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Fault diagnosis for analog circuit has become a prominent factor in improving the reliability of integrated circuit due to its
irreplaceability in modern integrated circuits. In fact fault diagnosis based on intelligent algorithms has become a popular research
topic as efficient feature extraction and selection are a critical and intricate task in analog fault diagnosis. Further, it is extremely
important to propose some general guidelines for the optimal feature extraction and selection. In this paper, based on wavelet
analysis, we will study the problems of mother wavelets selection, number of decomposition levels, and candidate coefficients
selection by using a four-op-amp biquad filter circuit. After conducting several comparative experiments, some general guidelines
for feature extraction for this type of analog circuits fault diagnosis are derived.

1. Introduction

Due to development ofmodern integrated circuit technology,
many new electronic circuits have been created not only with
greater complexity but also with basic circuit elements being
inaccessibly embedded within circuit chips. Therefore fault
detection and diagnostic techniques have been of interest
to many researchers in circuits and systems, especially in
system reliabilities. Despite the dominant role of digital and
microprocessor inmodern integrated circuits, analog circuits
are very important in many electronic devices [1, 2]. In fact,
although large electronic systems are usually implemented
by digital techniques, quite often they interface with external
world through analog devices such as sensors for inputs,
AD/DA converters for signal processing, and actuators for
outputs [3]. In consequence, the diagnosis of analog circuits
in a mixed analog-digital system is indispensable for many
applications. The objective of analog circuit fault diagnosis
is to determine the fault types, components, and parameters
once the abnormal circuit response is detected when we
know the topology of circuit, stimulus signal, and response
data of the circuit. The fault diagnosis, with the network
analysis and network synthesis, is considered to be one of the
three branches of modern circuit theory [4]. Berkowitz [5] in

1962 found the first general necessary condition for network-
element-value solvability, and then Navid and Willson [6] in
1979 presented some sufficient conditions for resistive net-
work by component simulation, which established the gen-
eral theoretical foundation for the study of analog circuit fault
diagnosis. In the 1970s, a considerable amount of researches
has been focused on the techniques about fault dictionary
method, the testability of the circuits, components fault
diagnosis, and multiple fault diagnosis. In 1985, Bandler and
Salama [7] addressed the theory and algorithms associated
with various fault location techniques in analog networks. In
recent years, the intelligent diagnosing approaches based on
various pattern recognition (PR) techniques have attracted
much attention and a number of promising developments
have emerged.

Although the fault diagnosis of analog circuit has
attracted considerable attention during the past fifty years, the
research in analog circuit detection and diagnosis is still con-
sidered as an extremely difficult problem [7] and has several
critical issues due to the following characteristics of analog
circuits: the nonlinear nature of the problem, the lack of
good fault models, inaccurate analog components tolerance,
difficulty and inaccuracy of the measurement, experience-
dependent heuristic feature extraction, and incomplete
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diagnostic knowledge.Therefore, the diagnosis for analog cir-
cuits still relies heavily on the engineer’s experience and intu-
ition and remains to be an iterative and time-consuming pro-
cess. As a result, there are urgent needs to find intelligent diag-
nosis approaches for analog circuits and analog/digital hybrid
circuits.

PR-based classifying algorithms aim to learn the diagnos-
tic knowledge before they were used to detect and diagnose
circuit faults. The diagnostic knowledge was learned from
large amount of response data including normal and faulty
state responses through some well-designed training pro-
cedure. When the training procedure is designed properly,
a classifying algorithm can be used to detect the circuit
fault type via sampling the state data, constructing the fault
features, and feeding selected features to a well-designed clas-
sifier, and then obtaining the diagnostic result. An obvious
advantage of such classifying algorithms is that nomathemat-
ical model of the process or comprehensive examination of
circuit under test (CUT) is required. However, the success in
achieving these goals is severely limited when the diagnostic
knowledge captured from the sampling data lacks sufficient
precision. A well-trained diagnosis approach was based not
only on an appropriate classification algorithm, but also on
the large amount of training data that should cover every fault
class as well as effective feature extracting process that is used
to select the fault features. In the past decades, some effective
classifiers based on genetic algorithms [8, 9], artificial neural
network [3, 10–15], wavelet theory [9, 11, 13], fuzzy theory [3,
16], artificial immune system [17–19], support vectormachine
[9], particle filtering [20], and clonal selection algorithm [21]
were widely reported, but there were just few researches
about how to extract the fault feature from responses of
circuits. In fact, it is a critical procedure and primary task
for general-purpose PR-based diagnosis algorithms to find
some effective methods and circuit-dependent fault feature
extraction and construction approaches to reduce the dimen-
sion of input data and minimize its training and processing
time.

Some researchers have used various fault information
content as a measure to extract the fault features, such as
information cost function [22], sensitivity of characteristic
parameter [23], feature departure degree [24], and principle
based on minimum redundancy maximum relevance [25].
These approaches, however, usually require various types
of faults posterior probability distribution functions and
the density functions of observed values, which are usu-
ally hard to obtain. Some other researchers try to extract
optimal feature based on the kernel function [26], but
these kernel-based methods often take expensive computa-
tional costs when kernel matrix is calculated to analyze the
features.

Feature extraction using wavelet analysis is a popular
approach in the domain of analog circuit fault diagnosis due
to the perfect local property of wavelet in both time and
frequency space, which makes it an appealing approach to
process noisy and unstable signals, such as transient response
of analog circuit [10, 13]. But till now, there are no effective
theoretical guidelines on how to choose proper wavelet
functions in the field of analog circuit fault diagnosis. On the

contrary, this issue is mostly based on engineers’ experience
or some experiments. For example, Spina and Upadhyaya
in their pioneering work [10] directly used the collected
samples as the input and obtained a high-dimension classifier.
Aminian et al. [11, 12] used the approximation coefficient as
the features and discarded the detail parts as noise to reduce
the number of input features; Wang et al. [27], however, have
chosen the high frequency bands to extract features since they
believe that the fault information of a circuit always exists in
the high frequency bands of the output signal. The defect of
retaining only one part of coefficients may lead to the loss
of valid information, thus with high probability of ambiguity
cases and low diagnosis ability. Although many researchers
[11, 13, 15, 21, 28, 29] used both low frequency approximation
and detail coefficient from wavelet decomposition to con-
struct the optimal feature factors, different processes were
employed without convincing reasons. For instance, Li et al.
[15, 29] selected Haar as mother wavelet and calculated the
fault feature from the coefficients associated with level 3 Haar
wavelet packet analysis.There are also other features reported
in the existing literature, such as kurtosis and entropy [14],
which were used to represent fault feature. Therefore, how
to choose wavelet mother function, wavelet coefficients, and
wavelet decomposition depth are still critical issues in this
area [30].

In order to solve this problem, we would use a four-
op-amp biquad high-pass filter [10–13, 28] as benchmark
CUT. This type of analog circuit is very common in existing
equipment and also is well studied in [10–13] due to its
importance. Another aim for selecting this analog circuit
is that we can compare the performance with previous
investigations.With this four-op-amp biquad high-pass filter,
we input a single impulse of height 5V and duration of
10 𝜇s and observe its responses. As to parametric faults, we
follow the category description in [12] including mounting of
components with values out of tolerance on this biquad high-
pass filter, which can be used as audio frequency filter. We
first compare five frequently used wavelet mother functions
to solve the problem for mother wavelet selection. Then
we use the selected best wavelet as preprocessor to extract
the fault features hidden in circuit state data which are
generated by simulation software. Finally, different feature
construction methods are compared based on decompo-
sition level and wavelet coefficients selection in terms of
the diagnosis rate on the same CUT by using a Clone
Selection Classification Algorithm (CSCA). Based on these
investigations, we can summarize a systematic procedure on
the optimal fault feature construction method in this type
of analog circuit fault diagnosis, when wavelet analysis is
adopted.

This paper is organized as follows. In Section 2, we
will describe the framework and diagnosis procedures for
intelligent diagnosis approaches based on various pattern
recognition algorithms, and then we discuss the fault feature
construction method on the basis of wavelet analysis in Sec-
tion 3. After that, extensive comparative experiment studies
are presented in Section 4. Finally, the conclusions are given
in Section 5.
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Figure 1: Framework for analog circuit fault diagnosis procedure.

2. PR-Based Fault Diagnosis Approaches for
Biquad High-Pass Filter Circuits

If a fault occurs in a certain circuit, there must be some
corresponding symptoms, such as the changes in output
voltages and/or currents, which contain enormous and
untapped potential fault information. Since the transition
from operating circuit and faulty circuit is always smooth,
one needs to use statistic analysis to establish a threshold.
As our focus in this paper is to select wavelet type and
optimal features, we choose the same threshold [12] in order
to compare the performance fairly. Thus, in this paper by
appropriately analyzing the acquired data from the circuit’s
responses, we would train a classifier for the known faults and
then use such classifier to identify any known faults.

Although the faults of analog circuit can be classified into
different categories according to different criteria, such as
single fault andmultiple faults according to the number of the
faults, or parametric faults and catastrophic faults according
to the deviation from its nominal value, most faults can be
detected when a single fault can be identified, since multiple
faults can be considered as the superposition of multiple
single faults and catastrophic faults can be considered as
special soft faults that would remarkably deviate its nominal
value. Thus, it is assumed in this paper that only single fault
occurred in the CUT.

The framework of PR-based fault diagnosis approaches
for biquad high-pass filter analog circuit can be described
in Figure 1, consisting of 2 phases: training of classification
algorithm and fault diagnosis. Both of these two stages
include 5 steps: (i) circuit data acquisition, (ii) fault feature
extraction, (iii) typical feature construction, (iv) training (or
recognizing) of classification algorithm, and (v) recognition
result evaluation and feedback.

The first stage of the framework is circuit data acquisition.
In training phase, we would collect all the data used to
train classification algorithms, that is, for each type of fault,
we would collect its response data for given inputs and
train a classifier. In the diagnosis phase, we would use the
state response data of CUT with the same input stimuli for
classification.
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Figure 2: The sampling data sets for biquad high-pass filter circuit
under test.

It is well known that a PR-based classification algorithm
can identify known faults only. Thus, the generation of node
voltage for every potential known faults and the construction
of fault dictionary,where themost likely faults are anticipated,
are a very critical aspect of the entire approach. One disad-
vantage of these PR-based fault diagnosing approaches is that
it requires a rather large amount of circuit simulations, when
one considers all of the various faulty classes for the analog
devices with tolerance. The response data of a CUT can be
sketched in Figure 2, where the data for different fault classes
can be generated for each component using Monte-Carlo
techniques and circuit simulation. For example, a simple
video amplifier circuit with about twenty components needs
about two hours to get only one node’s voltage distribution
by using SPICE simulator under the computer of Pentium
processor level [16].

The collected massive source data would be analyzed and
transformed to extract the hidden features in the second
stage—fault feature extraction. Due to large amounts of
this source data, various algorithms should be skillfully and
cleverly designed to extract the features of every fault classes
so as to express the most representative characteristics with
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Figure 3: The sketch map of a three-level wavelet tree (a) and wavelet packet decomposition tree (b), where 𝑆 represents original signal, 𝐴
represents the low frequency coefficient, and𝐷 denotes the high frequency coefficient, and the number represents the decomposition layers.

reduced data and thus decrease the volume of input data
as well as increase the efficiency of classifier. As shown in
Figure 1, some statistic feature, or domain feature by using
FFTorwavelet can be used as preprocessor to extract features.
Also in order to use the training knowledge effectively,
the feature extraction procedure in diagnosis stage must be
exactly the same as that in the training stage.

The third stage is of typical feature construction. One will
construct typical fault features with expert’s experience or
mathematical analysis on the acquired data set.

The fourth stage is training for classification algorithm.
Inspired by typical classifier training algorithm such as neural
network and fuzzy inference system, this stage takes the fault
feature vectors as input and keeps learning the diagnosis
knowledge till the training process converges. The learned
diagnosis knowledge is integrated as a classifier, which can
be used to recognize the same or similar faults in diagnosis
stage.

The last stage is the recognition stage. During this phase,
the recognition results will be evaluated and possibly used for
feedback, and in such case, the parameters of classification
algorithm can be adjusted accordingly.

It can be seen from the above process that the extraction
and construction of the optimal fault features should be a
primary task in this diagnosis process. Next, we will use the
wavelet analysis as an effective signal processing technique to
investigate the circuit diagnosis problem.

3. Wavelet-Based Feature Extraction for
Fault Diagnosis

The wavelet transform (WT) has been proved to be an
effective tool formany signal processing applications. It offers
simultaneous interpretation of a signal in both time and
frequency domain and this will allow local, transient, or inter-
mittent components to be explored.Wavelet transform can be
continuous or discrete.The continuouswavelet transform can
reveal more details about a signal but its computational time
is enormous. For the fault diagnosis application in this paper,
however, the goal of using wavelet analysis is to represent
a signal efficiently with fewer parameters and less compu-
tation time. The discrete wavelet transform (DWT) is more
suitable in this case. Next, we will describe WT and DWT
briefly.

3.1. Wavelet Transformation. Let𝜓(𝑡) ∈ 𝐿2(𝑅) and its Fourier
transform, Ψ̂(𝑓), satisfy the admissibility condition [31]:

∁
Ψ
= ∫

∞

−∞
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< ∞, (1)

where 𝜓(𝑡) is a wavelet function and 𝐿
2
(𝑅) is the space of

square integrable complex functions. The wavelet transform
of 𝑓(𝑡) is defined as [8]
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𝑓
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where Ψ
𝑎,𝑏
(𝑡) is the scaled and shifted version of the

transforming function, called a “mother wavelet” or “base
wavelet,” which is defined as [1, 32]

Ψ
𝑎,𝑏
(𝑡) =

1

√𝑎
Ψ(

𝑡 − 𝑏

𝑎
) , (3)

where 𝑡, 𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 0 is continuous variables, 𝑎 is scale
factor of the base wavelet that is responsible for “resolution”
analysis, and 𝑏 is a shift factor that is responsible for location
on the time axis. The function Ψ

𝑎,𝑏
(𝑡) is called the base

wavelet (or mother wavelet) and is continuous wavelet when
parameters 𝑡, 𝑎, 𝑏 change continuously. The discrete wavelet
transform is performed by choosing fixed values 𝑎 = 2

𝑚 and
𝑏 = 𝑛2

𝑚
= 𝑛𝑎, where 𝑚, 𝑛 are integers. The discrete wavelet

analysis can be implemented by the scaling filter, which is
a low pass filter related to the scaling function 𝜑(𝑡) and the
wavelet filter, which is a high-pass filter related to the wavelet
function Ψ(𝑡) [33].

In decomposition step, a signal is convolved with a low
pass filer 𝐿 and a high-pass filter 𝐻, resulting in two vectors
𝑐𝐴
1
and 𝑐𝐷

1
(shown in Figure 3(a)). The elements of vector

𝑐𝐴
1
are called approximation coefficients and the elements

of vector 𝑐𝐷
1
are called detail coefficients. The procedure

of similar decomposition is repeated on the approximation
vector 𝑐𝐴

1
and successively on every new approximation

vector 𝑐𝐴
𝑗
, where 𝑗 is the number of iterations.

3.2. Discrete Wavelet Packet Transform. Wavelet analysis
provides a useful tool of signal processing for transient signal
analysis, but it results in better time localization in high
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frequencies in return for poorer frequency resolution since
wavelet transform only implements decomposition on low
frequency band of the source data and omits the detail or high
frequency.

Because of this problem, wavelet packet analysis was
introduced to offer amore efficient decomposition to improve
the poor frequency resolution at high frequencies [22].
Daubechies [34] showed that one can numerically obtain
wavelet and scaling coefficients at any level, for any node as
shown in Figure 3(b). In short, thewavelet packet transform is
a generalization of the wavelet transform.The only difference
is that the wavelet packet transform decomposes signal not
only on the approximations parts, but also on the details
parts.

The structure of wavelet decomposition and wavelet
packet decomposition (WPD) of a signal 𝑆 for 3 layers can
be shown in Figure 3 [33]. It is observed that the wavelet tree
(dashed line) is part of the wavelet packet tree.

3.3. Wavelet-Based Fault Feature Extraction. After a signal is
decomposed by a wavelet packet, the wavelet coefficients of
each frequency band can be obtained. We define the energy
content 𝐸

𝑘
in each subfrequency band as [35]

𝐸
𝑘
=

𝑚

∑

𝑖=0

(𝑑
𝑘

𝑖
)
2

, (4)

where 𝑚 is the number of the wavelet packet coefficients in
each subfrequency band and 𝑑𝑘

𝑖
is the wavelet coefficients of

𝑘 layer.Thus, the high/low frequency coefficients of each layer
constitute the energy value of each frequency band.

In most cases, the energy content values can be treated as
features to construct a feature vector for faults classification.
This energy eigenvector acting as fault feature vector is
defined as

𝑇 = [𝐸
0
, 𝐸
1
, . . . , 𝐸

𝑛
] . (5)

To eliminate the influence of different absolute value of
each component, all these components of the vector should
be normalized before they were input into fault diagnosis
system. This process is the so-called energized procedure.

By using wavelet transform as preprocessor, the PR-based
intelligent fault diagnosis for analog circuit can be shown as
Figure 4.

The above wavelet analysis and wavelet-based fault fea-
ture extraction are the theoretical basis for our PR-based
intelligent fault diagnosis of analog circuit.

3.4.Wavelet-Based Fault Diagnosis Approaches. Afterwavelet
decomposition, a large amount of information embedded in
the source data can be converted into energy eigenvector
consisting of several coefficients. This reduces the dimension
of input data tremendously and improves the efficiency of the
classifier greatly. But the following problems should be solved
to provide guidelines for the wavelet-based feature extraction
and selection.

(1) How to select the suitable mother wavelet?

CUT Circuit
responses

Wavelet
analysis

PR-based
classifier

Fault classes

Diagnosis
knowledge

base

Excitation
x(n)

Figure 4: Schematics for intelligent fault classifier using WT as
preprocessor.

(2) Howmany levels of the decomposition are optimal for
efficient fault characterizations? Less level decompo-
sition may lead to less information of faults, but more
level compositionwill bring large computational costs
as well as extra noise.

(3) How many decomposed coefficients should be cho-
sen?

In order to solve these problems on a biquad high-pass
filter circuit, we investigate the criteria of the selection of
mother wavelet as well as the various feature construction
methods in both decomposition level andwavelet parameters
selection by implementing three different groups of compar-
ative experiments.

For completion of this paper, a brief description of
typical CSCA (clone algorithm classification algorithm) was
presented as below as we will use it as a potential classifier.
CSCA is a kind of directed random search technique that
mimics the antigen-antibody reaction of the immune system
inmammals [36]. In the field of analog circuit fault diagnosis,
the antibodies are actually the vectors corresponding to
various trained fault class centers, and the antigens are the
faults that need to be identified by the classifier. The artificial
immune system controls the antibodies evolving to memory
antibodies based on negative selection, clone,mutation, clone
selection, affinity maturing, and the suppression mechanism.

Fault diagnosis based on CSCA includes two stages: fault
knowledge training and fault diagnosis. The first stage takes
training samples as initial antibody population and calculates
the clustering center (namely, antibody) of each fault class
through clone selection algorithm. The diagnosis stage takes
testing sample as antigen and regards the clustering center
as antibodies and then estimates the status of the input
sample through antigen-antibody affinity [37]. The detailed
procedures of CSCA are depicted in Pseudocode 1 [38] and
can be briefly described as follows.
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Input: Ag, MaxGen,𝑁, n, 𝛽, d, r
Output: the best antibody in memory cell set𝑀
Initialize the population 𝑃 (𝑁 antibodies Ab

𝑁
)

for 𝑡 = 1 to MaxGen
𝑓 = Evaluate(Ab

𝑁
, Ag); //evaluate all antibodies in population 𝑃

Ab
𝑁
= Selete(𝑓); //select 𝑛 (n < 𝑁) antibodies with higher affinity

Ab
𝐶
= Clone(Ab

𝑁
, 𝛽); //generate clone population 𝑃

𝐶

Ab
𝑀
= Mutation(Ab

𝐶
); //generate mutated clone population 𝑃

𝑀
based on 𝑃

𝐶

𝑓
∗ = Evaluate(Ab

𝑀
, Ag); //re-evaluate antibodies in population 𝑃

𝑀

//re-select r best antibodies becoming memory cell set𝑀
//and replace r worst antibodies in population 𝑃 with𝑀
Ab
𝑁
= Reselete(Ab

𝑀
, 𝑓∗, Ab

𝑁
);

Ab
𝑑
= Generate(d); //generate d new random antibodies

Ab
𝑁
= Replace(Ab

𝑑
, 𝑓, Ab

𝑁
); //replace d low-affinity antibodies in 𝑃 with Ab

𝑑

end

Pseudocode 1: Pseudocode of clone selection classification algorithm.

(1) Initialization. The initial population (𝑃) composing 𝑁

antibodies is randomly generated.

(2) Evaluation. Calculate the affinity of individual antibody a
as follows:

𝑓 =
1

∑
𝑘

𝑖=1

𝑎𝑖 − 𝑂𝑖


, (6)

where 𝑎
𝑖
is component of antibody and𝑂

𝑖
is component of the

clustering center. Thus, the affinity of antibody with antigen
is in the range of (0, 1].

(3) Selection and Cloning. Before generating a new antibody,
the 𝑛 (𝑛 < 𝑁) highest affinity antibodies will be selected
firstly. Then these antibodies will be cloned with multiplying
factor 𝛽. The number of clones reproduced for each individ-
ual is proportional to its affinity. After these 𝑛 best individuals
are cloned, a temporary clone population (𝑃

𝐶
) is generated.

(4) Mutation. The individuals in the population 𝑃
𝐶
of the

previous step are submitted to a mutation procedure. This
can enhance the diversity of antibody population and expand
the search space for finding the solution. After mutation, an
antibody population (𝑃

𝑀
) based on clone population (𝑃

𝐶
) is

generated.

(5) Reselection. After mutation, the individuals in the popu-
lation 𝑃

𝑀
are evaluated again so that the 𝑟 individuals with

higher affinity are chosen to form the memory cell set𝑀.

(6) Replacement. After the above phases are complete, the
algorithm proceeds with generation of new individuals.
The new randomly generated individuals will be put into
population directly so that the lower affinity individuals will
be replaced with higher probabilities.

Steps (2)–(6) iteratively proceed until the stopping cri-
terion is reached. The criterion used in this study takes
two forms: maximal number of generations and affinity
threshold.

4. Experimental Results and Analysis

4.1. CUT and the Experiment Configurations. We use a four-
op-amp biquad high-pass filter with components set to their
nominal values resulting in a cut-off frequency of 10 kHz,
which is the same as in [12] and was shown in Figure 5.

In [12], Aminian et al. adopted Haar wavelet and decom-
posed the signal into 3 levels (without specified reasons) and
selected the approximation coefficient as the fault features.
In this paper, our aim is to examine the efficiency of various
feature extraction approaches with different wavelet mother
selection, decomposing level, and coefficients selection.

In order to comparewith existingwork fairly, we select the
same testing configuration as in [12]. In detail, one collects
sufficient data set, including the impulse response of this
biquad high-pass filter circuit with resistors and capacitors
that allow varying within tolerances of 5% and 10% around
the normal class withGaussian distribution.Theused simula-
tor is ORCAD 10.5/pSpice with default Gaussian parameters.
When 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝐶1, and 𝐶2 are 50% higher or lower
than the nominal values as shown in Figure 5 and Table 1,
we obtain twelve fault classes, named as R1↑–R4↑, 𝐶1↑, 𝐶2↑,
R1↓–R4↓, 𝐶1↓ and 𝐶2↓. In this notation, ↑ and ↓ stand for
high and low, respectively. In order to generate training data
for different fault classes, one introduces faulty components
in the circuit and varying resistors and capacitors within
the standard tolerances of 5% and 10%, respectively. Faulty
component values for this circuit are shown in Table 1. All the
training data were collected using pSpice [8, 11–14, 16, 28, 39]
software, which can simulate the tolerance of analog devices
by embedded Monte-Carlo simulation tool. The input pulse
is an ideal excitation signal of 5V peak and 10 𝜇s duration.
This stimuli input has rich spectrum information and it can
be used to verify different criteria performance for high-pass
filters. More importantly, its response can be easily collected
with low costs.We select the same stimuli input and responses
as in [12], and our aim is different from [12] as we intend to
extract the best features based onwavelet analysis.The output
voltage data were sampled at point marked as a printer icon
(Vplot) in Figure 5 with frequency of 500,000 samples per
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Figure 5: Four-op-amp biquad high-pass filter used in this study (the resistors are in ohms).

second; thus one period of the input pulse training would
correspond to 1ms during which 501 output samples are
collected for analysis.

In this study, we have totally 13 classes, including 12 fault
classes and 1 normal class. For every fault class, 50 times
of Monte-Carlo simulations were carried out to capture the
circuit response data, from each of which as much as 1025
output data sets were collected so as to gather enough data for
analysis. The analog circuit is a typical high-pass filter and its
output with one single impulse input will not oscillate. In the
data collection process, we used impulse with peak value 5V
and pulse width 10 𝜇s and periodic 20𝜇s. The low frequency
component is eliminated and the output is a regular signal
which seems like an oscillation in Figure 6. The sizes of
the training and testing sets for this circuit are 30 (totally
390 groups) and 20 (totally 260 groups) for each fault class,
respectively.Therefore, we have 30multiplied by 1025 samples
for each class for training process and 30 multiplied by 1025
samples used for testing process. The average values of the
circuit response corresponding to each fault class were shown
in Figure 6. The persistent oscillation in this figure is due to
periodic impulse response with periodic 20𝜇s. In fact, there
is no oscillation if only one impulse input is given.

Table 1: Fault classes used on the four-op-amp biquad circuit with
the specified normal and faulty component values.

Fault class Nominal Faulty
𝐶1↑ 5 nF 10 nF
𝐶1↓ 5 nF 2.5 nF
𝑅4↑ 1.6 kΩ 2.5 kΩ
𝑅4↓ 1.6 kΩ 500 kΩ
𝐶2↑ 5 nF 15 nF
𝐶2↓ 5 nF 1.5 nF
𝑅3↑ 6.2 kΩ 12 kΩ
𝑅3↓ 6.2 kΩ 2.7 kΩ
𝑅2↑ 6.2 kΩ 18 kΩ
𝑅2↓ 6.2 kΩ 2 kΩ
𝑅1↑ 6.2 kΩ 15 kΩ
𝑅1↓ 6.2 kΩ 3 kΩ
𝑅5, 𝑅6 5.1 kΩ —
𝑅7, 𝑅8, 𝑅9, 𝑅10 10 kΩ —

The most important criterion for evaluating the per-
formance of diagnosing methods is their accuracy rate. To
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Figure 6: Average value of the circuit response corresponding to each fault class, where 𝐶1𝐻 and 𝐶1𝐿, equivalent to 𝐶1↑ and 𝐶1↓, represent
50% higher or lower than the nominal values of 𝐶1 and so forth.

compare the performance of different approaches of fault
feature extraction, we use the diagnosis rate as an index
to indicate the effectiveness of the selected features, and
this index is defined to be the ratio between the number
of fault classes that were classified correctly and the total
number of the entire fault classes. Here, we implement a
clonal selection classifier [21, 38] to test the diagnosis rate
of each feature extraction approach. As a typical artificial
immune system, The clone selection algorithm is known for
its fast convergence, escaping from local minima and high
self-learning ability [35].

4.2. Selection of theMotherWavelet. There are several wavelet
functions, which can be used for possible candidates of the
mother wavelet, so the proper choice of the mother wavelet
selected for preprocessing the analog circuit’s outputs is
crucial for optimal design of the fault diagnostic system. In
this section, we have examined five wavelet functions, Haar,
Symlets (sys2), Morlet, Mexican Hat (Mexh), and Meyer, as
possible candidates for the mother wavelet, among which
Haar and sys2 are discrete wavelets, and Morlet, MexH, and
Meyer are continuous wavelets. For the discrete wavelet,
we use 5-level decomposition and the first coefficients of
approximation from levels 1 to 5 are used as candidate
features [12]. In order to keep the same dimension and
size of feature vectors, the scales of the continuous wavelet

transform, which determine the degree of the wavelet that
was compressed or stretched [34], were set as (1, 2, 3, 4, 5).
These five sets of wavelet coefficients are then generated and
normalized to form a feature vector with 5 components.
Classified by the clone selection algorithm, the detailed
performance of these mother wavelets is shown in Table 2
and Figure 7. Each row in this table corresponds to one fault
class. Different columns then indicate the diagnosing rate that
the test data are diagnosed correctly with different mother
wavelet.

After analyzing thewavelet coefficients generated by these
wavelet functions, the mother wavelet that gave the most
distinct features (wavelet coefficients) across fault classes
would be selected as the most suitable one for the test circuit
to provide the optimal feature.

This group of experiments indicate that, for the four-op-
amp biquad high-pass filter, the average diagnosing rate of
discrete mother wavelets, that is, (53.85% + 52.69%)/2 =

53.27%, is better than continuous mother wavelets, that is,
(56.2% + 47.69% + 37.31%)/3 = 47.06%. It is also easy to
note that the average diagnosing rate ofMorlet, 56.2%, is the
best among these five wavelets, which was slightly better than
that of best discrete mother wavelet, Haar with an average
diagnosing rate 53.85%. Therefore, the best discrete mother
wavelet Haar and the best continuous mother wavelet Morlet
were selected for the next group of experiments to study how
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mother wavelets.

Table 2: Diagnosis rate of fault feature constructed by 5 mother
wavelets.

Fault classes Haar Sys4 Morlet Mexh Meyer
Norm 5% 15% 40% 45% 25%
𝐶1↑ 65% 65% 70% 85% 65%
𝐶1↓ 70% 65% 15% 10% 20%
𝑅4↑ 15% 0% 25% 15% 15%
𝑅4↓ 35% 20% 40% 45% 60%
𝐶2↑ 5% 20% 70% 20% 15%
𝐶2↓ 35% 35% 40% 60% 25%
𝑅3↑ 95% 95% 65% 45% 30%
𝑅3↓ 100% 100% 70% 65% 25%
𝑅2↑ 95% 95% 85% 75% 60%
𝑅2↓ 100% 100% 90% 65% 70%
𝑅1↑ 70% 70% 95% 60% 65%
𝑅1↓ 10% 5% 25% 30% 10%
Average 53.85% 52.69% 56.2% 47.69% 37.31%

the decomposition level and candidate coefficients will be
determined.

4.3. Wavelet Decomposition Scales. Given that the mother
wavelet had been chosen as in last section, next we should
determine howmany levels the decomposition of the wavelet
should decompose in order to find enough approximation
and detailed information. Although five levels had been used
for the last group experiments according to [12], it is not
a trivial work since the decomposition level is essentially
depending on the nature of the signal and the application.
Since the fault features extracted byHaar and Morlet wavelet
show the best performance in the previous experiments,
different decomposition levels were compared to reveal the
tradeoff between efficiency of diagnosis and computational

Table 3: Diagnosis rate of fault feature by Haar wavelet at five
different decomposition levels.

Fault classes 1 level 3 levels 5 levels 7 levels 9 levels
Norm 15% 30% 70% 70% 70%
𝐶1↑ 95% 75% 90% 90% 90%
𝐶1↓ 100% 80% 85% 85% 85%
𝑅4↑ 0% 15% 20% 30% 30%
𝑅4↓ 30% 45% 50% 50% 50%
𝐶2↑ 25% 45% 45% 55% 55%
𝐶2↓ 45% 55% 70% 70% 70%
𝑅3↑ 95% 85% 95% 100% 100%
𝑅3↓ 100% 85% 100% 100% 100%
𝑅2↑ 100% 100% 100% 100% 100%
𝑅2↓ 80% 85% 95% 95% 95%
𝑅1↑ 35% 75% 95% 95% 95%
𝑅1↓ 10% 15% 30% 45% 45%
Average 56.2% 60.8% 72.7% 75.8% 75.8%
Increment / 4.6% 11.9% 3.1% 0

costs. The clonal selection classifier is used again to calculate
the diagnosing rate for each group of experiments.

The Haar wavelet is investigated first. The obtained data
is decomposed to 1, 3, 5, 7, and 9 levels, respectively, and
then all coefficients of each level are assembled as the fault
features. Next, these coefficients were energized as indicated
in formula (4), normalized, and input into the clonal selection
classifier to determine the fault class. Table 3 and Figure 8
listed the diagnosing rate of these 5 groups.

Our results clearly indicate that the diagnosing rate is
increasing with more levels of the wavelet decomposition till
7 levels as there is no improvement when the decomposition
level is up to the 9 levels from 7 levels.

Then the effectiveness of different decomposition scale
for the Morlet wavelet is investigated. The groups done in
Section 4.2 were named group A, and we have transformed
the source data in more detailed scales with group B =
[1 3 5 7 9 11 13 15 17 19] (totally 10), group C = [1 : 2 : 29]
(totally 15), group D = [1 : 2 : 39] (totally 20), group E =
[1 : 2 : 59] (totally 30), group F= [1 : 2 : 79] (totally 40), groupG
= [1 : 2 : 99] (totally 50), and groupH= [1 : 2 : 199] (totally 100),
respectively. And also the obtained coefficients of each scale
are assembled as the fault feature and then were energized,
normalized, and presented to the clonal selection classifier
to examine the efficiency of diagnosis. The results of these
experiments are presented in Table 4 and Figure 9.

Our results indicate that the overall accuracy of diagnos-
ing system is improved continuously with the increasing of
the decomposition scales until it reached the upper bound
that was determined by the circuit’s outputs, but the incre-
ment has declined when the level of scales was greater than E
groups, which indicates that this represents the possible best
decomposition level.

It is important to note that the search for candidate
features does not need to be exhaustive. All we required is
to select a few candidate features that can be distinguished
among fault classes. Group H shows that even the scale
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Figure 8: Diagnosis rate of fault feature by Haar wavelet at five different decomposition levels.

Table 4: Diagnosis rate of fault feature by Morelet wavelet at eight different decomposition scales.

Fault classes A (5) B (11) C (15) D (20) E (30) F (40) G (50) H (100)
Norm 40% 60% 90% 95% 95% 95% 95% 95%
𝐶1↑ 70% 100% 100% 100% 100% 100% 100% 100%
𝐶1↓ 15% 35% 40% 40% 50% 50% 50% 65%
𝑅4↑ 25% 25% 25% 50% 90% 85% 95% 95%
𝑅4↓ 40% 30% 40% 40% 40% 40% 40% 40%
𝐶2↑ 70% 55% 65% 75% 80% 85% 85% 85%
𝐶2↓ 40% 70% 70% 70% 70% 70% 70% 70%
𝑅3↑ 65% 100% 100% 100% 100% 100% 100% 100%
𝑅3↓ 70% 85% 95% 95% 100% 100% 100% 100%
𝑅2↑ 85% 95% 100% 100% 100% 100% 100% 100%
𝑅2↓ 90% 85% 100% 100% 100% 100% 100% 100%
𝑅1↑ 95% 90% 90% 100% 100% 100% 100% 100%
𝑅1↓ 25% 25% 55% 70% 95% 100% 100% 100%
Average 56.2% 65.8% 74.6% 79.6% 86.2% 86.5% 87.3% 88.5%
Increment / 9.6% 8.8% 5% 6.6% 0.3% 0.8% 1.2%

was enlarged to 2 times group G, from 50 to 100, and the
diagnosing rate has been improved merely 1.2%. In consid-
eration of the balance between the diagnosing performance
and computational cost, it offers superior efficiency and
computing time and is the most suitable decomposition level
for fault diagnostic problems when the decomposition scale
runs up to 50 (group G), where 12 out of 13 fault classes reach
their peak rates.

4.4. Selection of Candidate Coefficients. Based on analysis in
[12], approximation coefficients are appropriate features for
this type of analog circuit fault diagnosis since they represent
the low frequency contents or basic structure of a signal.

One should also note that the details coefficients of wavelet
decomposition that capture the high frequency contents of
a signal are inseparable part of the source data. In fact, the
wavelet coefficients associated with all levels then form all the
possible features for our study. The selection of the candidate
coefficients as features also plays an important role when the
mother wavelet and decomposition scale have been decided
as investigated in last two sections.

In this part, the fault features were constructed by three
different approaches by selecting different approximation and
detail coefficients generated by 7-level Haar wavelet packet
decomposition. These fault features are then energized, nor-
malized, and input into the clonal selection classifier.
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Figure 9: Diagnosis rate of fault feature by Morlet wavelet at 8 different decomposition scales.

Fault features group A only takes the first approxi-
mation coefficients of the 7th level, and in group B, the
first coefficients of approximation in levels 1 through 5 are
used. In group C, however, all the approximation and detail
coefficients from level 1 to level 7 are taken into consideration.
In addition, through the observation of the sample data, we
noted that every fault class has its own unstable period last
about 12 cycles. To investigate their influences on the feature
vector, we then removed these unsteady data of each fault
mode andmade another groupD,whose feature construction
method is kept the same as that of group C. Figure 10 and
Table 5 show the effectiveness of these features.

Observation of the average diagnosing rate in the second
column (54.6%) and first column (38.5%) of Table 5 reveals
that features extracted from level 1 to level 7 contain more
useful information for fault identification. The comparative
result between the average diagnosing rate in third column
(75.8%) and the second column (54.6%) clearly shows the
advantage of detail coefficients of WPD.The fact that average
diagnosing rate of group D (67.7%) is lower than C (75.8%)
indicates that the selection of response data has significant
relationship with the diagnosis accuracy, which will be
investigated in future work.

In summary, we can conclude the contributions of our
paper as below.

(1) The mother wavelets of Haar and Morlet demon-
strated the best performance among the selected
five discrete mother wavelets and continuous mother
wavelets.

(2) The diagnosis accuracy was improved with the in-
creasing of decomposition level of the wavelet until
the best diagnosing rate was achieved. And also the
best decomposing level can be computed for both
Haar and Morlet wavelet based on identification rate.

Table 5:Diagnosis rate of fault feature by different coefficients under
a 7-level Haar wavelet packet decomposition.

Fault classes Group A Group B Group C Group D
Norm 0% 10% 70% 60%
𝐶1↑ 35% 55% 90% 95%
𝐶1↓ 0% 65% 85% 85%
𝑅4↑ 5% 15% 30% 15%
𝑅4↓ 0% 45% 50% 40%
𝐶2↑ 65% 0% 55% 60%
𝐶2↓ 5% 25% 70% 65%
𝑅3↑ 95% 95% 100% 95%
𝑅3↓ 100% 100% 100% 100%
𝑅2↑ 95% 100% 100% 100%
𝑅2↓ 100% 85% 95% 95%
𝑅1↑ 0% 15% 95% 70%
𝑅1↓ 0% 10% 45% 0%
Average 38.5% 54.6% 75.8% 67.7%

(3) Either approximation coefficients or detail coeffi-
cients of WPD on the specified circuit response data
contain useful information for fault diagnosis.

5. Conclusions

In this paper, we investigate the selection of mother wavelet,
decomposition level, and feature extraction for fault diagnosis
of the biquad high-pass filter circuit based on input and
output response data. For these purposes, three groups of
experiments were carried out and some interesting conclu-
sions have been obtained. We believe the proposed approach
can be used to other analog circuits if the response data with
fault requirements are available.
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Figure 10: Diagnosis rate of fault feature constructed by different
coefficients under a 7-level Haar wavelet packet decomposition.

The proposed approach and its demonstrative results in
this paper would motivate us to do more research in this
area from both data response point of view and theoretical
analysis. First, from data-drive point of view, we can conduct
similar study on some other typical analog circuits including
high frequency or amplifiers. Another future direction is to
investigate the selection of different input stimuli. Of course,
we need to establish the faulty detection tolerance threshold
via data statistic analysis.

Second, from theoretical point of view, one important
question is to investigate theoretical difference between the
selected mother wavelet in this paper and other mother
wavelets and give a justifiable interpretation for the selection
in this paper. Also how the selected coefficients are related to
the circuit behaviour in time or frequency domain deserves
theoretical analysis.
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