 0 and
𝑐−(𝑥) > 0 refer to transport related coefficients.

In order to establish the numerical approximation
scheme, points 𝑥𝑖 = (𝑖 − 1)Δ𝑥, 𝑖 = 1, 2, 3, . . . , 𝑁, are
considered, where Δ𝑥 = (𝑏 − 𝑎)/(𝑁 − 1). 𝑥1 = 𝑎 and 𝑥𝑁 = 𝑏

are the boundary points; 𝑡𝑗 = 𝑛Δ𝑡, 𝑛 = 0, 1, 2, 3, . . ., where Δ𝑡

is the time interval.
The left-handed and right Riemann-Liouville fractional

derivatives of order 𝛼 are defined as [58]

(𝐷
𝛼

𝑎+
𝑓) (𝑥) =

𝜕
𝛼
𝑓 (𝑥, 𝑡)

𝜕+𝑥
𝛼

=

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑+𝑥
𝑛

∫

𝑥

𝑎

𝑓 (𝑡)

(𝑥 − 𝑡)
𝛼−𝑛+1

𝑑𝑡

∀𝑥 ∈ [𝑎, 𝑏] , 𝛼 > 0

(𝐷
𝛼

𝑏−
𝑓) (𝑥) =

𝜕
𝛼
𝑓 (𝑥, 𝑡)

𝜕−𝑥
𝛼

=

(−1)
𝑛

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥
𝑛

∫

𝑏

𝑥

𝑓 (𝑡)

(𝑡 − 𝑥)
𝛼−𝑛+1

𝑑𝑡

∀𝑥 ∈ [𝑎, 𝑏] , 𝛼 > 0,

(19)

where 𝑛 is an integer such that 𝑛 − 1 < 𝛼 ≤ 𝑛.
The weighted integral form of (18a) is obtained as follows:

∫

Γ

𝑤 ⋅ [

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡
2

− 𝑐+ (𝑥)

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕+𝑥
𝛼

− 𝑐− (𝑥)

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕−𝑥
𝛼

− 𝑑 (𝑥, 𝑡)] 𝑑Γ = 0.

(20)
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Define the energy functional Π(𝑢) as

Π (𝑢) = ∫

Γ

𝑢

𝜕
2
𝑢

𝜕𝑡
2

𝑑Γ

− ∫

Γ

𝑢 (𝑐+

𝜕
𝛼
𝑢

𝜕+𝑥
𝛼

+ 𝑐−

𝜕
𝛼
𝑢

𝜕−𝑥
𝛼

+ 𝑑) 𝑑Γ.

(21)

Due to the boundary condition, the modified energy
functional becomes

Π
∗

(𝑢) = ∫

Γ

𝑢

𝜕
2
𝑢

𝜕𝑡
2

𝑑Γ

− ∫

Γ

𝑢 (𝑐+

𝜕
𝛼
𝑢

𝜕+𝑥
𝛼

+ 𝑐−

𝜕
𝛼
𝑢

𝜕−𝑥
𝛼

+ 𝑑) 𝑑Γ

+

𝛼1

2

∫

Γ𝑢

(𝑢 − 𝑢)
2

𝑑Γ𝑢.

(22)

By (13), we can derive the approximate function as
follows:

𝑢
ℎ

(𝑥, 𝑡) =

𝑛

∑

𝐼=1

Φ𝐼 (𝑥) ⋅ 𝑇𝐼 (𝑡) = Φ (𝑥) ⋅ T

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡
2

=

𝜕
2

𝜕𝑡
2

𝑛

∑

𝐼=1

Φ𝐼 (𝑥) ⋅ 𝑇𝐼 (𝑡)

=

𝑛

∑

𝐼=1

Φ𝐼 (𝑥) ⋅

𝜕
2
𝑇𝐼 (𝑡)

𝜕𝑡
2

= Φ (𝑥) T̈,

(23)

where
Φ (𝑥) = (Φ1 (𝑥) , Φ2 (𝑥) , . . . , Φ𝑛 (𝑥))

T = (𝑇1 (𝑡) , 𝑇2 (𝑡) , . . . , 𝑇𝑛 (𝑡))
T

̈T = (

𝜕
2
𝑇1 (𝑡)

𝜕𝑡
2

,

𝜕
2
𝑇2 (𝑡)

𝜕𝑡
2

, . . . ,

𝜕
2
𝑇𝑛 (𝑡)

𝜕𝑡
2

)

T

.

(24)

Substituting (23) into (22), by applying the Ritz minimization
procedure to Π

∗
(𝑢), we will derive

𝜕Π
∗

(𝑢)

𝜕Δ

= 0,

Δ = 𝑇𝐼 (𝑡) ,

𝜕
2
𝑇𝐼 (𝑡)

𝜕𝑡
2

, 𝐼 = 1, 2, . . . , 𝑛.

(25)

The results can be expressed as

CT̈ + KT = F, (26)

where

𝐶 = ∫

Γ

Φ
𝑇

(𝑥) Φ (𝑥) 𝑑Γ

𝐾 = 𝛼1Φ
𝑇

(𝑥) Φ (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑎,𝑥=𝑏

− ∫

Γ

Φ
𝑇

(𝑥) (𝑐+

𝜕
𝛼
Φ (𝑥)

𝜕+𝑥
𝛼

+ 𝑐−

𝜕
𝛼
Φ (𝑥)

𝜕−𝑥
𝛼

) 𝑑Γ

𝐹𝐼 = − ∫

Γ

Φ𝐼 (𝑥) 𝑑 (𝑥, 𝑡) 𝑑Γ.

(27)

By the shifted Grünwald formula, we can discretize the
Riemann-Liouville operator [18]

𝜕
𝛼
Φ (𝑥𝑖)

𝜕+𝑥
𝛼

=

1

ℎ
𝛼

𝑖

∑

𝑗=0

𝑤𝑗Φ (𝑥𝑖 − (𝑗 − 1) ℎ) + 𝑂 (ℎ)

𝑖 = 2, 3, . . . , 𝑀 − 1

(28a)

𝜕
𝛼
Φ (𝑥𝑖)

𝜕−𝑥
𝛼

=

1

ℎ
𝛼

𝑀−𝑖+1

∑

𝑗=0

𝑤𝑗Φ (𝑥𝑖 + (𝑗 − 1) ℎ) + 𝑂 (ℎ)

𝑖 = 2, 3, . . . , 𝑀 − 1,

(28b)

where {𝑥𝑘} (𝑘 = 1, 2, . . . , 𝑀, 𝑀 = 2𝑁 − 1) is the set of
nodes and Gauss points and𝑤𝑗 are the normalized Grünwald
weights. The corresponding coefficients 𝑤𝑗 can be easily
calculated by iteration formula as follows:

𝑤0 = 1,

𝑤𝑗 = (1 −

𝛼 + 1

𝑘

) 𝑤𝑗−1.

(29)

Substituting (28a), (28b), and (29) into (26) and discrete
time by center difference method, we obtain

C
𝑈𝑛+1 − 2𝑈𝑛 + 𝑈𝑛−1

Δ𝑡
2

+ K
𝑈𝑛+1 + 𝑈𝑛

2

=

𝐹𝑛+1 + 𝐹𝑛

2

, (30)

where

𝐾 = 𝛼1 ⋅ Φ
𝑇

(𝑥) Φ (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑎,𝑥=𝑏

− ∫

Γ

Φ
𝑇

(𝑥)

⋅ (

1

ℎ
𝛼

(

𝑖

∑

𝑗=0

𝑔𝑗Φ (𝑥𝑖 − (𝑗 − 1) ℎ)

+

𝑀−𝑖+1

∑

𝑗=0

𝑔𝑗Φ (𝑥𝑖 + (𝑗 − 1) ℎ))) 𝑑Γ.

(31)

The numerical solution of the space-fractional wave
equation is obtained by iterative calculation.

4. Numerical Results

In order to verify the validity and correctness of the proposed
IMLS-Ritz method for the space-fractional wave equation,
examples are studied and the numerical results are presented.
Note that, in all examples considered, the cubic spline
function is chosen as weight function and the linear bases are
chosen in this paper.

Example 1 (left-handed space-fractional wave equation).
Consider the following left-handed space-fractional wave
equation:

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡
2

= Γ (1.2) 𝑥
1.8 𝜕
1.8

𝑢 (𝑥, 𝑡)

𝜕𝑥
1.8

+ 𝑑 (𝑥, 𝑡)

0 < 𝑥 < 2

(32)
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Table 1: Maximum error for Example 1 at 𝑡 = 1.

Δ𝑡 Δ𝑥 IMLS-Ritz method Finite difference method
0.005 2

−3 0.0723 0.1128
0.005 2

−4 0.0483 0.0511
0.002 2

−5 0.0204 0.0270
0.002 2

−6 0.0115 0.0137

0.0 0.5 1.0 1.5 2.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

Exact solution
t = 1.5

t = 1

t = 0.5

x

u
(
x
,
t
)

−0.2

Figure 1: Numerical solution and exact solution of 𝑢(𝑥, 𝑡) when 𝑡 =

0.5, 1, and 1.5 (Example 1).

with initial conditions

𝑢 (𝑥, 0) = 4𝑥
2

(2 − 𝑥) ,

𝑢𝑡 (𝑥, 0) = −4𝑥
2

(2 − 𝑥)

(33)

with boundary conditions

𝑢 (0, 𝑡) = 𝑢 (2, 𝑡) = 0, (34)

where the source function is

𝑑 (𝑥, 𝑡) = 4𝑒
−𝑡

𝑥
2

(2 − 𝑥) − 16𝑒
−𝑡

𝑥
2

+ 20𝑒
−𝑡

𝑥
3
. (35)

The analytical solution is

𝑢 (𝑥, 𝑡) = 4𝑒
−𝑡

𝑥
2

(2 − 𝑥) . (36)

Using IMLS-Ritz method to solve the equation with
penalty factor 𝛼1 = 10

7, time step length Δ𝑡 = 0.001, space
step length Δ𝑥 = 0.0125, and 𝑑max = 3.8. Table 1 shows
numerical results obtained by the IMLS-Ritz method. The
maximum error at time 𝑡 = 1 between the exact solution and
the numerical solution and finite difference method [27] at
different values of Δ𝑥 and Δ𝑡 is shown in Table 1. In Figure 1,
the numerical and analytical solution are plotted at time 𝑡 =

0.5,1, and 1.5, respectively. The surface of the numerical and
analytical solution is plotted in Figures 2 and 3, respectively.
Numerical results show that the IMLS-Ritz method is very
effective and accurate.

0 0.5
1 1.5 2 0 0.5 1 1.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

u

x t

Figure 2:The surface of numerical solutionwith IMLS-Ritzmethod
(Example 1).
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Figure 3: The surface of exact solution (Example 1).

Example 2 (two-sided space-fractional). Consider the fol-
lowing left-handed and right-handed space-fractional wave
equation:

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡
2

= Γ (1.2) 𝑥
1.8 𝜕
1.8

𝑢 (𝑥, 𝑡)

𝜕+𝑥
1.8

+ Γ (1.2) (2 − 𝑥)
1.8 𝜕
1.8

𝑢 (𝑥, 𝑡)

𝜕−𝑥
1.8

+ 𝑑 (𝑥, 𝑡)

0 < 𝑥 < 2

(37)

with initial conditions

𝑢 (𝑥, 0) = 4𝑥
2

(2 − 𝑥)
2

,

𝑢𝑡 (𝑥, 0) = −4𝑥
2

(2 − 𝑥)
2

(38)

with boundary conditions

𝑢 (0, 𝑡) = 𝑢 (2, 𝑡) = 0, (39)
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Table 2: Maximum error for Example 2 at 𝑡 = 2.

Δ𝑡 Δ𝑥 IMLS-Ritz method Finite difference method
0.020 2

−3 0.0382 0.0379
0.0066 2

−4 0.0135 0.0164
0.0050 2

−6 0.0037 0.0042
0.0033 2

−5 0.0079 0.0083

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

Exact solution
t = 1.5

t = 1

t = 0.5

x

u
(
x
,
t
)

Figure 4: Numerical solution and exact solution of 𝑢(𝑥, 𝑡) when 𝑡 =

0.5, 1, and 2 (Example 2).

where the source function is

𝑑 (𝑥, 𝑡) = 4𝑒
−𝑡

𝑥
2

(2 − 𝑥)
2

− 32𝑒
−𝑡

[𝑥
2

+ (2 − 𝑥)
2

− 2.5 (𝑥
3

+ (2 − 𝑥)
3
) +

25

22

(𝑥
4

+ (2 − 𝑥)
4
)] .

(40)

The exact solution is

𝑢 (𝑥, 𝑡) = 4𝑒
−𝑡

𝑥
2

(2 − 𝑥)
2

. (41)

The IMLS-Ritz method is applied to solve the above
equation with penalty factor 𝛼1 = 10

7 and time step length
Δ𝑡 = 0.002 and 𝑑max = 3.8. Table 2 shows numerical results
obtained by the IMLS-Ritz method. The maximum error at
time 𝑡 = 2 between the exact solution and the numerical
solution and finite difference method [27] at different values
of Δ𝑥 and Δ𝑡 is shown in Table 2. In Figure 4, the numerical
and analytical solution are plotted at time 𝑡 = 0.5,1, and
2, respectively. The surface of the numerical and analytical
solution is plotted in Figures 5 and 6, respectively. Numerical
results show that the IMLS-Ritz method is very effective and
accurate.

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3
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4

u

x
t

Figure 5:The surface of numerical solutionwith IMLS-Ritzmethod
(Example 2).
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Figure 6: The surface of exact solution (Example 2).

Example 3 (two-sided space-fractional). Consider the fol-
lowing left-handed and right-handed space-fractional wave
equation:

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡
2

=

𝜕
1.8

𝑢 (𝑥, 𝑡)

𝜕+𝑥
1.8

+

𝜕
1.8

𝑢 (𝑥, 𝑡)

𝜕−𝑥
1.8

, 0 < 𝑥 < 5 (42)

with initial conditions

𝑢 (𝑥, 0) = sin (𝜋𝑥) ,

𝑢𝑡 (𝑥, 0) = 0

(43)

with boundary conditions

𝑢 (0, 𝑡) = 𝑢 (5, 𝑡) = 0. (44)

Particularly, if the fractional order of spatial derivatives
𝛼 = 2, (42) will be a standard wave equation, and the exact
solution to this problem in case 𝛼 = 2 is

𝑢 (𝑥, 𝑡) = sin (𝜋𝑥) cos (2𝜋𝑡) . (45)
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Figure 7:The numerical solution using IMLS-Ritzmethodwith 𝛼 =

2 and 𝛼 = 1.8 at 𝑡 = 1 (Example 3).
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Figure 8:The numerical solution using IMLS-Ritzmethodwith 𝛼 =

2 and 𝛼 = 1.8 at 𝑡 = 1.5 (Example 3).

Figures 7 and 8 show the numerical results with IMLS-
Ritz method with 𝛼 = 2 and 𝛼 = 1.8 at different times 𝑡 = 1

and 𝑡 = 1.5, respectively.
From these figures, it can be seen that the IMLS-Ritz

method is very effective and accurate.

5. Conclusions

The meshless method for the two-sided space-fractional
wave equation is put forward in this paper. In the present
method, the IMLS approximation is employed to construct
the shape functions. In the IMLS, the orthogonal function
system with a weight function is chosen as the basis function.
Through employing the Ritz minimization procedure to

the energy expressions, the final algebraic equations system
is obtained. The system obtained by IMLS technique will
be not ill-conditioned any more, and the solution can be
easily obtained without matrix inversion. Because of the
simplicity of numerical implementation, the proposed IMLS-
Ritz method will substitute for the difference method and
the finite element method for solving space-fractional wave
equation and other fractional partial differential equations.
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