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The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities
in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics,
material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave
frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of
this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD) scheme for simulating electromagnetic pulse
propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general
series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation
is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between
simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the
accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a
variety of dispersive media are examined.

1. Introduction

Recently, multifrequency and ultrawideband microwave tec-
hnologies have receiving increasing attention due to their
promising applications in biological andmedical domains [1–
3]. Several studies concernmicrowave dielectric spectroscopy
and imaging since their represent potential solutions for
early–stage cancer detection and treatment as well as for
cancer investigations and diagnostic [4, 5]. Many research
activities are focused on the use of electromagnetic waves
for discriminating malignant tissues from healthy ones.
Moreover, recent applications employing electromagnetic
technology include medical implant communication service,
wireless medical telemetry service, and medical body area
network [6–8]. Electromagnetic wave technologies have also
been introduced as a rapidmethod of delivering high temper-
atures to destroy the cancer cells during thermal ablation [9].
Finally, continuous and pulsed electric field are successfully
used in a variety of therapeutic and diagnostic applications

such as hyperthermia, electroporation, and treatment of
specific diseases [10].

All these technologies involve the interaction of electro-
magnetic fields with living tissues. As a result, detailed the-
oretical modeling and computational techniques are essen-
tial to gain insight into the several phenomena occurring
within the biological materials subject to an imposed elec-
tromagnetic field. For example, the right knowledge of the
electromagnetic field distribution inside biological tissues is
necessary to demonstrate the effects of electromagnetic radi-
ation absorption. Furthermore, numerical simulations under
various conditions can be used to identify the fundamental
parameters involved in noninvasive diagnosis and medical
sensors as well as to provide guidance for computational
dosimetry and for the development of specific therapeutic
approaches.

In recent decades, fractional calculus has been a fruitful
field of research in science and engineering. It has found use
in studies of viscoelastic materials and anomalous diffusion
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processes, as well as inmany fields of science and engineering
including signal processing, mathematical biology, electro-
chemistry, electrical networks, electromagnetic theory, and
probability [11–15]. As well known, the concept of fractional
exponents is an outgrowth of exponents with integer value.
In the same way, nonintegral order of integration is a general-
ization of the mathematical operations of differentiation and
integration to arbitrary, general, noninteger order. Although
it better models the higher complexity by nature, it is still
fairly easy to physically represent its meaning. However, just
as fractional exponents may find their way into innumerable
equations and applications, it will become apparent that
integrations of fractional order can find practical use in
many modern problems. Taking in consideration that the
study of fractional calculus opens the mind to entirely new
branches of thought, we applied such concept in a specific
electromagnetic problem in order to demonstrate that the
fractional derivatives operator can be an interesting and
useful tools in electromagnetic theory.

Biological tissues are heterogeneous mixtures of various
materials and quantities such as water, ions, membranes, and
macromolecules with a broad variety of profiles. Therefore,
their interaction with electromagnetic radiation takes place
in different relaxation processes including (i) reorientation
of water and protein-bound water molecules, (ii) interfacial
polarization arising by the presence of two or more regions
with different electrical properties, (iii) ionic diffusion, (iv)
tumblingmotion of the proteinmolecules, and (v) relaxations
due to the nonspherical shape. These phenomena cause a
frequency dispersion pattern of permittivity and conductivity
which is characterized by a series of steps as the frequency
increases [16, 17].

The Debye model has been widely used to describe the
dielectric response arising by the dipolar relaxation [18, 19].
However, this simple exponential law cannot describe a
wide class of relaxation processes occurring in biological
materials since the intrinsic structural disorder and the
ion-ion interaction induce anomalous dynamics based on
nonexponential temporal decay. As a consequence, a number
of empirical dispersion functions, such as Cole–Cole, Cole–
Davidson, Havriliak–Negami, and Raicu spectral models,
have been developed to accurately fit the fractional power-
law decays of the dielectric response [17].

Finite-Difference Time-Domain (FDTD) method has
been widely used in electromagnetic simulation due to
its straightforward implementation and ability to model a
broad range of initial and boundary values problems. Taking
into account that the dielectric response includes fractional
powers of j𝜔, the design of the FDTD algorithm requires
special treatments aimed at embedding the approximation of
fractional derivatives into the simulator [20–23].

Besides the requirements linked to the frequency behav-
ior of dispersive materials, a complete numerical code should
be able to correctly incorporate, inside its kernel, the spatial
dependence of thematerial parameters.This is a fundamental
skill to meet especially when biological tissues have to be
employed in the simulation. In fact, from the macroscopic
point of view, a biological tissue can be treated as a random

mixture of different medium compounds having a spatial-
dependent concentration.

Considering these premises and the requirement to
model a more general permittivity function, in this paper
we illustrate a more accurate study of the time-domain
electromagnetic field propagation in arbitrary dispersive
media. The study is fully motivated to seek for an extended
model flexibility enabling a better parametrization of the
arbitrary dispersive media properties as well as a better
fitting, over broad frequency ranges, of the experimental
dielectric response. In particular, using a general fractional
polynomial series approximation and the fractional calculus
theory both the spatial and frequency dispersion charac-
teristics of the dielectric response have been incorporated
into the developed FDTD scheme. Dedicated uniaxial per-
fectly matched layer boundary conditions have been also
derived and implemented in combination with the basic
time-marching scheme. In particular, the iterative E-field
and H-field updating while applying boundary conditions
results in a marching-in-time procedures that simulate the
continuous actual electromagnetic waves in a finite spatial
region by sampled-data numerical analogs propagating in a
computer data space [24]. Moreover, ohmic losses and total
field/scattered field approach are taken into account. The
accuracy of the proposed FDTD scheme has been tested by
considering several test cases involving different spatial and
time-dependent permittivity profiles.

2. Formulation of the Proposed FDTD Method

FDTD method is a powerful and efficient numerical tech-
nique used to solve both simple and complicated electromag-
netic problems. This method has attracted much attention
due to its simplicity, accuracy, robustness, low computational
footprint, and its capability in treating in a straightforward
and effective way many types of dispersive media. FDTD
technique is based on the direct numerical integration of
Maxwell’s two curl equations [25]. In dielectric materials,
such equations are as follows:

∇ ×H = 𝜕D𝜕𝑡 + 𝜎E + J0,
∇ × E = −𝜇0 𝜕H𝜕𝑡 ,

(1)

where D is the electric flux density, E is the electric field,
H is the magnetic field, 𝜇0 is the magnetic permeability of
free space, J0 is the source current density, and 𝜎 is the static
conductivity due to the ionic or electronic charge transport
and modeling the ohmic losses. To calculate the spatial and
temporal distributions of the electromagnetic fields in a
medium, the constitutive relation between the fields D and
E has to be combined with the equations (1). In frequency
domain, the relative electric permittivity of a linear and
nonmagnetic media can be expressed as [25, 26]

𝜀𝑟 (𝜔) = 𝜀 (𝜔)𝜀0 = 𝜀∞ + 𝜒 (𝜔) , (2)
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where 𝜀0 is the permittivity of free space, 𝜀∞ is the relative
permittivity at high frequency limit, and 𝜒 is the electric
susceptibility.

FDTD methods have been developed for incorporating
Debye, Cole–Cole, Cole–Davidson, and Havriliak–Negami
electric susceptibilitymodels [27–30].The commonapproach
is to approximate the relative complex permittivity by means
of rational or polynomial functions resulting in auxiliary
differential equation FDTD models. When implemented to
predict the electromagnetic field propagation inside quite
simple dispersive media, such numerical models provide
reliable results. On the other hand, their effectiveness falls
when more complex and multirelaxed dispersive media are
employed since the approximation does not accurately fit the
frequency behavior of the electric permittivity. In order to
overcome this drawback, we have successfully implemented
in the FDTD formulation a more general electric suscep-
tibility function having the following fractional polynomial
dispersion response [31]:

𝜒 (𝜔) = Δ𝜀1 + ∑𝑁𝑝=1 𝐴𝑝 (j𝜔𝜏𝑝)𝛼𝑝 , (3)

where Δ𝜀 = 𝜀𝑠 − 𝜀∞ is the relaxation strength with 𝜀𝑠
being the relative permittivity at low frequency limit, 𝛼𝑝 ≥0, 𝜏𝑝 is the relaxation time, and 𝐴𝑝 is a real coefficients
related to the material parameters. The condition 𝐴𝑝 ≥ 0
is recommended to meet the requirement on the numerical
stability of the developed time-marching scheme. Moreover,
implementing an optimization algorithm based on swarm
intelligence the parameters 𝐴𝑝 and 𝛼𝑝 can be recovered to
suitably fit a generic frequency domain permittivity function
[32]. In particular, if 𝑁max is the maximum expansion
order in (3) and 𝛿 is a given small positive threshold to
be used for controlling the accuracy of the approximation,
a dedicated numerical procedure based on the enhanced
weighted quantum particle swarm optimization (EWQPSO)
was used to solve the minimization problem

𝑓err = √ ∫𝜔max

𝜔min

𝜒 (𝜔) − 𝜒 (𝜔)2 d𝜔∫𝜔max

𝜔min

𝜒 (𝜔)2 d𝜔 ≤ 𝛿, (4)

where 𝜒(𝜔) is the dispersion response to approximate. This
technique has proved to feature superior effectiveness in
terms of convergence rate and accuracy in comparison with
alternative evolutionary stochastic search methods such as
genetic algorithm [31, 32].

In linear dispersive materials, the frequency domain
equation relating the electric and polarization fields is

P (𝜔) = 𝜀0𝜒 (𝜔)E (𝜔) (5)

or by substituting (3),

P (𝜔) + 𝑁∑
𝑝=1

𝐴𝑝𝜏𝛼𝑝0 (j𝜔)𝜐𝑝 (j𝜔)𝛼𝑝−𝜐𝑝 P (𝜔) = 𝜀0Δ𝜀E (𝜔) , (6)

where 𝜐𝑝 = ⌈𝛼𝑝⌉.

Taking the inverse Fourier transform of (6),

P (𝑡) + 𝑁∑
𝑝=1

𝜕𝜐𝑝𝜕𝑡𝜐𝑝 ∫𝑡0 𝜁𝑝 (𝑡)P (𝑡 − 𝑡) d𝑡 = 𝜀0Δ𝜀E (𝑡) , (7)

where

𝜁𝑝 (𝑡) = 𝐴𝑝𝜏𝛼𝑝0 ∫∞
−∞

(j𝜔)𝛼𝑝−𝜐𝑝 ej𝜔𝑡d𝜔. (8)

Moreover, considering the gamma function, the following
equation could be achieved (see Appendix A):

𝜁𝑝 (𝑡) = 𝐴𝑝𝜏𝛼𝑝0𝑡𝜉𝑝Γ (1 − 𝜉𝑝) , (9)

where 0 < 𝜉𝑝 = 1 + 𝛼𝑝 − 𝜐𝑝 < 1. Differentiating both
sides of (7) with respect to time and using Leibniz’s rule for
differentiation under the integral sign the following equation
can be obtained:

J (𝑡) + 𝑁∑
𝑝=1

∫𝑡
0
𝜁𝑝 (𝑡) 𝜕𝜐𝑝J𝜕𝑡𝜐𝑝 d𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

fractional derivatives

= 𝜀0Δ𝜀𝜕E (𝑡)𝜕𝑡 , (10)

where

J = 𝜕P𝜕𝑡 (11)

is the polarization current. By using the constitutive relation

D (𝑡) = 𝜀0𝜀∞E (𝑡) + P (𝑡) , (12)

Ampere’s law in time domain can be written as

∇ ×H = 𝜀0𝜀∞ 𝜕E𝜕𝑡 + J + 𝜎E + J0

= 𝜀∞Δ𝜀 (𝜀0Δ𝜖𝜕E𝜕𝑡 ) + J + 𝜎E + J0. (13)

Applying a second-order accurate finite-difference scheme,
one readily obtains at the time instant 𝑡 = 𝑚Δ𝑡

(∇ ×H)|𝑚 = 𝜀∞Δ𝜀 (𝜀0Δ𝜖𝜕E𝜕𝑡 )
𝑚 + J|𝑚 + 𝜎E|𝑚 + J0

𝑚 , (14)

where the vectors terms appearing on the right-hand side of
(14) are evaluated using the semi-implicit approximation:

J|𝑚 = J|𝑚−1/2 + J|𝑚+1/22 ,
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E|𝑚 = E|𝑚−1/2 + E|𝑚+1/22 ,
𝜕E𝜕𝑡 𝑚 = E|𝑚+1/2 − E|𝑚−1/2Δ𝑡 .

(15)

Evaluating (10) at 𝑡 = 𝑚Δ𝑡 the following equation can be
obtained (see Appendix B):

E|𝑚+1/2 = E|𝑚−1/2 + Δ𝑡𝜀0Δ𝜀 (𝑅 + 12) J|𝑚+1/2
+ Δ𝑡2𝜀0Δ𝜀 J|𝑚−1/2
+ Δ𝑡𝜀0Δ𝜀 [

𝑁∑
𝑝=1

𝜐𝑝∑
𝑛=1

𝜂𝑝,0(Δ𝑡)𝜐𝑝 (−1)𝑛 (𝜐𝑝𝑛 ) J|𝑚−𝑛+1/2 + 𝑄] .
(16)

Finally, by carrying out a second-order accurate finite-
difference approximation of Faraday’s law in the timedomain,

the following update equation for the magnetic field is
obtained:

H|𝑚+1 = H|𝑚 − Δ𝑡𝜇0 (∇ × E)|𝑚+1/2 . (17)

In (14) and (17) the curl of magnetic and electric fields are
approximated by the standard Yee algorithm. In our compu-
tations, a uniform space-time grid is employed. Moreover, a
flowchart summarizing themain steps of the proposed FDTD
algorithm is shown in Figure 1, where 𝑚 and 𝑛 represent the
time and space indexes, respectively.

The arbitrary biological tissue can be generally visual-
ized as a heterogeneous material. As a result, its dielectric
properties are governed by a spatial average which can be
expressed through an appropriate spatial dependence of the
material parameters. To this aim, both Maxwell–Garnet and
Bruggeman models have been taken into account [33]. In
particular, in (2)-(3) the electric permittivity at both low and
high frequency limits is expressed as

𝜀𝑎 (𝑥) = 𝜀𝑎,𝑚 [1 + 𝑓 (𝑥)3 ∑3𝑖=𝑖 ((𝜀𝑎,1 − 𝜀𝑎,𝑚) / (𝜀𝑎,𝑚 + 𝑁𝑖 (𝜀𝑎,1 − 𝜀𝑎,𝑚)))1 − (𝑓 (𝑥) /3)∑3𝑖=1 (𝑁𝑖 (𝜀𝑎,1 − 𝜀𝑎,𝑚) / (𝜀𝑎,𝑚 + 𝑁𝑖 (𝜀𝑎,1 − 𝜀𝑎,𝑚)))] , 𝑎 = 𝑠,∞, (18)

for Maxwell–Garnet model, and

𝜀𝑎 (𝑥) = 𝜀𝑎,𝑚 + 𝑓 (𝑥)3 3∑
𝑖=1

𝜀𝑎 (𝑥)𝜀𝑎 (𝑥) + 𝑁𝑖 [𝜀𝑎,1 − 𝜀𝑎 (𝑥)] ,𝑎 = 𝑠,∞, (19)

for Bruggeman model. In (18)-(19), 𝜀1 is the permittivity of
inclusions having ellipsoidal shape, 𝜀𝑚 is the permittivity of
environment material, 0 ≤ 𝑁𝑖 ≤ 1 (𝑁1 + 𝑁2 + 𝑁3 = 1) is the
depolarization factor, and 𝑓(𝑥) is the space-dependent filling
factor function.

3. Numerical Results

To test the developed numerical code, the slab model illus-
trated in Figure 2 is implemented. It consists of a half space
filled up with dispersive and nonhomogeneous biological
material.The system is irradiated by a planewave propagating
along the positive 𝑥-direction, with electric field linearly
polarized along the 𝑦-axis and located at a given point 𝑥 = 𝑥𝑠.
In particular, the time-domain signal source is

J0 (𝑥, 𝑡) = exp{−𝑓2𝑒2 (𝑡 − 2𝑓𝑒)
2}

⋅ sin [2𝜋𝑓𝑚 (𝑡 − 4𝑓𝑒)] 𝛿 (𝑥 − 𝑥𝑠) ŷ, (20)

where 𝑓𝑒 = 20GHz and 𝑓𝑚 = 5GHz are selected in order to
obtain a spectral bandwidth ranging from 𝑓min = 2GHz to𝑓max = 20GHz.

The time and spatial extension of the computational
domain are 𝑡tot = 1 ns and 𝑥tot = 10 cm, respectively,
the thickness of the biological media is 𝑑 = 8 cm, and the
time and spatial steps are Δ𝑡 = 0.18 ps and Δ𝑥 = 0.1mm,
respectively. Moreover, the computational domain is closed
from both sides by dedicated uniaxial perfectly matched
layers [21].

The relative electric permittivity considered in the simu-
lations is𝜀𝑟 (𝑥, 𝜔) = 𝜀∞ (𝑥)

+ 𝜀𝑠 (𝑥) − 𝜀∞ (𝑥)1 + 0.43 (j𝜔𝜏0)0.45 + 0.13 (j𝜔𝜏0)0.75 ,
(21)

where 𝜏0 = 15.9 ps, 𝜀∞(𝑥) and 𝜀𝑠(𝑥) are evaluated according
(18)-(19), and 𝜀𝑠,1 = 400, 𝜀𝑠,𝑚 = 20, 𝜀∞,1 = 10, and 𝜀∞,𝑚 =2. Therefore, a linear and exponential filling factor functions𝑓(𝑥) are considered as follows:

𝑓 (𝑥) = 𝑓 (0) + 𝑓 (𝑑) − 𝑓 (0)𝑑 𝑥, (22)

𝑓 (𝑥) = 𝑓 (0) exp {−3𝑥𝑑 } , (23)

where 𝑓(0) is the initial value at the points 𝑥 = 0 and 𝑓(𝑑) =0.
In order to test the effectiveness of the presented frac-

tional power series approach, a benchmarking against the
multiterm Debye approximation and Padé approximation
has been carried out. In particular, the relative permittivity
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Figure 1: A flowchart of the proposed FDTD algorithm.
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Figure 2: Slab model employed in the simulations.

function (21) with 𝜀∞(𝑥) = 10 and 𝜀𝑠(𝑥) = 400 has been
approximated as follows:

𝜀(𝐷)𝑟 (𝜔) = 𝜀∞ + 𝑈∑
𝑢=1

Δ𝜀𝑢1 + j𝜔𝜏𝑢 , multiterm Debye,
𝜀(𝑃)𝑟 (𝜔) = 𝜀∞ + ∑𝑈𝑢=0A𝑢 (j𝜔𝜏0)𝑢∑𝑉V=0AV (j𝜔𝜏0)V , Pad ́e. (24)

Toquantify the accuracy of the different approaches, the root-
mean-square deviation on the complex electric permittivity

Table 1: Root-mean-square error obtained using the Debye and
Padé-type approximations.

Debye approximation [𝑈] Padé approximation [𝑈/𝑉]8.97 × 10−2 [1] 2.04 × 10−1 [1/1]1.25 × 10−2 [2] 4.2 × 10−2 [2/2]3.9 × 10−3 [3] 1.8 × 10−2 [3/3]1.1 × 10−3 [4] 1.53 × 10−2 [4/4]4.6 × 10−4 [5] 8 × 10−3 [5/5]

has been evaluated as

�̂�err = √ ∫𝜔max

𝜔min

𝜀𝑟 (𝜔) − 𝜀(𝑞)𝑟 (𝜔)2 d𝜔∫𝜔max

𝜔min

𝜀𝑟 (𝜔)2 d𝜔 , (25)

where the index 𝑞 = 𝐷,𝑃 identifies the specific type of
approximation. As it can be noticed in Table 1, higher order
of both Debye and Padé approximations results in a smaller
fitting errors but at the same time the computational model
becomes more complex. On the other hand, fractional power
expansions lead to all-pole approximation of permittivity
function. In this way, benefits in terms of memory usage and
FDTD numerical implementation are achieved.

In order to validate the proposed approach, the numerical
results given by the FDTD scheme are compared with those
derived using a fully analytical frequency domain technique
[34]. To this aim, the total field/scattered field (TF/SF)
formulation, detailed in [24], has been implemented. TF/SF
boundary separates the computational domain into a total
field region, containing both the incident and scattered fields,
and a scattered field region, containing only the scattered
field. The TF/SF boundary can, in principle, be used to
introduce any type of incident field into the FDTD grid, but,
in practice, it is used almost exclusively to introduce plane
wave excitation.

The simulations have been performed by considering a
biological media described by (18), (21), and (23), where𝑓(0) = 0.3 and 𝑁1 = 0 and 𝑁2 = 𝑁3 = 0.5 (needles). In
particular, the reflectance, |𝑅|2, and transmittance, |𝑇|2, have
been calculated, where the reflection, 𝑅, and transmission, 𝑇,
coefficients have been evaluated as follows:

𝑅 (𝜔) = 𝐸𝑟 (𝜔, 𝑥𝑠)𝐸 (𝜔, 𝑥𝑠) ,
𝑇 (𝜔, 𝑥∗) = 𝐸 (𝜔, 𝑥∗)𝐸 (𝜔, 𝑥𝑠) ,

(26)

where 𝐸𝑟(𝜔, 𝑥𝑠) is the electric field reflected at the air-
biological tissue interface, 𝐸(𝜔, 𝑥∗) is the electric field excited
at the location 𝑥∗ = 1 cm, with 𝑥∗ being inside the biological
tissue, and 𝐸(𝜔, 𝑥𝑠) is the electric field excited at the source
location 𝑥 = 𝑥𝑠.

Figure 3(a) shows the space-time distribution of the
electric field resulting from the developed FDTD-based
procedure. It worthwhile to note the transmission process
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Figure 3: Validation test: (a) space-time electric field distribution and (b) reflectance and transmittance spectra.

as well as the reflection phenomenon occurring at the air-
biological tissue interface. Moreover, the pulse spreading due
to the propagation inside the dispersive biological media
as well as the spatial variation of the group velocity due
to the spatial dependence of the biological tissue permit-
tivity is evident. Figure 3(b) illustrates the reflectance and
transmittance spectra as evaluated by using the proposed
FDTD procedure and the analytical technique. The excellent
agreement between them fully validates the developed FDTD
formulation.

To further investigate the accuracy and flexibility of the
proposed FDTD scheme, the pulse propagation in com-
plex media involving several spatial-dependent permittivity
profiles has been studied. The numerical simulations have
been performed by changing the filling factor function, the
depolarization factor, and the mixing model. In particular,
besides the function profiles (22)-(23) and the Maxwell–
Garnet and Bruggeman model, the depolarization factor sets𝑁1 = 𝑁2 = 𝑁3 = 1/3 (sphere), 𝑁1 = 0, 𝑁2 = 𝑁3 = 1/2
(needle), and 𝑁1 = 1, 𝑁2 = 𝑁3 = 0 (disc) are taken into
account. In addition to the transmittance and reflectance, the
penetration depth spectrum is calculated, too.This parameter
is used to denote the depth at which the power density has
decreased to 37% of its initial value at the surface.

The first test case regards the pulse propagation inside a
dispersive medium described by the Maxwell–Garnet model,
the linear filling factor function, and the depolarization factor𝑁1 = 𝑁2 = 𝑁3 = 1/3. The calculated numerical results
are illustrated in Figure 4. By an inspection of Figure 4(a) it
can be observed that the reflectance increases by increasing
the initial value 𝑓(0). In fact, considering that both 𝜀𝑠,1 and𝜀∞,1 are higher than 𝜀𝑠,𝑚 and 𝜀∞,𝑚, 𝑓(0) rising generates
higher permittivity values resulting in an improvement of
the permittivity variation at the air-biological tissue interface.
On the other hand, lower values of 𝑓(0) enable a better
penetration of the electromagnetic field inside the biological

media and as shown in Figure 4(b), the penetration depth
increases. Moreover, the different relative variations of the
transmittance and penetration depth at low and high fre-
quency can be explained by considering that (𝜀𝑠,1 − 𝜀𝑠,𝑚) ≫(𝜀∞,1 − 𝜀∞,𝑚).

The second test case regards the pulse propagation inside
a dispersive medium described by both the Maxwell–Garnet
and Bruggeman models. The linear filling factor function,
with 𝑓(0) = 0.6, and the depolarization factor 𝑁1 =𝑁2 = 𝑁3 = 1/3 are considered to perform the simulations.
The obtained reflectance and transmittance as well as the
penetration depth are illustrated in Figures 5(a) and 5(b),
respectively. Differences in the propagation characteristics
can be noticed especially at low frequency. Such result
highlights a critical point regarding the choice of the suitable
model describing the inhomogeneous permittivity function.
In fact, for denser composites Bruggeman’s formula is better
suited than the Maxwell–Garnett one.

The third test case pertains the pulse propagation inside
a dispersive medium described by both the linear and
exponential filling factor functions having 𝑓(0) = 0.6. The
Maxwell–Garnet model and the depolarization factor 𝑁1 =𝑁2 = 𝑁3 = 1/3 are considered, too. Figures 6(a) and
6(b) depict the transmittance/reflectance and penetration
depth spectra, respectively. Since 𝑓(0) is the same in linear
and exponential functions, negligible reflectance variations
occur. More significant transmittance and penetration depth
changes can be observed since their trend mainly depends on
the filling factor function.

The forth test case regards the pulse propagation inside a
dispersive mediummodeled by the depolarization factor sets
N1 = {𝑁1 = 𝑁2 = 𝑁3 = 1/3} (sphere), N2 = {𝑁1 = 0,𝑁2 = 𝑁3 = 1/2} (needle), and N3 = {𝑁1 = 1,𝑁2 =𝑁3 = 0} (disc). Linear filling factor function having 𝑓(0) =0.6 and the Maxwell–Garnet model are considered, too. The
calculated reflectance/transmittance and penetration depth
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Figure 4: Pulse propagation characteristics inside dispersive media modeled by Maxwell–Garnet formula and described by linear filling
factor function and depolarization factor 𝑁1 = 𝑁2 = 𝑁3 = 1/3: (a) reflectance and transmittance and (b) penetration depth spectra for
different values of the initial value 𝑓(0).
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Figure 5: Pulse propagation characteristics inside dispersive media modeled byMaxwell–Garnet and Bruggemanmodels: (a) reflectance and
transmittance and (b) penetration depth spectra. Depolarization factor𝑁1 = 𝑁2 = 𝑁3 = 1/3.
spectra are reported in Figures 7(a) and 7(b), respectively. By
an inspection of these figures it is clear that the depolarization
factors strongly affect the propagation properties of the
dispersive media since the geometry and the surface area
change the material response. In fact, the spherical shape
creates the smallest dipole moment and when the spherical
symmetry is strongly broken, as it happen for extremely
squeezed ellipsoids (discs, needles), a quite strong deviation
from the polarizability of the spherical shape occurs.

The final test case is the more general one since it
pertains the electromagnetic analysis of a dispersive media
characterized by a piecewise linear filling factor function:𝑓 (𝑥)

= {{{{{{{
𝑓(𝑑1) − 𝑓 (0)𝑑1 𝑥 + 𝑓 (0) , 0 ≤ 𝑥 ≤ 𝑑1,𝑓 (𝑑) − 𝑓 (𝑑1)𝑑 − 𝑑1 𝑥 + 𝑑𝑓 (𝑑1) − 𝑑1𝑓 (𝑑)𝑑 − 𝑑1 , 𝑑1 < 𝑥 ≤ 𝑑,

(27)
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Figure 6: Pulse propagation characteristics inside dispersive media modeled by linear and exponential filling factor functions: (a) reflectance
and transmittance and (b) penetration depth spectra. Depolarization factor𝑁1 = 𝑁2 = 𝑁3 = 1/3, Maxwell–Garnet model.
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Figure 7: Pulse propagation characteristics inside dispersive media modeled by different depolarization factors: (a) reflectance and
transmittance and (b) penetration depth spectra. Linear filling factor function having 𝑓(0) = 0.6, Maxwell–Garnet model.

where 𝑑1 = 17 cm and 𝑑 = 34 cm. In particular, the coef-
ficient sets F1 = {𝑓(0) = 0, 𝑓(𝑑1) = 0.6, 𝑓(𝑑) = 0.7}
and F2 = {𝑓(0) = 1, 𝑓(𝑑1) = 0.4, 𝑓(𝑑) = 0.3}
are simulated. Moreover, the Maxwell–Garnet model, the
permittivity values 𝜀𝑠,1 = 𝜀∞,1 = 1, 𝜀𝑠,𝑚 = 20, and 𝜀∞,𝑚 = 2,
and the depolarization factor 𝑁1 = 𝑁2 = 𝑁3 = 1/3 are
also considered. Figure 8 shows the space-time distribution
of the electric field as calculated by means of the developed
FDTD technique. Figure 8(a) pertains the coefficient set F1

which generates a growing piecewise function composed by
two linear functions having different slopes. In this case, the
resulting permittivity decreases from its maximum value at𝑥 = 0 as the 𝑥 coordinate increases. Moreover, a quite
high permittivity gap at the interface 𝑥 = 0 occurs. As a
result, the incident plane wave is strongly reflected by the air-
biological tissue interface and the speed of the transmitted
wave increases as its penetration inside the biological media
increases. Figure 8(b) pertains the coefficient set F2 which
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Figure 8: Space-time electric field distribution inside dispersive media modeled by piecewise linear filling factor function: (a) 𝑓(0) = 0,𝑓(𝑑1) = 0.6, and 𝑓(𝑑) = 0.7 and (b) 𝑓(0) = 1, 𝑓(𝑑1) = 0.4, and 𝑓(𝑑) = 0.3.
generates a decreasing piecewise function. In this case, the
permittivity of the biologicalmediumat𝑥 = 0 is wellmatched
to the air permittivity and the incident plane wave is poorly
reflected at the interface 𝑥 = 0. Moreover, because of the
permittivity increasing as a function of the 𝑥 coordinate,
the transmitted wave slowly penetrates inside the dispersive
media.

4. Conclusion

An accurate FDTD model for simulating the pulse propa-
gation in arbitrary dispersive media is proposed. Using the
fractional derivative operator, the fractional part resulting
from a general series expansion of the permittivity function
of dispersivematerials is directly incorporated into the FDTD
scheme, avoiding the use of auxiliary differential equations.
Moreover, dedicated uniaxial perfectly matched layer bound-
ary conditions are derived and total field/scattered field
formulation is adopted in combination with the basic time-
marching scheme. As a result, the newly proposed algorithm
gets excellent accuracywithminimumauxiliary variables and
thus minimum storage spaces. Its application in modeling
the electromagnetic pulse propagation in several test cases is
presented and simulation results demonstrate the reliability
and efficiency of the proposed method.

Such a technique can be considered as a general
scheme for modeling various types of dispersions including
Debye, Cole–Cole, Cole–Davidson, Havriliak–Negami, Dru-
de–Lorentz, and universal dielectric response. The presented
FDTD scheme can be considered as a general-purpose tool
useful to address complex electromagnetic problems in the
field of bioengineering. It could be successfully applied
in the field of remotely powered implantable devices for
optimizing the trade-off between the received power and
tissue absorption. It could be also useful to evaluate in detail
the temperature elevation in the biological tissues as well
as to perform an accurate investigation of the spatial and

temporal distribution of the transmembrane voltage and
electroporation phenomenon in cells exposed to high voltage
electric pulses. Finally, it could be extended to perform an
extensive numerical analysis of pulsed electromagnetic fields
propagation in colloids, emulsions, and random dielectric
materials.

Appendix

A. Fourier Transform of the Power-Law
Function

For a real number 𝛽 > −1, the gamma function is defined as

Γ (𝛽 + 1) = ∫∞
0

𝑡𝛽e−𝑡d𝑡. (A.1)

The Fourier transform of the power-law function is

F {𝑡𝛽} = ∫∞
0

𝑡𝛽e−j𝜔𝑡d𝑡, (A.2)

where 𝑡𝛽 = 0 for 𝑡 < 0, and using the variable change 𝑢 = j𝜔𝑡,
it is straightforward to obtain

F {𝑡𝛽} = (j𝜔)−𝛽−1 ∫∞
0

𝑢𝛽e−𝑢d𝑢
= (j𝜔)−𝛽−1 Γ (𝛽 + 1) . (A.3)

The inverse Fourier transform of (A.3) gives

F
−1 {F {𝑡𝛽}} = 𝑡𝛽 = Γ (𝛽 + 1) ∫∞

−∞
(j𝜔)−𝛽−1 ej𝜔𝑡d𝜔 (A.4)

and comparing (A.4) with (8), (9) can be easily achieved.
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B. Time-Marching Scheme

Evaluating (10) at 𝑡 = 𝑚Δ𝑡 yields
J|𝑚 + 𝑁∑

𝑝=1

∫𝑡
0
𝜁𝑝 (𝑡) 𝜕𝜐𝑝J𝜕𝑡𝜐𝑝 

𝑚

d𝑡 = 𝜀0Δ𝜀 𝜕E𝜕𝑡 𝑚 , (B.1)

where𝜕𝜐𝑝J𝜕𝑡𝜐𝑝 
𝑚 ≈ 1(Δ𝑡)𝜐𝑝

𝜐𝑝∑
𝑛=0

(−1)𝑛 (𝜐𝑝𝑛 ) J|𝑚−𝑛+1/2
≈ 1(Δ𝑡)𝜐𝑝 J|𝑚+1/2

+ 1(Δ𝑡)𝜐𝑝
𝜐𝑝∑
𝑛=1

(−1)𝑛 (𝜐𝑝𝑛 ) J|𝑚−𝑛+1/2 .
(B.2)

But

∫𝑡
0
𝜁𝑝 (𝑡) 𝜕𝜐𝑝J𝜕𝑡𝜐𝑝 

𝑚

d𝑡
= 𝑚−1∑
𝑘=0

𝜕𝜐𝑝J𝜕𝑡𝜐𝑝 
𝑚−𝑘 ∫(𝑘+1)Δ𝑡
𝑘Δ𝑡

𝜁𝑝 (𝑡) d𝑡
= 𝑚−1∑
𝑘=0

𝜂𝑝,𝑘 𝜕𝜐𝑝J𝜕𝑡𝜐𝑝 
𝑚−𝑘 ,

(B.3)

where

𝜂𝑝,𝑘 = ∫(𝑘+1)Δ𝑡
𝑘Δ𝑡

𝜁𝑝 (𝑡) d𝑡
= 𝐴𝑝𝜏𝛼𝑝0 (Δ𝑡)1−𝜉𝑝(1 − 𝜉𝑝) Γ (1 − 𝜉𝑝)Δ𝑡 [(𝑘 + 1)1−𝜉𝑝 − 𝑘1−𝜉𝑝]
= 𝐴𝑝 (𝜏0/Δ𝑡)𝛼𝑝Γ (2 − 𝜉𝑝) (Δ𝑡)1−𝜐𝑝 [(𝑘 + 1)1−𝜉𝑝 − 𝑘1−𝜉𝑝] .

(B.4)

Rearranging (14) and using (15) and (B.1)–(B.4) give

[12 + 𝜀∞Δ𝜀 (𝑅 + 12)] J|𝑚+1/2 = (∇ ×H)|𝑚 − J0
𝑚

− 12 (1 + 𝜀∞Δ𝜀 ) J|𝑚−1/2
− 𝜀∞Δ𝜀∞ [ 𝑁∑

𝑝=1

𝜐𝑝∑
𝑛=1

𝜂𝑝,0(Δ𝑡)𝜐𝑝 (−1)𝑛 (𝜐𝑝𝑛 ) J|𝑚−𝑛+1/2
+ 𝑄] + − 𝜎( E|𝑚−1/2 + E|𝑚+1/22 ) ,

(B.5)

where

𝑄 = 𝑁∑
𝑝=1

𝑚−1∑
𝑘=1

𝜂𝑝,𝑘(Δ𝑡)𝜐𝑝 𝜕𝜐𝑝J𝜕𝑡𝜐𝑝 
𝑚−𝑘 ,

𝑅 = 𝑁∑
𝑝=1

𝜂𝑝,0(Δ𝑡)𝜐𝑝 .
(B.6)

Rearranging (B.1) gives

E|𝑚+1/2 = E|𝑚−1/2 + Δ𝑡𝜀0Δ𝜀 (𝑅 + 12) J|𝑚+1/2
+ Δ𝑡2𝜀0Δ𝜀 J|𝑚−1/2
+ Δ𝑡𝜀0Δ𝜀 [

𝑁∑
𝑝=1

𝜐𝑝∑
𝑛=1

𝜂𝑝,0(Δ𝑡)𝜐𝑝 (−1)𝑛 (𝜐𝑝𝑛 ) J|𝑚−𝑛+1/2
+ 𝑄] .

(B.7)
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