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In recent years, high elongation materials are widely used. Therefore, it is important to investigate the tensile properties of high
elongation materials for engineering applications. Video extensometer is equipment for measuring the materials tensile properties.
It uses image processing technology to match data points and measures the actual deformation. However, when measuring high
elongation materials, motion blur will appear on the collected images, which can affect the accuracy of image matching. In this paper,
we proposed an image matching method which is based on Local Phase Quantization (LPQ) features to reduce the interference of
the motion blur and improve the accuracy of the image matching algorithms as well. The experimental results on simulations show
that the proposed initialization method is sufficiently accurate to enable the correct convergence of the subsequent optimization in
the presence of motion blur. The experiment of uniaxial tensile also verifies the accuracy and robustness of the method.

1. Introduction

High elongation materials are an important class of mate-
rials for structural applications such as transportation, civil
infrastructures, and biomedical applications. In actual service
conditions, these materials are often subject to both mechan-
ical and environmental loads. These factors will change the
material properties and thus have a great influence on the
service life and safety performance of these materials. In
order to study these factors, the tensile mechanical test should
be carried out on these materials.

At present, the most commonly used equipment for the
tensile mechanical test is the mechanical extensometer and
video extensometer. For the high elongation materials, the
mechanical extensometer which is mounted directly onto
the material via blade causes many problems such as the
following: (1) mutual friction will reduce the measurement
accuracy; (2) the total deformation cannot be easily measured
in the uniaxial tensile test; (3) the measuring range is
limited. Compared with mechanical extensometer, the video
extensometer has the following advantages over mechanical
extensometer: (1) it has no abrasion on the material; (2)

it is applied for different types of specimen and material
properties; (3) its measuring range is not limited; (4) it has
high precision [1].

Compared with mechanical extensometer, video exten-
someter has obvious advantages in engineering applications.
However, if higher accuracy is pursued, some influence
factors can not be ignored, such as out-of-plane displacement,
self-heating of the camera, lens distortion, and image blur
induced by motion. Reference [2] theoretically describes the
measurement errors caused by out-of-plane displacement
and self-heating of the camera; it further establishes a high-
accuracy two-dimensional digital image correlation (2D-
DIC) system using a bilateral telecentric lens to minimize the
errors. Reference [3] investigates the systematic errors due
to lens distortion using the radial lens distortion model and
in-plane translation tests; it finds out that the displacement
and strain errors at an interrogated image point not only
are linear proportion to the distortion coeflicient of the
camera lens used but also depend on the distance relative
to distortion center and its magnitude of the displacement;
the paper also proposes a linear least-squares algorithm to
estimate the distortion coeflicients and then to eliminate
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FIGURE 1: Measurement system overview.

the errors. Reference [4] proposes an off-axis digital image
correlation method for real-time, noncontact, and targetless
measurement of vertical deflection of bridges to achieve
subpixel accuracy.

Despite these advances, few works about eliminat-
ing extensometer’s measurement errors caused by motion-
induced image blur to improve the accuracy have been
reported. In this paper, we will propose an image matching
method for video extensometer to measure the parameters
by utilizing Local Phase Quantization (LPQ) feature. This
method is robust and performs well on images with serious
motion blur and deformation.

The rest of the paper is organized as follows. The basic
principle of video extensometer is described in Section 2.
The generation mechanism of motion blur is introduced in
Section 3. The proposed matching method using Local Phase
Quantization is discussed in detail in Section 4. Experimental
results on both simulated and real-world data, as well as
comparative results with the existing method are presented
in Section 5. Finally, Section 6 gives the conclusion.

2. System Overview

A schematic diagram of the video extensometer system is
shown in Figure 1. The main parts of the video extensometer
system are a light source, tensile equipment, CCD camera,
and PC with digital image processing software.

For measurement, first, make the spackle pattern on the
material surface, keep the CCD camera’s optical axis vertical
to the test specimen surface, choose the appropriate focal
length, and make sure the field of view covers the whole
material. In the tensile stress test, the position of the data
point will be changed before and after the deformation.
Through the deformation images collected by CCD camera
at different times, we can calculate the materials’ tensile
properties.

2.1. Digital Image Correlation. The video extensometer uses
DIC to analyze materials tensile properties [2-4]. The prin-
ciple of DIC is tracking the same point in undeformed and
deformed image and then yields the displacements of the
data point. The information contained by the data point
cannot identify the same point in a series of deformed images.
So we use a square subset centered on the data point to
replace the data point, as shown in Figure 2(a). A small
square speckle subset of 2N x 2N pixel centered at the data
point P in the undeformed image is defined as the reference
subset. At the same time, a bigger subset of 2M x 2M pixels
centered at the corresponding data point P’ in the deformed
image is defined as the searching subset. To calculate the
correlation coeflicient, the reference subset is moved through
the searching subset pixel by pixel. The peak position of the
correlation coefficient is the target subset, as can be seen from
Figure 2(b).

As shown in Figure 2(b), the stress on the material will
cause rigid body displacement, scale distortion, and rotation
deformation. So, the intensity of an arbitrary point in the
undeformed subset region and the corresponding point in the
deformation subset region is related as follows:

g(xi-yi) = F(f (x5 3)). &
For the shape function F, the most widely used function
is first-order shape function [5]:

x':x+u+g—ZAx+g—;Ay,

)

y'=y+v+ g—;Ax+g—;Ay.

The corresponding matrix form is

1
X' x u u, u,
¥ = + Ax |, (3)
Vv, v
Y y Ay
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FIGURE 2: Procedures of DIC.

where 0u/0x, 0u/dy, 0v/0x, and dv/dy are the displacement
gradients of the subset. Ax and Ay are the distances between
point (x, y) and point (x,, y,), respectively.

Images are obtained in discrete form and intensity values
are recorded as “pixels.” But the integer pixel locations
do not satisfy the accuracy of extensometer. In order to
improve the precision of video extensometer, we use subpixel
displacement measurement algorithm to get the subpixel dis-
placement. The correlation coeflicient curve fitting method,
iterative algorithm, and gradient-based algorithm are the
three most common methods [6, 7]. In this paper, we used
the N-R iteration algorithm [8] as the subpixel displacement
measurement algorithm.

The displacement refined by optimizing correlation using
N-R iteration algorithm needs to calculate the correlation
coeflicient which describes the similarity between the ref-
erence subset and the target subset. In the actual situation,
the spackle pattern will be affected by the lighting condition
and the deformation. Tong [9] used different correlation
coefficient to analyze the result of DIC and point out the
ZNSSD and ZNCC have better robustness and reliability. The
relationship between two related functions is as follows:

Conssp = 2 (1= Cynee) (4)

and it is easier to optimize ZNSSD which is expressed as the
sum of squares of nonlinear functions:

CZNSSD

[f(xz’y]) fm] [g(xz/’y]’)_gm] ’ (5)
,_ZM ,_ZM { Af B Ag ’
where

1 M M

fn = mi; > f(xy)

=M j=—M

= T > 3 o).

i=—M j=—M

Af = f %I:M[f(xp)’j)_fm]z’

i=—M j=—

pg=\ Y Y [o(hr)-au]"

i=——M j=—M

(6)

Finally, use the optimal parameter which minimizes
ZNSSD to calculate the data point displacement and get the
materials tensile properties.

3. Motion Blur

When the CCD camera collects an image, the image may
represent the scene over a period of time, known as the
exposure time. But the relative motion between the camera
and material during exposure time may result in a blurring
image which is motion blur.

The ideal lens imaging model is shown in Figure 3,
according to Gaussian lens law:

111

u v f
where u is the object distance, v is image distance, and f is
the focal length. Using (7), we can calculate image distance as
follows:

7)

(8)



Object
plane

Mathematical Problems in Engineering

Focal point

Image

I
i
i
I
i
i
I sensor
I

I

f i 4

v I

FIGURE 4: Rubber tensile images.

Based on the tension speed v,, we can get the movement
distance x of material during exposure time and calculate the
blur distance y using the following formula:

t

u

Using (9), we calculated the blur distance for different
focal lengths and tensile rate list in Table 1.

As we can see from Table 1, the blur distance can reach
30 um and cause 5-pixel blur motions on images. Figure 4
shows the three images under different stretching conditions,
the collected image will blur as the material is stretched,
image details are lost, and edges become blurred. The blurred
image significantly influences the accuracy of the video
extensometer.

4. Integer Pixel Displacement Search Based on
Local Phase Quantization Features

In order to get more accurately measured result, we use N-R
iteration algorithm, but the convergent range of N-R iteration
algorithm is only a few pixels [10]; in order to make the
algorithm converge rapidly and accurately, an accurate initial
estimate of the deformation parameter must be provided.

The conventional method for initializing the deformation
parameter is using integer pixel displacement search. It is
used to find the peak position of the correlation coefficient
in a deformed image pixel by pixel. However, this method
depends on gray information; it cannot handle large rotation
and motion blur, because it assumes the subset shape is
unchanged [11-16]. Recent works [17, 18] use the optimized
parameter of the current point as the initial estimate for its
neighbors based on the assumption that the deformations of
neighboring points are very similar. The calculation started
from a seed point manually selected in the undeformed
image. The seed point’s deformation parameter is initialized
by using either manually specified correspondence or con-
ventional search scheme. After being optimized, the param-
eter is transferred to an adjacent point. The whole procedure
was repeated until all the data points have been analyzed.
However, it still has several drawbacks. The series of images
requires that the shape of its local region remains unchanged
in the entire deformation process. This assumption is easily
violated in large motion blur and deformation.

It can be seen that image blur will change the image
information and make it difficult to identify the data point,
thus affecting the video extensometer measurement accuracy.
In order to make the video extensometer more accurate, we
need to eliminate the influence of motion blur on integer
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TaBLE 1: The blur distance for various types of lenses and tensile rate.
Focal length I.mage Size of pixel Exposure Tensile rate C.)bj ect Blur distance Blur pixel
(mm) distance (um) time (s) (mm/min) distance (um) (pix)
(mm) (mm)

20 21.42 52 0.01 100 300 1.19 0.23
50 60 5.2 0.01 100 300 3.33 0.64
80 109.09 5.2 0.01 100 300 6.06 1.17

20 21.42 52 0.01 200 300 2.38 0.46
50 60 5.2 0.01 200 300 6.67 1.28

80 109.09 5.2 0.01 200 300 12.12 2.33

20 21.42 52 0.01 500 300 5.95 1.14

50 60 5.2 0.01 500 300 16.66 3.21

80 109.09 5.2 0.01 500 300 30.30 5.83

pixel displacement search. For blurred images matching,
conventional methods are based on a prior knowledge of
the blurred image to restore a clear image [19-21] and then
matching the data point in the clear image. However, image
restoration is an ill-posed problem process. Restoration effect
of the blurred image depends on the prior knowledge about
the degradation process and the efficiency of the restoration
algorithm. Actually, we can directly extract invariant features
from blurred images [22] to design matching algorithm [23],
which not only consumes less computation resource but also
improves the accuracy and precision.

Based on the above ideas, this chapter proposes an
integer pixel searching algorithm based on LPQ feature [24]
which is invariant to centrally symmetric blur and uniform
illumination changes.

4.1. Blur Invariance Using Fourier Transform Phase. In digital
image processing, the discrete model for spatially shift-
invariant blurring of an ideal image f(x, y) resulting in an
observed image g(x, y) can be expressed by a convolution,
given by

g(xy)=f(xp)xh(xy)+n(xy), (10)

where h(x, y) is the point spread function (PSF) of the system,
n(x, y) is additive noise, and * denotes 2D convolution.

The LPQ feature model is based on the following assump-
tions: (1) the noise pollution can be ignored; (2) the PSF is the
centrally symmetric. Depending on the above assumption,
(10) can be written as

g(xy)=f(xy)xh(xy). (11)
In the Fourier domain, this corresponds to
G(x,y)=F(x,y) * H(x,y), (12)

where G(x, y), F(x, ¥), and H(x, y) are the discrete Fourier
transforms (DFT) of the observed image g(x, y), the ideal
image f(x, y), and the point spread function h(x, y). Equa-
tion (12) can be separated into the magnitude and phase parts,
resulting in

|G (%, y)| = |F (%, y) x H (%, )],

o (u,v) = op (u,v) + @, (u,v).

(13)

Because the PSF h(x, y) is centrally symmetric, namely,
h(x,y) = h(-x,—y), its Fourier transform is always real-
valued, and as a consequence, its phase is only a two-valued
function, given by

0 if H(u,v)>0
@p (W,v) = (14)
n if H (u,v) <0.

This means that

¢ (U, v) Hu,v)>0
Pg (V) = (15)
¢y Wv)+m H(u,v)<O0.

From the above equation, when H(u, v) > 0, the phase of
the observed image G(u, v) at the frequencies is invariant to
centrally symmetric blur.

4.2. Extraction of LPQ Feature. The LPQ feature is based on
the blur invariance property of the Fourier phase spectrum
described in Section 4.1. It uses the local phase information
extracted by the 2D DFT, computed over a rectangular
neighborhood N, ,). The 2D DFT on pixel (x, y), denoted
as F(, ,,(u, v), is defined by

F(x)y) (u, V)

_ Z f (x _ xl) y— y!) e—(j2nux'+j27'ruy') (16)

(',y")eN,,

T
= Wu f(x,y)’

where W, is the basis vector of the 2D DFT at a frequency u
and f(, , is another vector containing all M * image samples
from N, ).

In LPQ, only four frequency points are considered, such
asu; = [0, o7, u, = la, 0]7, u, = [a, «]T, and u, = [a, a7,
where a satisfies H(ot, ) > 0. For each pixel position, this
results in a vector

Fiyy = [F (w1, (%)), F (1, (%, ) F (13, (%, 7))
F (uy, ()] -

17)
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FIGURE 5: Flowchart for the algorithms routine: (a) undeformed image, (b) deformed image, (c) LPQ descriptor of reference subset, (d) LPQ

descriptor of target subset, and (e) Chi-Square value.

The phase information in the Fourier coefficients is
recorded by examining the signs of the real and imaginary
parts of each component in F, ,). This is done by using a
simple scalar quantization:

1 ifg; >0
e = (18)
0 ifg <0,

where g; is the ith component of the vector G, ) = [Re{F,},
Im{F,}]. The resulting eight binary coefficients e; are repre-
sented as integer values within 0-255 using binary coding:

8 .
Jirg (6 9) = Zei (x )27 (19)
P

Finally, a histogram is formed by all the positions in the
rectangular region and used as a 256-dimensional feature
vector in the match.

4.3. Matching Based on the LPQ Feature. In this section,
we introduce the key procedure of the matching algorithm.
First, input a series of images, select the first one as the
un-deformed image, and then select a data point P on it.
Secondly, a rectangular M xM neighborhood at the data point
P is selected as the reference subset, as shown in Figure 5(a).
The LPQ descriptor of the reference subset is computed
according to the method of the previous section, as shown in
Figure 5(c). Thirdly, a region bigger than the reference subset
area centered at the location of corresponding P’ is defined as
the searching subset on the deformed images. Then, we divide
searching subset into subimages which have the same size
as the reference subset and calculate the LPQ descriptor for
each subimage, as shown in Figure 5(d). Finally, calculate the

similarity between the reference subset and the rectangular
regions of searching subset. Since the LPQ descriptor is a
histogram, we can use the histogram distance calculation
method to measure image similarity. The common histogram
distance calculation methods are histogram intersection
method, Bhattacharyya distance method, and Chi-Square
statistics method. In this paper, we use Chi-Square statistics
as the similarity metric. It is defined as follows:

2
2 v (8-9)
(S0 = ;ij, (20)

where S and C are the histograms of reference subset and rect-
angular regions, respectively. S; are C; are the jth subregion
of the histogram of the reference subset and the rectangular
regions. w; is the weight values of the jth subregion.

According to Chi-Square statistics, the location of the
minimum value of XZ(S, C), as shown in Figure 5(e), is the
corresponding P’ on the deformed image. The location P’ is
an initial estimate of the deformation parameter for the N-R
iteration.

5. Experimental Results

In order to assess the performance of the initialization using
LPQ matching, we performed uniaxial tensile experiments.
In the DIC calculation, deformed images are generated by
the bicubic spline interpolation. ZNSSD is selected as the
objective function. The optimization is terminated if the
change of ZNSSD is less than 107 or a maximum number
of 20 iterations is reached. Unless specified, first-order shape
function is used to model the deformation in the subset.
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FIGURE 6: Simulate spackle pattern. (a) undeformed image; (b) the data point in the undeformed image.

5.1. Generation of Simulated Images. The simulated images
are assumed to be the sum of individual Gaussian speckles:

I(xy) = ilkexp<(x_xk) +(y = ) ) (1)

RZ

where N is the total number of speckles and R is the speckle
size. x; and y; are the positions of each speckle with a random
distribution and I, is the peak intensity of each speckle. We
use a speckle pattern with dimensions of 700 x 700 pixels,
N = 1200, and R = 4 as the undeformed image, as shown in
Figure 6(a).

5.2. Accuracy and Preassigned Displacement. In this experi-
ment, a series of deformed images are generated using the
bicubic spline interpolation method with a range of 0.1-0.9
pixels by step of 0.1 pixels between successive images. We
use the first image as the undeformed image, as shown in
Figure 6(a). Next, 50 data points are uniformly sampled in a
rectangular region by a grid step of 5 pixels to measure the
displacement of the other deformation images, as shown in
Figure 6(b). The reference subset of each data pointis 41 x41.
The measured mean error, maximum error, and standard
deviation of the 50 data points selected in the 9 deformed
images are calculated. The result of the conventional method
[13] is listed in Table 2, and the result of proposed method is
listed in Table 3; depending on the focal length, a pixel on the
image is equivalent to 30 ym on the material.

5.3. Simulated Deformation Combined with Large Motion
Blur. To further illustrate the advantage of using LPQ feature
in the initialization of DIC, we add the motion blur on the
spackle pattern range from 0 to 10 pixels and step by 2 pixels.
Considering when the materials fracture, the extension rate
will increase rapidly and add the maximum fuzzy scale to
10 pixels as well. The proposed method is compared with
the conventional method in the blurred spackle pattern. The
mean error and the standard deviation of the two different
methods on different motion blur are shown in Figures 7 and
8, respectively.

TABLE 2: Results of the conventional method.

Exact value Mean error Maximum error  Standard deviation

0.3 0.005421 0.007142 0.006942
0.6 0.004254 0.016541 0.005987
0.9 0.004852 0.023214 0.008532
1.2 0.004024 0.019654 0.008974
L5 0.006104 0.012100 0.012746
1.8 0.005845 0.008451 0.010924
2.1 0.005112 0.013542 0.010572
2.4 0.007521 0.016587 0.011348
2.7 0.007310 0.018547 0.012679
Unit: ym.

TABLE 3: Results of proposed method.

Exact value Mean error Maximum error  Standard deviation

0.3 0.002977 0.004726 0.005061
0.6 0.001535 0.003642 0.005682
0.9 0.001735 0.003623 0.007752
1.2 0.001606 0.003372 0.008871
1.5 0.001683 0.002956 0.010356
1.8 0.002745 0.004856 0.010449
2.1 0.003995 0.006735 0.008532
2.4 0.002234 0.004235 0.007263
2.7 0.003962 0.005275 0.005625
Unit: ym.

It can be analyzed that, with the increase of the motion
blur, the mean error and the standard deviation of the
conventional method increase; however, the accuracy of the
proposed method is steady because of LPQ feature, but
the conventional method cannot search the integral pixel
displacement accurately when motion blur changes the image
gray information.
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FIGURE 8: Comparison of standard deviation between the two search
methods.

5.4. Simulated Deformations Combined with Different Size of
Subset Region. The size of reference subset is an important
parameter in DIC. When the size of subset region is smaller,
computational efficiency is higher. However, less information
contained in the smaller subset may reduce the match
accuracy. If we increase the subset size, it can reduce the
noise impact and get more accurate results. However, the
calculation will increase proportionally with the subset size
increase.

We choose reference subset size from 11 x 11-71 x 71 pixels
and then increase it by 20 x 20 pixels. The mean error for
different reference subset size is shown in Figure 9. We can
see that, with the reference subset increase in the size from
11 x 11 to 41 x 41 pixels, the precision increases, whereas it
starts to increase slowly as the size exceeds 41 x 41 pixel. Here
we chose the 41 x 41 pixels for the size of subset region.

5.5. Displacement Measurement of Uniaxial Tensile Experi-
ment. In the presented video extensometer system, images
are captured with Basler avA1000-120KM Camera Link analog
monochrome cameras and a Matrox Meteor-II analog frame
grabber card. The cameras are equipped with CCTVe>VIDEO

Mathematical Problems in Engineering
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FIGURE 9: Comparison of standard deviation between different
subset regions.

TABLE 4: Results of proposed method.

Number Average displacement C,osd
1 225.00, 90.26 0.0092
2 225.00, 89.22 0.0218
3 225.12, 85.36 0.0081
4 225.56, 71.51 0.0116
5 225.48,19.55 0.0209
TaBLE 5: Results of the conventional method.
Number Average displacement C,osd
1 225.00, 90.86 0.0160
2 225.00, 89.04 0.0320
3 225.20, 84.52 0.0360
4 225.96,70.98 0.0680
5 225.58,18.34 0.0940

LENS AVENIR ZOOM LENS ST16160 lenses with focal length
0f 16-160 mm.

The shape of the high elongation specimen typically used
for uniaxial tensile tests follows the GB/T 528-2009 standard.
The width of the specimen is 5.0 + 1.0 mm; thickness of the
specimen is 2.0 £ 0.2 m.

During the experiment, we use the first image as the
undeformed image and other 5 images at different times as
the deformed images. On the undeformed image, we choose
50 data points on the same line and calculate its displacement.
The average displacement and average ZNSSD values for
these data points at different deformed images are listed
in Table 4. Meanwhile, the measurements of conventional
method are listed in Table 5.

In Table 4 it is shown that the average displacement is
similar in the first and second deformed images but after
the third picture, images appear with large deformation and
motion blur; the ZNSSD of conventional method increase
significantly, up to 0.094, at the last deformed images. The
results of the proposed method are still accurate and the
ZNSSD does not have obvious change. Also the displacement
of conventional method is larger than that of the proposed
method on the y-axis which is stretching direction.
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6. Discussion and Conclusion

In this paper, we propose a novel integer pixel searching
algorithm based on LPQ feature utilized in the video exten-
someter system that can match the data points during the
uniaxial tensile testing.

Experimental results on simulated speckle images verify
that this algorithm is better than conventional methods, the
maximum mean error is only 0.003995 ym, and the relative
error is 1.33% which satisfies the accuracy of extensometer.
Then, we add motion blur on the speckle image; experimental
results showed that accuracy of the proposed method will
not be affected by the motion blur. The impact on accuracy
that the size of subset region has is also studied; we find
that, considering both accuracy and efficiency, the size of
41 x 41 a pixels was the optimal option. Finally, the proposed
method is tested in the deformation measurement of a high
elongation specimen. The experiment results show that the
proposed method has excellent performance in the actual
application.

In conclusion, the algorithm can bring a more accurate
and more intelligent measurement technique for measuring
full-field displacements of high elongation materials.
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