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This paper presents a robust control design for the class of underactuated uncertain nonlinear systems. Either the nonlinearmodel of
the underactuated systems is transformed into an input output form and then an integral manifold is devised for the control design
purpose or an integral manifold is defined directly for the concerned class. Having defined the integral manifolds discontinuous
control laws are designed which are capable of maintaining slidingmode from the very beginning.The closed loop stability of these
systems is presented in an impressive way.The effectiveness and demand of the designed control laws are verified via the simulation
and experimental results of ball and beam system.

1. Introduction

The control design of underactuated systems was the main
focus of the researchers in the current and last decade.
These systems, by definition, contain less number of control
inputs/actuators as compared to the degree of freedom [1].
This feature makes them quite different from the other non-
linear plantswhere the systems operatewith the samenumber
of inputs and outputs, the so-called fully actuated systems.
The control design of these systems is quite demanding
because of their vital theoretical and practical applications in
the areas of aerospace systems, marine systems, humanoids,
locomotive systems, manipulators of different kinds, and so
forth [2]. This family also includes ball and beam system [3],
TORA (translational oscillator with rotational actuator) [4],
and inverted pendulum system [5].These systems are used in
order to have minimum weight, cost, and energy usage while
still retaining the key features of the processes. In addition,
another significant feature of underactuated systems is less
damage in case of collision with other objects which in
turn provides more safety to actuators [6]. Underactuation

can be raised due to the hardware failure; this hardware
solution to actuator failures can be achieved by equipping
the vehicle with redundant actuators [2]. Note that, in case
of fully actuated systems, there exists a broad range of design
techniques in order to improve performance and robustness.
These include adaptive control, optimal control, feedback
linearization, and passivity. However, it may be difficult to
apply such techniques in large class of underactuated systems
because sometimes these systems are not linearizable using
smooth feedback [7] also due to the existence of unstable
hidden modes in some systems. Brockett [8] also provided a
necessary condition for the hold of stable smooth feedback
law, but this condition is not satisfied in the majority of
underactuated systems. Nevertheless, control design experts
have employed approximate feedback linearization [9–11] and
backstepping control [12]. Passivity-based methodology is
also used to control such systems but the main drawback in
this technique is its narrow range of applications [13]. Sliding
mode control is also proposed for the class of underactuated
systems [6] but the problem with sliding mode control is
presence of chattering.
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The aforementioned design strategies were quite suitable
and resulted in satisfactory results but it is worthy to note
that the system often becomes too sensitive to disturbance in
the reaching phase of sliding mode strategy that the system
may even become unstable. Therefore, in order to get rid of
this issue the integral sliding mode strategy was proposed
[14–16]. In this paper a robust integral sliding mode control
(RISMC) approach for underactuated systems is proposed.
The benefit of this strategy is enhancement of robustness
from initial time instant. It also suppresses the well-known
chattering phenomenon across the manifold. Before the
design presentation, the system is suitably transformed into
special formats. An integral slidingmode strategy is proposed
for both the cases along with their comprehensive stability
analysis. The proposed technique is practically implemented
on the ball and beam system to authenticate the affectivity
and efficiency of the designed algorithm. Note that in this
paper our contributions are twofold. The first one is the
development of theRISMCand the secondone is the practical
results of the system on the said system. The rest of the
paper is organized as follows. In Section 2, the problem is
formulated into two special formats which further simplify
the design methodology. In Section 3, the integral sliding
mode strategy for both the cases is discussed in detail
accompanied by their respective stability analysis in terms of
Lyapunov theory. Section 4 presents the development of the
control laws, simulation, and practical results of the ball and
beam system. Section 5 concludes the overall efforts being
made in this study. In the end more relevant recent articles
are enlisted.

2. Problem Formulation

The dynamic equations which govern the motion of the class
of underactuated system can be presented as

𝐽 (𝑞) 𝑞̈ + 𝐶 (𝑞, 𝑞̇) 𝑞̇ + 𝐺 (𝑞) + 𝐹 (𝑞̇)

= 𝐵 (𝜏 + 𝛿 (𝑞, 𝑞̇, 𝑡)) ,

(1)

where 𝑞, 𝑞̇, and 𝑞̈ are 𝑛-dimensional position, velocity,
and acceleration vectors and 𝐽(𝑞), 𝐶(𝑞, 𝑞̇), 𝐺(𝑞), and 𝐹(𝑞̇)

represent the inertia, Coriolis, gravitational, and fractional
torques matrices, respectively. 𝜏 is the measured control
input, and 𝛿(𝑞, 𝑞̇, 𝑡) represents the uncertainties in the control
input channel whereas 𝐵 is the control input channel.

It is assumed that rank(𝐽−1(𝑞)𝐵) = 𝑚 and the origin
is considered to be the equilibrium point for the aforemen-
tioned system. Now, the system in (1) can be rewritten in
alternate form as follows:

𝑚
11

(𝑞) ̈𝑞
1

+ 𝑚
12

(𝑞) ̈𝑞
2

+ ℎ
1

(𝑞, 𝑞̇) = 0,

𝑚
21

(𝑞) ̈𝑞
1

+ 𝑚
12

(𝑞) ̈𝑞
2

+ ℎ
2

(𝑞, 𝑞̇) = 𝜏,

(2)

where 𝑞 = [𝑞
1

, 𝑞
2

]
𝑇 represents the states of the system and 𝑞

and 𝑞̇ point to the states. In order to design a control law, the
system in (2) can be transformed into two formats which are
described in the subsequent study.

2.1. System in Cascaded Form. Following some algebraic
manipulations, the system in (2) may be written in cascaded
form as follows [17]:

̇𝑥
1

= 𝑥
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(3)
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, 𝑥
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4

) 𝜏 + 𝑑
3

,

(4)

where 𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

are measurable states of the systems such
that 𝑥

1

and 𝑥
2

are pointing to the position and velocity of
the indirect actuated system (3) while 𝑥

3

and 𝑥
4

represent
the position and velocity of the directly actuated system
(4). 𝜏 represents the controlled signal, as already discussed,
to the system (4) input. Owing to the assumption stated
immediately after (1), the inverse of 𝑏 exists. The nonlinear
functions 𝑓

1

, 𝑓
2

: 𝑅
4𝑛

→ 𝑅
𝑛, 𝑏 : 𝑅

4𝑛

→ 𝑅
𝑛×𝑛 are smooth in

nature. Now, following the procedure of [6], the disturbances
𝑑
1

𝑑
2

𝑑
3

are deliberately introduced to get an approximate
controllable canonical form. Note that practical systems like
inverted pendulum [18], TORA [4], VTOL (vertical take-off
and landing) aircraft [17], and quad rotor [19] can be put
in the form presented in (3) and (4). Before proceeding to
the control design of the above cascaded form, the following
assumptions are made.

Assumption 1. Assume that

𝑓
1

(0, 0, 0, 0) = 0. (5)

This condition is necessary for the system origin to be in
equilibrium point when the system is operated in closed loop.

Assumption 2. 𝜕𝑓
1

/𝜕𝑥
3

is invertible or 𝜕𝑓
1

/𝜕𝑥
4

is invertible.

Assumption 3. 𝑓
1

(0, 0, 𝑥
3

, 𝑥
4

) = 0 is an asymptotically stable
manifold, that is, 𝑥

3

, and 𝑥
4

approaches zero.

Note that Assumptions 2 and 3 lie in the category of
nonnecessary conditions. These are only used when one
needs to furnish the closed loop system with a sliding mode
controller (see for details [6]).

2.2. Input Output Form. The system in (3) and (4) can
be transformed into the following input output form while
following the procedure reported in [16]. Let us assume that
the system has a nonlinear output 𝑦 = ℎ(𝑥). To this end we
denote

𝐿
𝑓

ℎ (𝑥) =
𝜕ℎ (𝑥)

𝜕𝑥
𝑓 (𝑥) = ∇ℎ (𝑥) 𝑓 (𝑥) ,

𝐿
𝑓

𝜏

ℎ (𝑥) =
𝜕ℎ (𝑥)

𝜕𝑥
𝑓
𝜏

= ∇ℎ (𝑥) 𝑓
𝜏

.

(6)

Recursively, it can be written as

𝐿
0

𝑓

ℎ (𝑥) = ℎ (𝑥) ,

𝐿
𝑗

𝑓

ℎ (𝑥) = 𝐿
𝑓

(𝐿
𝑗−1

𝑓

ℎ (𝑥)) = ∇ (𝐿
𝑗−1

𝑓

ℎ (𝑥)) 𝑓 (𝑥) .

(7)
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Assume that the system reported in (3)-(4) has a relative
degree “𝑟” with respect to the defined nonlinear output.
Therefore, owing to [20], one has

𝑦
(𝑟)

= 𝐿
𝑟

𝑓

ℎ (𝑥) + 𝐿
𝑔

(𝐿
𝑟−1

𝑓

ℎ (𝑥)) 𝜏 + 𝜁 (𝑥, 𝑡) (8)

subject to the following conditions:

(1) 𝐿
𝑔

(𝐿
𝑖

𝑓

ℎ(𝑥)) = 0 ∀𝑥 ∈ 𝐵, where 𝐵 indicates the
neighborhood of 𝑥

0

for 𝑖 < 𝑟 − 1;
(2) 𝐿
𝑔

(𝐿
𝑟−1

𝑓

ℎ(𝑥)) ̸= 0, where 𝜁(𝑥, 𝑡) represents the
matched unmodeled uncertainties. System (8), by
defining the transformation 𝑦

(𝑖−1)

= 𝜉
𝑖

[21], can be
put in the following form:

̇𝜉
1

= 𝜉
2

,

̇𝜉
2

= 𝜉
3

,

.

.

.

̇𝜉
𝑛

= 𝜑 (𝜉̂, 𝜏̂) + 𝛾 (𝜉̂) {𝜏 + Δ𝐺
𝑚

(𝜉̂, 𝜏̂, 𝑡)} ,

(9)

where the transformed states 𝜉̂ = (𝜉
1

, 𝜉
2

, . . . , 𝜉
𝑛

) are
phase variables, 𝜏 is the control input, andΔ𝐺

𝑚

(𝜉̂, 𝜏̂, 𝑡)

represents matched uncertainties. It is worthy to
notice that the inverted pendulum and the ball and
beam systems can be replaced in the aforementioned
form.

Note that both the formats are ready to design the control
law for these systems. In the next section, we outline the
design procedure for both the forms.

3. Control Law Design

The control design for the forms presented in (3)-(4) and
(9) is carried out in this section which we claim as our
main contribution in this paper. The main objective in
this work is to enhance the robustness of the system from
the very beginning of the process which is the beauty of
integral sliding mode control. In general, the integral sliding
mode control law appears as follows [14]. In the subsequent
subsections, the authors aim to present the design procedure.

3.1. Integral Sliding Mode. This variant of sliding mode pos-
sesses the main features of the sliding mode like robustness
and the existence chattering across the switching manifold.
On the other hand, the sliding mode occurs from the very
start which, consequently, provides insensitivity of distur-
bance from the beginning. The control law can be expressed
as follows:

𝜏 = 𝜏
0

+ 𝜏
1

, (10)

where the first component on the right hand side of (10)
governs the systems dynamics in sliding modes whereas the
second component compensates the matched disturbances.
Now, the aim is to present the design of the aforesaid control
components.

3.1.1. Control Design for Case-1. This control design for case-
1 is the main obstacle in this subsection. To define both the
components, the following terms are defined:

𝑒
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4

) ,
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=
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1
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+
𝜕𝑓
1
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2

𝑓
1

+
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1

𝜕𝑥
3

𝑥
4

.

(11)

Using these new variables, the components of the controller
are designed in the following subsection. For the sake of
completeness the design of this component is worked out via
simple pole placement. Following the design procedure of
pole placement method, one gets

𝜏
0

= −𝑘
1

𝑒
1

− 𝑘
2

𝑒
2

− 𝑘
3

𝑒
3

− 𝑘
4

𝑒
4

, (12)

where 𝑘
𝑖

𝑖 = 1, 2, 3, 4 are the gains of this control component.
This control component steers the states of the nominal
system to their defined equilibrium. Now, in the subsequent
study the design of the uncertainties compensating term is
presented. An integral manifold is defined as follows:

𝜎 = 𝑐
1

𝑒
1

+ 𝑐
2

𝑒
2

+ 𝑐
3

𝑒
3

+ 𝑒
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0
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where 𝜎
0

= 𝑐
1

𝑒
1

+ 𝑐
2

𝑒
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+ 𝑐
3

𝑒
3
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represents the conventional
sliding manifold which is Hurwitz by definition.

Now, computing 𝜎̇ along (3)-(4), one has
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3

𝑏 (𝑥
1
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2
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4
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(14)

Now, choose the dynamics of the integral term as follows:

𝑧̇ = −𝑐
1

𝑥
2

− 𝑐
2

𝑓
1
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2

, 𝑥
3

, 𝑥
4

)

− 𝑐
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𝑑
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𝑑
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𝜕𝑓
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𝑥
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The expression of the termwhich compensates the uncertain-
ties may be written as follows:

𝜏
1

= −(
𝜕𝑓
1

𝜕𝑥
3

𝑏 (𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

))

−1

⋅ (
𝜕𝑓
1

𝜕𝑥
3

𝑓
2

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) + 𝐾sign (𝜎)) .

(16)

The overall controller will look like

𝜏 = −𝑘
1

𝑒
1

− 𝑘
2

𝑒
2

− 𝑘
3

𝑒
3
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4

𝑒
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1
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3

𝑏 (𝑥
1

, 𝑥
2
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3
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4
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3

𝑓
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1
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2
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3
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4

) + 𝐾sign (𝜎)) .

(17)

The constants 𝑐
𝑖

’s are control gains which are selected intel-
ligently according to bounds. In the forthcoming paragraph,
the stability of the presented integral sliding mode is carried
out in the presence of the disturbances and uncertainties.
Consider the following Lyapunov candidate function:

𝑉 =
1

2
𝜎
2

. (18)

The time derivative of this function along dynamics (11)
becomes

𝑉̇ = 𝜎𝜎̇ = 𝜎(𝑐
1
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2
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1

)

+ 𝑐
2

(𝑓
1

(𝑥
1
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2
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3
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4
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2

)
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3
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𝑑𝑓
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1
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2
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3
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4
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) +

𝑑
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𝑑
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𝑑

𝑑𝑡
(
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1

𝜕𝑥
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𝑥
4

)

+
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1

𝜕𝑥
3

𝑓
2

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) +
𝜕𝑓
1

𝜕𝑥
3

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) 𝜏
0

+
𝜕𝑓
1

𝜕𝑥
3

𝑏 (𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) 𝜏
1

+
𝜕𝑓
1

𝜕𝑥
3

𝑑
3

) .

(19)

The substitution of (15)-(16) results in the following form:

𝑉̇ ≤ − |𝜎| 𝜂
1

< 0

or 𝑉̇ + √2𝜂
1

√𝑉 < 0

(20)

subject to 𝐾 ≥ [‖(𝜕𝑓
1

/𝜕𝑥
3

)𝑑
3

+ 𝑐
1

𝑑
1

+ 𝑐
2

𝑑
2

‖ + 𝜂].
This expression confirms the enforcement of the sliding

mode from the very beginning of the process, that is, 𝜎 → 0

in finite time. Now, we proceed to the actual system’s stability.
If one considers 𝑒

1

as the output of the system, then 𝑒
2

, 𝑒
3

,
and 𝑒

4

become the successive derivatives of 𝑒
1

. Whenever
𝜎 = 0 is achieved, the dynamics of the transformed system

(11) will converge asymptotically to zero under the action of
the control component (12) [22]. That is, in closed loop, the
transformed system dynamics will be operated under (12) as
follows:

[
[
[
[
[

[

̇𝑒
1

̇𝑒
2

̇𝑒
3

̇𝑒
4

]
]
]
]
]

]

=

[
[
[
[
[

[

0 1 0 0

0 0 1 0

0 0 0 1

−𝑘
1

−𝑘
2

−𝑘
3

−𝑘
4

]
]
]
]
]

]

[
[
[
[
[

[

𝑒
1

𝑒
2

𝑒
3

𝑒
4

]
]
]
]
]

]

(21)

and the disturbances will be compensated via (16).
The asymptotic convergence of 𝑒

1

, 𝑒
2

, 𝑒
3

, and 𝑒
4

to zero
means the convergence of the indirectly actuated system (3)
to zero. On the other hand, the states of the directly actuated
system (4) will remain bounded; that is, state of (4) will have
some nonzero value in order to keep 𝑒

1

at zero. Thus, the
overall system is stabilized and the desired control objective
is achieved.

3.2. Control Design for Case-2. Thenominal system related to
(9) can be replaced in the subsequent alternative form

̇𝜉
1

= 𝜉
2

̇𝜉
2

= 𝜉
3

.

.

.

̇𝜉
𝑟

= 𝜒 (𝜉̂, 𝜏) + 𝜏,

(22)

where 𝜒(𝜉̂, 𝜏) = 𝜑(𝜉, 𝜏) + (𝛾(𝜉̂) − 1)𝜏. It is assumed that
𝜒(𝜉̂, 𝜏̂, 𝜏

(𝑘)

) = 0 at 𝑡 = 0 in addition to the next supposition
that (22) is governed by 𝜏

0

:

̇𝜉
1

= 𝜉
2

̇𝜉
2

= 𝜉
3

.

.

.

̇𝜉
𝑟

= 𝜏
0

(23)

or

𝜉̇ = 𝐴𝜉 + 𝐵𝜏
0

, (24)

where

𝐴 = [
0
(𝑟−1)×1

𝐼
(𝑟−1)×(𝑟−1)

0
1×1

0
1×(𝑟−1)

] ,

𝐵 = [
0
(𝑟−1)×1

1
] .

(25)
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Once again, following the pole placement procedure, onemay
have, for the sake of simplicity, the input 𝜏

0

which is designed
via pole placement, that is,

𝜏
0

= −𝐾
𝑇

0

𝜉. (26)

Now to get the desired robust performance, the following
sliding manifold of integral type [14] is defined:

𝜎 (𝜉) = 𝜎
0

(𝜉) + 𝑧, (27)

where 𝜎
0

(𝜉) is the usual sliding surface and 𝑧 is the integral
term. The time derivative of (27) along (9) yields

𝑧̇ = −(

𝑟−1

∑

𝑖=1

𝑐
𝑖

𝜉
𝑖+1

+ 𝜏
0

) ,

𝑧 (0) = −𝜎
0

(𝜉 (0)) ,

(28)

𝜏
1

=
1

𝛾 (𝜉̂)
(−𝜑 (𝜉̂, 𝜏) − (𝛾 (𝜉̂) − 1) 𝜏

0

− 𝐾 sign𝜎) . (29)

This control law enforces sliding mode along the sliding
manifold defined in (27). The constant 𝐾 can be selected
according to the subsequent stability analysis.

Thus, the final control law becomes

𝜏
1

= −𝐾
𝑇

0

𝜉

+
1

𝛾 (𝜉̂)
(−𝜑 (𝜉̂, 𝑢) − (𝛾 (𝜉̂) − 1) 𝜏

0

− 𝐾 sign𝜎) .

(30)

Theorem 4. Consider that |Δ𝐺
𝑚

(𝑦̂, 𝑢̂, 𝑡)| ≤ 𝛽
1

are satisfied;
then the sliding mode against the switching manifold 𝜎 = 0 can
be ensured and one has

𝐾 ≥ [𝐾
𝑀

𝛽
1

+ 𝜂
1

] , (31)

where 𝜂
1

is a positive constant.

Proof. Toprove that the slidingmode can be enforced in finite
time, differentiating (22) along the dynamics of (3)-(4), and
then substituting (30), one has

𝜎̇ (𝜉) =

𝑟−1

∑

𝑖=1

𝑐
𝑖

𝜉
𝑖+1

+ 𝜏
0

− 𝐾 sign𝜎 + 𝛾 (𝜉̂) Δ𝐺
𝑚

(𝜉̂, 𝜏̂, 𝑡)

+ 𝑧̇.

(32)

Substituting (28) in (32), and then rearranging, one obtains

𝜎̇ (𝜉) = −𝐾 sign𝜎 + 𝛾 (𝜉̂) Δ𝐺
𝑚

(𝜉̂, 𝜏̂, 𝑡) . (33)

Now, the time derivative of the Lyapunov candidate function
𝑉 = (1/2)𝜎

2, with the use of the bounds of the uncertainties,
becomes

𝑉̇ ≤ − |𝜎| [−𝐾 +
󵄨󵄨󵄨󵄨󵄨
𝛾 (𝜉̂) Δ𝐺

𝑚

(𝜉̂, 𝜏̂, 𝑡)
󵄨󵄨󵄨󵄨󵄨
] . (34)

This expression may also be written as

𝑉̇ ≤ − |𝜎| 𝜂
1

< 0

or 𝑉̇ + √2𝜂
1

√𝑉 < 0,

(35)

provided that
𝐾 ≥ [𝐾

𝑀

𝛽
1

+ 𝜂
1

] . (36)
The inequality in (35) presents that 𝜎(𝜉) approaches zero in a
finite time 𝑡

𝑠

[23], such that

𝑡
𝑠

≤ √2𝜂
−1

1

√𝑉 (𝜎 (0)) (37)
which completes the proof.

4. Illustrative Example

The control algorithms presented in Section 3 are applied to
the control design of a ball and beam system.The assessment
of the proposed controller, for the ball and beam system,
is carried out on the basis of output tracking, robustness
enhancement via the elimination of reaching phase, and
chattering-free control input in the presence of uncertainties.

4.1. Description of the Ball and Beam System. The ball and
beam system is a very sound candidate of the class of
underactuated nonlinear system. It is famous because of its
nonlinear nature and due to its wide range of applications
in the existing era like passenger cabin balancing in luxury
cars, balancing of liquid fuel in vertical take-off objects.
In terms of control scenarios, it is an ill-defined relative
degree system which, to some extent, does not support input
output linearization. A schematic diagram with their typical
parameters of the ball and beam system is displayed in the
adjacent Figure 1 and Table 1, respectively. In this study the
authors use the equipment manufacture by GoogolTech. In
general this system is equipped with a metallic ball, which
is let free to roll on a rod having a specified length, having
one end fixed and the other end moved up and down via an
electric servomotor.The position of the ball can be measured
via different techniques. The measured position is used as
feedback to the system and accordingly the motor moves the
beam to balance the ball at user defined location.

The motion governing equations of this system are given
below which are adopted from [24]:

(𝑚𝑟
2

+ 𝐶
1

) 𝛽̈ + (2𝑚𝑟 ̇𝑟 + 𝐶
2

) 𝛽̇

+ (𝑚𝑔𝑟 +
𝐿

2
𝑀𝑔) cos𝛽 = 𝜏,

𝐶
4

̈𝑟 − 𝑟
̇

𝛽
2

+ 𝑔 sin𝛽 = 0,

(38)
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Figure 1: Schematic diagram of the ball and beam system.

where 𝜃(𝑡) angle is subtended to make the ball stable, the
lever angle is represented by 𝛽(𝑡), 𝑟(𝑡) is the position of the
ball on the beam, and Vin(𝑡) is the input voltage of the motor
whereas the controlled input appears mathematically via the
expression 𝜏(𝑡) = 𝐶

3

Vin(𝑡) in the dynamic model.
The derived parameters used in the dynamic model of

this system are represented by 𝐶
1

, 𝐶
2

, 𝐶
3

, and 𝐶
4

with the
following mathematical relations [25]:

𝐶
1

=
𝑅
𝑚

× 𝐽
𝑚

× 𝐿

𝐶
𝑚

× 𝐶
𝑏

× 𝑑
+ 𝐽
1

, (39)

𝐶
2

=
𝐿

𝑑
(
𝐶
𝑚

× 𝐶
𝑏

𝑅
𝑚

+ 𝐶
𝑏

+
𝑅
𝑚

× 𝐽
𝑚

𝐶
𝑚

× 𝐶
𝑔

) , (40)

𝐶
3

= 1 +
𝐶
𝑚

𝑅
𝑚

, (41)

𝐶
4

=
7

5
. (42)

The equivalent state spacemodel of this is described as follows
by assuming 𝑥

1

= 𝑟 (position of ball), 𝑥
2

= ̇𝑟 (rate of change
of position), 𝑥

3

= 𝛽 (beam angle), and 𝑥
4

= 𝛽̇ (the rate of
change of angle of the motor):

̇𝑥
1

= 𝑥
2

,

̇𝑥
2

=
1

𝐶
4

(−𝑔 sin (𝑥
3

)) ,

̇𝑥
3

= 𝑥
4

,

̇𝑥
4

=
1

𝑚𝑥2
1

+ 𝐶
1

(𝜏 − (2𝑚𝑥
1

𝑥
2

+ 𝐶
2

) 𝑥
4

− (𝑚𝑔𝑥
1

+
𝐿

2
𝑀𝑔) cos𝑥

3

) .

(43)

Now, the output of interest is 𝑦 = 𝑥
1

, which represents
the position of the ball. This representation is similar to
that reported in (3)-(4). In the next discussion the controller
design is outlined.

4.2. Controller Design. Following the procedure outlined in
Section 3, the authors proceed as follows:

𝑦 = 𝑥
1

,

𝑦̇ = 𝑥
2

,

𝑦̈ = −
𝑔

𝐶
4

sin (𝑥
3

) ,

𝑦
(3)

= −
𝑔

𝐶
4

𝑥
4

cos (𝑥
3

) ,

𝑦
(4)

=
1

𝐶
4

(𝑚𝑥2
1

+ 𝐶
1

)
[−𝜏 cos𝑥

3

+ (2𝑚𝑥
1

𝑥
2

+ 𝐶
2

) 𝑥
4

cos𝑥
3

+ (𝑚𝑔𝑥
1

+
𝐿

2
𝑀𝑔) cos2𝑥

3

+ 𝑥
2

4

(𝑚𝑥
2

1

+ 𝐶
1

) sin𝑥
3

] ,

𝑦
(4)

= 𝑓
𝑠

+ ℎ
𝑠

𝜏,

𝑓
𝑠

=
𝑔

𝐶
4

[
(2𝑚𝑥
1

𝑥
2

+ 𝐶
2

) 𝑥
4

+ (𝑚𝑔𝑥
1

+ (𝐿/2)𝑀𝑔) cos2𝑥
3

+ 𝑥
2

4

sin𝑥
3

𝑚𝑥2
1

+ 𝐶
1

] ,

ℎ
𝑠

=
−𝑔 cos𝑥

3

𝐶
4

(𝑚𝑥2
1

+ 𝐶
1

)
.

(44)
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Table 1: Parameters and values used in equations.

Parameter Description Nominal values Units

𝑔
Gravitational
acceleration 9.81 m/s2

𝑚 Mass of ball 0.07 kg
𝑀 Mass of beam 0.15 kg
𝐿 Length of beam 0.4 m

𝑅
𝑚

Resistance of
armature of the motor 9 Ω

𝐽
𝑚

Moment of inertia of
motor 7.35 × 10

−4 Nm/rad/s2

𝐶
𝑚

Torque constant of
motor 0.0075 Nm/A

𝐶
𝑔

Gear ratio 4.28 —

𝑑

Radius of arm
connected to
servomotor

0.04 m

𝐽
1

Moment of inertia of
beam 0.001 kgm2

𝐶
𝑏

Back emf constant
value 0.5625 V/rad/s

Now, writing this in the controllable canonical form (phase
variable form), one may have

̇𝜉
1

= 𝜉
2

̇𝜉
2

= 𝜉
3

.

.

.

̇𝜉
4

= 𝜑 (𝜉̂) + 𝛾 (𝜉̂) 𝜏 + 𝛾 (𝜉̂) Δ𝐺
𝑚

(𝜉̂, 𝜏̂, 𝑡) ,

(45)

where 𝑦(𝑖−1) = 𝜉
𝑖

,

𝜑 (𝜉̂) =
1

𝐶
4

(𝑚𝑥2
1

+ 𝐶
1

)
[(2𝑚𝑥

1

𝑥
2

+ 𝐶
2

) 𝑥
4

cos𝑥
3

+ (𝑚𝑔𝑥
1

+
𝐿

2
𝑀𝑔) cos2𝑥

3

+ 𝑥
2

4

(𝑚𝑥
2

1

+ 𝐶
1

) cos𝑥
3

] ,

(46)

𝛾(𝜉̂)𝜏 = −𝜏 cos𝑥
3

, and 𝛾(𝜉̂)Δ𝐺
𝑚

(𝜉̂, 𝜏̂, 𝑡) represents the model
uncertainties. Herewe discuss ISMCon ball and beam system
with fixed step tracking as well as variable step tracking. The
integral manifold is defined as follows:

𝜎 = 𝑐
1

𝜉
1

+ 𝑐
2

𝜉
2

+ 𝑐
3

𝜉
3

+ 𝜉
4

+ 𝑧. (47)

The expression of the overall controller which becomes 𝜎̇will
be as follows:

𝜏
1

= −𝑘
1

𝜉
1

− 𝑘
2

𝜉
2

− 𝑘
3

𝜉
3

− 𝑘
4

𝜉
4

+
1

𝛾 (𝜉̂)
(−𝜑 (𝜉̂) − (𝛾 (𝜉̂) − 1) 𝜏

0

− 𝐾sign𝜎) ,

𝜎̇ = 𝑐
1

̇𝜉
1

+ 𝑐
2

̇𝜉
2

+ 𝑐
3

̇𝜉
3

+ 𝑓
𝑠

+ ℎ
𝑠

𝜏
0

+ ℎ
𝑠

𝜏
1

+ 𝑧̇,

𝑧̇ = −𝑐
1

𝑥
2

+
𝑐
2

𝑔

𝐶
4

sin𝑥
3

+
𝑐
3

𝑔

𝐶
4

𝑥
4

cos𝑥
3

− 𝛾 (𝜉̂) 𝜏
0

− 𝜑 (𝜉̂) .

(48)

As the authors are performing the reference tracking here,
therefore, the integral manifold and the controller will appear
as follows:

𝜎 = 𝑐
1

(𝜉
1

− 𝑟
𝑑

) + 𝑐
2

𝜉
2

+ 𝑐
3

𝜉
3

+ 𝜉
4

+ 𝑧, (49)

𝜏
1

= −𝑘
1

(𝜉
1

− 𝑟
𝑑

) − 𝑘
2

𝜉
2

− 𝑘
3

𝜉
3

− 𝑘
4

𝜉
4

+
1

𝛾 (𝜉̂)
(−𝜑 (𝜉̂, 𝜏) − (𝛾 (𝜉̂) − 1) 𝜏

0

− 𝐾sign (𝜎)) ,

(50)

where 𝑟
𝑑

is the desired reference with ̇𝑟
𝑑

, ̈𝑟
𝑑

,
...
𝑟
𝑑

being
bounded.

4.3. Simulation Results. The simulation study of the system is
carried out by considering the reference tracking of a square
wave signal and sinusoidal wave signal. In the subsequent
paragraph their respective results will be demonstrated in
detail.

In case the efforts are directed to track a fixed square wave
signal in the presence of disturbances, the initial conditions of
the system were set to 𝑥

1

(0) = 0.4, 𝑥
2

(0) = 𝑥
3

(0) = 𝑥
4

(0) = 0.
Furthermore, the square wave was defined in the simulation
code as follows:

𝑟
𝑑

(𝑡) =

{{{{

{{{{

{

20 cm 0 ≤ 𝑡 ≤ 19

14 cm 20 ≤ 𝑡 ≤ 39

20 cm 40 ≤ 𝑡 ≤ 60.

(51)

The gains of the proposed controller presented from (39) to
(41) are chosen according to Table 2.

The output tracking performance of the proposed control
input, when a square wave is used as desired reference output,
is shown in Figure 2. It can be clearly examined that the
performance is very appealing in this case.The corresponding
sliding manifold profile is displayed in Figure 3 which clearly
indicates that the sliding mode is established from the very
beginning of the processes which in turn results in enhanced
robustness.The controlled input signal’s profile is depicted in
Figure 4 with its zoomed profile as shown in Figure 5. It is
obvious from both the figures that the control input derives
the system with suppressed chattering phenomenon which is
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Table 2: Parametric values used in the square wave tracking.

Constants 𝐶
1

𝐶
2

𝐶
3

𝐾
1

𝐾
2

𝐾
3

𝐾
4

𝐾

Values 1.2 1.2 0.11 402.98 250.18 60 4.1 5
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0
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Figure 2: Output tracking performance when a square wave is used
as reference/desired output.
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Figure 3: Sliding manifold convergence profile in case of square
wave tracking.

tolerable for the system actuators health. Now, from this case
study, it is concluded that integral sliding mode approach is
an interesting candidate for this class.

In this case study, once again, efforts are focused on the
tracking of a sinusoidal signal, which is defined as 𝑟

𝑑

(𝑡) =

sin(𝑡), in the presence of disturbances. Like the previous case
study, the initial conditions of the system were set to 𝑥

1

(0) =

0.4, 𝑥
2

(0) = 𝑥
3

(0) = 𝑥
4

(0) = 0. In addition, the gains of the
proposed controller presented in (50) are chosen according
to Table 3.

The output tracking performance of the proposed control
input, when a sinusoidal signal is considered as desired
reference output, is shown in Figure 6. It can be clearly
seen that the performance is excellent in this scenario.
The corresponding sliding manifold profile is displayed in
Figure 7 which confirms the establishment of sliding modes
from the starting instant and, consequently, enhancement of
robustness.The controlled input signal’s profile is depicted in
Figure 8. It is obvious from the figure that the control input

Table 3: Parametric values used in the sinusoid wave tracking.

Constants 𝐶
1

𝐶
2

𝐶
3

𝐾
1

𝐾
2

𝐾
3

𝐾
4

𝐾

Values 1.2 1.2 0.11 402.98 250.18 230 4.9 5
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Figure 4: Control input in square wave reference tracking.
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Figure 5: Zoom profile of the control input depicted in Figure 4.
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Figure 6: Output tracking performance when a sinusoidal wave is
used as reference/desired output.

evolves with suppressed chattering phenomenonwhich, once
again, makes this design strategy a good candidate for the
class of these underactuated systems.

4.4. Implementation Results. The control technique proposed
in this paper is implemented on the actual apparatus using
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Figure 7: Sliding manifold convergence profile in case of sinusoidal
wave tracking.
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Figure 8: Control input in sinusoidal wave reference tracking.

the MATLAB environment. The detailed discussions are
presented below.

4.4.1. Experimental Setup Description. The experiment setup
is equipped by GoogolTech GBB1004 with an electronic
control box.The beam length is 40 cm alongwithmass of ball,
that is, 28 g, and an intelligent IPM100 servo driver which is
used formoving the ball on the beam.The experimental setup
is shown in Figure 9.

The input given to apparatus is the voltage Vin(𝑡) and the
output is the position of themotor 𝜃(𝑡), which, in otherwords,
is an input for the positioning of the ball on the beam. This
apparatus uses potentiometer mounted within a slot inside
the beam to sense the position of the ball on the beam. The
measured position along the beam is fed to the A/D converter
of IPM100 motion drive.

The power module used in GoogolTech requires 220V
and 10A input. Note that the control accuracy of this manu-
factured apparatus lies within the range of ±1mm.The typical
parameters values are listed in Table 1. The environment
used here includes Windows XP as an operating system and
MATLAB 7.12/Simulink 7.7. Furthermore, the sampling time
used in forthcoming practical results was 2ms. In the exper-
imental processes, the proposed controllers need velocity
measurements which are, in general, not available. One may

Figure 9: Experimental setup of the ball and beam equipped via
GoogolTech GBB1004.

use different kind of velocity observers/differentiator for the
velocity estimation [16]. In order to make the implemen-
tation easy and simple, a derivative block of the Simulink
environment is used to provide the corresponding velocities
measurements. Now, we are ready to discuss the results of the
system.

In this experiment, the initial conditions were set to
𝑥
1

(0) = 0.28, 𝑥
2

(0) = 𝑥
3

(0) = 𝑥
4

(0) = 0. The reference
signal which is needed to be tracked is being defined in (51).
In Figures 10 and 11, the tracking performance is shown. The
results reveal that the actual signal 𝑥

1

(𝑡) is pretty close to
the desired signal 𝑟

𝑑

(𝑡) with a steady state error which is
approximately±0.001m.The existence of this error is because
of the apparatus.

The observations of these tracking results make it clear
that the practically implemented results have very close
resemblance with the simulation result presented in Figure 2.
The error convergence depends on the initial conditions of
the ball on the beam. If the ball is placed very close to the
desired reference value then it will take little time to reach
the desired position. On the other hand, the convergence to
the desired position will take considerable time if the initial
condition is chosen far away from the desired values. This
phenomenon of convergence is according to the equipment
design and structure.

The sliding manifold convergence and the control input
are shown in Figures 12 and 13, respectively. The control
input and the sliding manifolds show some deviations in
the first second. This deviation occurs because the ball on
the beam, being placed anywhere on the beam, is first
moved to one side of the beam and then ball moved to the
desired position. The zoomed profile of the control input,
being displayed in Figure 14, shows high frequency vibration
(chattering) of magnitude ±0.07. This makes the proposed
control design algorithm an appealing candidate for this class
of nonlinear systems. The gains of the controller being used
in this experiment are displayed in Table 4.

5. Conclusion

The control of underactuated systems, because of their less
number of actuators than the degree of freedom, is an
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Table 4: Parametric values used in implementation.

Constants 𝐶
1

𝐶
2

𝐶
3

𝐾
1
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4

𝐾

Values 8 5 1 3 15 3 1 4
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Actual
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Figure 10: Output tracking performance when 𝑟
𝑑

= 22 cm is set as
reference/desired output.
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Figure 11: Output tracking performance when a square wave is used
as reference/desired output.
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Figure 12: Sliding surface of practical system.

interesting objective among the researchers. In this work, an
integral sliding mode control approach, due to its robustness
from the very beginning of the process, is employed for
the control design of this class. The design of the integral
manifold relied upon a transformed form. The benefit of the
transformed form is that itmakes the design strategy easy and
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Figure 13: Control input for reference tracking.
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Figure 14: Zoom profile of the control input depicted in Figure 13.

simple. The stability analysis and experimental results of the
proposed control laws are presented, which convey the good
features and demand the proposed approachwhen the system
operates under uncertainties.
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