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Structural load types, on the one hand, and structural capacity to withstand these loads, on the other hand, are of a probabilistic
nature as they cannot be calculated and presented in a fully deterministic way. As such, the past few decades have witnessed
the development of numerous probabilistic approaches towards the analysis and design of structures. Among the conventional
methods used to assess structural reliability, the Monte Carlo sampling method has proved to be very convenient and efficient.
However, it does suffer from certain disadvantages, the biggest one being the requirement of a very large number of samples to
handle small probabilities, leading to a high computational cost. In this paper, a simple algorithm was proposed to estimate low
failure probabilities using a small number of samples in conjunction with theMonte Carlo method.This revised approach was then
presented in a step-by-step flowchart, for the purpose of easy programming and implementation.

1. Introduction

The main purpose of regulations and existing approaches in
the analysis and design of structures, ranging from buildings
to geotechnical structures, is to ensure the safety and proper
performance when subject to probable loads. Safety means
that structures should not fail under typical loads. Such
a failure may not necessarily be in the form of structural
collapse and can instead be defined as a certain level of
failure under what is known as “performance level” in civil
engineering regulations [1, 2].

Assume a load 𝑄 (or the stress and strain caused by
the load) is to be applied to a structure with a load-bearing
capacity of𝑅; if𝑅 is greater than𝑄, the structure is safe, while
𝑄 being greater than𝑅 renders the structure unsafe, incurring
a level of damage which depends on the difference between𝑄
and 𝑅.Therefore, a Limit State Function (LSF) can be defined
as follows:

LSF = 𝑅 − 𝑄. (1)

Negative values of LSF imply that the capacity is not
adequate to bear the applied load. Therefore, the structure is

likely to undergo some sort of failure. On the other hand, pos-
itive LSF values indicate adequacy of the structural capacity;
that is, the structure is likely to remain safe under the given
load. With the LSF value established, failure probability can
now be defined as follows:

𝑃 (failure) = 𝑃 (LSF ≤ 0) = 𝑃 (𝑅 ≤ 𝑄) . (2)

A great deal of research has been done on different
methods to calculate this probability [3, 4]. One of the com-
mon methods for this purpose is the Monte Carlo sampling
method [5–7]. Although this method is seen as effective
and is widely used in research, Monte Carlo sampling still
suffers a problem which limits its application scope. When
the probability is relatively small, the number of samples
required by the Monte Carlo method in order to adequately
make predictions increases significantly, making the analysis
difficult. As such, the aim of this paper is to propose an
algorithm to estimate failure probability in cases where
less than sufficient number of samples is provided, thereby
addressing this issue.

As shown in Monte Carlo sampling algorithm (Figure 1),
first, considering the probability distribution for each vari-
able, enough number of random numbers is generated.
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Figure 1: Algorithm of Monte Carlo method.

Then, the LSF is evaluated for the generated random num-
bers, so that each random number corresponds to a LSF
value. Now, by counting the number of less-than-zero data
points and dividing the count by the total number of data
points, an estimation of failure probability can be arrived
at.

However, the problem is that if the probability of failure is
so small that it renders the number of samples inadequate, the
method loses its efficiency. In other words, as no less-than-
zero output is likely to be found, the probability of failure is
calculated as zero.

In such cases, there are two logical workarounds. The
first possible solution is to increase the number of random
numbers and repeat the Monte Carlo analysis. However,
depending on the available time and resources, this may
not always be possible. The second is to seek an approach
through which the probability can be approximated using
the available limited number of data points. As described
in the following section, this paper focuses on the sec-
ond solution and proposes an algorithm to address this
issue.

2. Problem Description

2.1. The Problem of the Monte Carlo Method. The problem
with Monte Carlo sampling is that if the probability of failure
is a small value, a large number of samples are needed in
order to predict this accurately, causing a sharp increase in
required cost and time. Denoting the actual value of failure
probability as 𝑃actual, the approximated value calculated by
Monte Carlo sampling is 𝑃. Soong and Grigoriu [8] showed

that the relationship between 𝑃actual and 𝑃 can be expressed
as follows:

𝐸 (𝑃) = 𝑃actual,

𝜎
2

𝑃
=
1

𝑁
(𝑃actual (1 − 𝑃actual)) ,

𝑉
𝑃
= √

1 − 𝑃actual
𝑁 × 𝑃actual

,

(3)

where𝑁 is the total number of samples and 𝐸(𝑃), 𝜎2
𝑃
, and𝑉

𝑃

are the expected value, the variance, and the variation coef-
ficient of estimated probability, respectively. As can be seen,
by increasing𝑁, the variance and dispersion of Monte Carlo
estimation are reduced, making the results less uncertain.

Now, if the Monte Carlo sampling method is used to
calculate a probability of around one percent, with a variation
coefficient of 5 percent, the following number of samples is
required:

𝑁 =
1 − 𝑃actual
𝑉2
𝑃
× 𝑃actual

=
1 − 10

−2

0.052 × 10−2
= 39600. (4)

As seen above, for a low failure probability, a large number
of samples are required, making the method difficult to
apply. To address the root cause of this problem, it should
be explained that the failure probability is based on the
tail of the fitted distribution function, where no samples of
the limited set, usually, fall into this region. Therefore, the
conventional Monte Carlo sampling is a bad approximation
of tail in general, and a small error in the tail leads to a
huge error in estimated failure probability. A solution around
this is to generate a greater number of simulations in order
to obtain enough samples in the tail and, consequently,
make a better approximation; however, this would make the
method prohibitively expensive. The other solution is to use
algorithms that generate more random numbers near the tail.
These kinds of algorithms mostly use a technique to change
the dispersion of random numbers in order to generate more
random numbers in a certain angle or a specific area such as
the tail region [9–12]. However, for using these methods, we
still need to go through further calculations which increase
the model complexities. The purpose of this paper is to
provide an approximate but simplemethod for estimating the
small failure probability that could simply be programmed
and implemented.

2.2. Quantification of the Problem. To further explain the
problem with Monte Carlo sampling method, assume we
want to use the Monte Carlo method to estimate the prob-
ability of failure by taking 25 samples, where the LSF is
calculated as LSF = 𝑅 − 𝑄, with 𝑅 being a random variable
of log-normal distribution function (mean (𝜇

𝑅
) and standard

deviation (𝜎
𝑅
) of 180 and 20, resp.) and𝑄 is a randomvariable

with Extreme Type I distribution function (mean (𝜇
𝑄
) and

standard deviation (𝜎
𝑄
) of 110 and 15, resp.). We solved the

problem in this case as follows:
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(i) Two groups of 25 random numbers (ranging from
zero to one) were generated for 𝑅 and 𝑄, using uni-
formdistribution function. Uniform randomnumber
generators can be found in both statistical software
and spreadsheet software [13, 14] or library functions
of programming languages [15, 16]. The generated
random numbers for 𝑅 and𝑄 are listed in the second
and fifth columns of Table 1, respectively (𝑢

𝑖1
and 𝑢
𝑖2
).

(ii) For each random number, 𝑢
𝑖1
, a corresponding value

of 𝑅, 𝑟
𝑖
, was generated. For this purpose, a set of

standard-normal random variables (𝑧
𝑖
’s) were first

generated from𝑢
𝑖1
using inverseCDFof the standard-

normal distribution function,Φ:

𝑧
𝑖
= Φ
−1
(𝑢
𝑖
) . (5)

Then, using the relationship between log-normal
distribution and standard-normal distribution as in
(6), the corresponding log-normal variables, 𝑟

𝑖
’s, were

produced:

𝑉
𝑅
=
𝜎
𝑅

𝜇
𝑅

,

𝜎
2

ln(𝑅) = ln (𝑉2
𝑅
+ 1) ,

𝜇ln(𝑅) = ln (𝜇
𝑅
) −

1

2
𝜎
2

ln(𝑅),

𝑟
𝑖
= exp (𝜇ln(𝑅) + 𝑧𝑖𝜎ln(𝑅)) .

(6)

(iii) For each random number, 𝑢
𝑖2
, a corresponding value

of 𝑄, 𝑞
𝑖
, is then generated. For this purpose, inverse

CDF of Extreme Type I distribution function was
used as shown in

𝑞
𝑖
= 𝐹
−1

𝑄
(𝑢
𝑖
) = 𝜇
𝑄
− 0.45𝜎

𝑄
−
𝜎
𝑄

1.282
ln (−ln (𝑢

𝑖
)) . (7)

(iv) Subtracting 𝑞
𝑖
from 𝑟

𝑖
, 𝑁 values of LSF were calcu-

lated, as reported in the seventh column of Table 1.
(v) Finally, the probability of LSF < 0 was calculated

using (8), where 𝑛 is the number of less-than-zero
cases and𝑁 is total number of data points:

𝑃 =
𝑛

𝑁
. (8)

As can be seen, there were no less-than-zero values,
implying a nonreasonable zero value for the estimated prob-
ability of Monte Carlo.

The reason for this issue is that the failure probability is
too small in this case, so that the random numbers are so
low that the Monte Carlo method fails to predict the solution
at an acceptable level of accuracy. To investigate further, we
developed a code for this case study and repeated the Monte
Carlo method with 100, 1000, 5000, 10000, 15000, and 20,000
random numbers. The results are presented in Table 2.

As can be seen, by increasing the number of samples,
the accuracy of the predicted probability value increased

Table 1: Calculation of Monte Carlo method.

𝑖 𝑢
𝑖1

𝑧
𝑖

𝑟
𝑖

𝑢
𝑖2

𝑞
𝑖

LSF
1 0.9671 1.8399 219.3412 0.4574 106.1226 113.2186
2 0.9374 1.5332 212.0136 0.4076 104.5165 107.4971
3 0.3290 −0.4428 170.3359 0.2162 98.2607 72.0752
4 0.1541 −1.0188 159.8069 0.1391 95.3015 64.5053
5 0.8573 1.0684 201.3745 0.2406 99.1079 102.2666
6 0.2448 −0.6908 165.7200 0.0792 92.3649 73.3551
7 0.8095 0.8759 197.1274 0.0051 83.7760 113.3514
8 0.4357 −0.1618 175.7211 0.7801 119.5504 56.1707
9 0.5298 0.0748 180.3884 0.1426 95.4491 84.9393
10 0.9847 2.1627 227.3260 0.8356 123.3391 103.9869
11 0.5555 0.1396 181.6865 0.2853 100.6010 81.0855
12 0.2554 −0.6576 166.3306 0.6398 112.6799 53.6507
13 0.9317 1.4887 210.9716 0.7672 118.7879 92.1837
14 0.6930 0.5044 189.1786 0.8658 125.9135 63.2651
15 0.4681 −0.0802 177.3174 0.0560 90.8663 86.4511
16 0.6443 0.3699 186.3817 0.3524 102.7570 83.6247
17 0.4761 −0.0600 177.7150 0.8802 127.3382 50.3768
18 0.9553 1.6988 215.9389 0.6482 113.0289 102.9100
19 0.9612 1.7648 217.5236 0.0507 90.4690 127.0547
20 0.2731 −0.6036 167.3288 0.4965 107.4198 59.9090
21 0.1432 −1.0660 158.9745 0.6972 115.1794 43.7951
22 0.0403 −1.7475 147.4149 0.6381 112.6138 34.8011
23 0.6475 0.3786 186.5616 0.2523 99.5045 87.0570
24 0.9782 2.0174 223.6960 0.7979 120.6637 103.0322
25 0.0612 −1.5447 150.7632 0.9179 131.9963 18.7669

Table 2: Results of Monte Carlo method using different numbers of
samples.

Number of samples Failure probability
1 100 0
2 1000 0.006
3 5000 0.0054
4 10000 0.0053
5 15000 0.00493
6 20000 0.00455

significantly. However, using this process, especially in cases
where the LSF is associated with many random variables
or when it is not explicitly available, would be very costly
and difficult. This is why an assistant algorithm, to be run
alongside the Monte Carlo algorithm, seems necessary to
provide an estimation of the failure probability with lower
samples numbers.

3. Proposed Method

As explained, due to the low number of available samples, we
were not able to use the conventional Monte Carlo method
to accurately calculate the failure probability. Furthermore,
increasing number of samples was not a viable alternative due
to time and resource limitations. Therefore, we propose an
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approximation algorithm for calculating the failure probabil-
ity under these conditions.

Our approach towards probability in the proposed algo-
rithm is to use the trend the data displays as it approaches
the negative border; this is compared to the Monte Carlo
method’s counting of the number of less-than-zero samples.
For this purpose, the LSF should first be evaluated for the
random variables. Then, the LSF values should be sorted
in small-to-large (𝑥

𝑖
) fashion. The associated probability of

each value of LSF must then be approximated via 𝑝
𝑖
=

𝑖/(𝑁 + 1) [8]. Here, it is assumed that these values are likely
to follow the standard-normal distribution. Therefore, the
inverse standard-normal distribution is adopted to calculate
the corresponding standard-normal variable (𝑧

𝑖
). Then, the

values of 𝑧
𝑖
versus 𝑥

𝑖
are plotted on a graph, with a curve

fitted to them. The curve fitting algorithms are not discussed
in this study because, depending on the type and distribution
of data, different algorithms may be appropriate. However, it
is recommended to select a curve fitting algorithm that could
approximate the data by the lowest possible margin of error.
In this paper, the least squaresmethod is used for curve fitting
[17, 18]. The fitted curve is used instead of the large number
of samples usually required; that is, instead of generating a
large number of samples, a specific trend is identified from the
curve using the available data. The intersection of the curve
with the vertical axis specifies the standard-normal variable
corresponding to LSF = 0, which shows the initial failure
level. The value of this probability can be easily calculated
using the standard-normal distribution function, Φ(𝑧

𝑖
), as

follows:

Φ(𝑧 = perception) = Failure Probability. (9)

The proposed algorithm is shown in Figure 2.
To summarize, the previously presented case study was

solved using the proposed algorithm, following the step-by-
step procedure below which provided an estimation of the
probability of failure.

Step 1. As shown in the second column of Table 3, the LSF
values were sorted from small to large, so that the smallest
and largest values were denoted by 𝑥

1
and 𝑥

𝑁
, respectively.

Step 2. For each 𝑥
𝑖
, a probability was calculated using the

Gumbel distribution [8] in (10), as reported in the third
column of Table 3:

𝑝
𝑖
=

𝑖

𝑁 + 1
. (10)

Step 3. As shown in the fourth column of Table 3, for each 𝑝
𝑖
,

a corresponding 𝑧
𝑖
= Φ
−1
(𝑝
𝑖
) was calculated.

Step 4. 𝑥
𝑖
was plotted against 𝑧

𝑖
(Figure 3).

Step 5. A graph was fitted to the data (Figure 3 and (10)), with
the equation of the fitted curve being as follows:

𝑧
𝑖
= 0.032923𝑥

𝑖
− 2.606624. (11)

Start

Calculate the intersection of the 
curve with the x-axis (intercept)

Stop

Sort LSF values from 
small to large (xi)

pi =
i

N + 1
, zi = Φ−1(pi)

Draw zi versus xi

Interpolate a curve to the 
(xi, zi) values

P(failure) = Φ(intercept)

Figure 2: The proposed approximation algorithm.
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Figure 3: Standard-normal variable versus LSF.

Step 6. The intersection of fitted curve and vertical axis
(intercept) was calculated:

𝑧
𝑖
(0) = 0.032923 × 0 − 2.606624 = −2.606624. (12)

Step 7. The failure probability was calculated using the CDF
of the standard-normal distribution function as follows:

Failure probability = Φ (intercept) = Φ (−2.606624)

= 0.004572.
(13)
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Table 3: Related data to the proposed approximation algorithm.

𝑖 LSF outputs Probability, 𝑝
𝑖
= 𝑖/(𝑁 + 1) 𝑧

𝑖
= Φ
−1
(𝑝
𝑖
)

1 18.7669 0.0385 −1.7688
2 34.8011 0.0769 −1.4261
3 43.7951 0.1154 −1.1984
4 50.3768 0.1538 −1.0201
5 53.6507 0.1923 −0.8694
6 56.1707 0.2308 −0.7363
7 59.9090 0.2692 −0.6151
8 63.2651 0.3077 −0.5024
9 64.5053 0.3462 −0.3957
10 72.0752 0.3846 −0.2934
11 73.3551 0.4231 −0.1940
12 81.0855 0.4615 −0.0966
13 83.6247 0.5000 0.0000
14 84.9393 0.5385 0.0966
15 86.4511 0.5769 0.1940
16 87.0570 0.6154 0.2934
17 92.1837 0.6538 0.3957
18 102.2666 0.6923 0.5024
19 102.9100 0.7308 0.6151
20 103.0322 0.7692 0.7363
21 103.9869 0.8077 0.8694
22 107.4971 0.8462 1.0201
23 113.2186 0.8846 1.1984
24 113.3514 0.9231 1.4261
25 127.0547 0.9615 1.7688

As can be seen, the proposed algorithm approximated the
failure probability to an acceptable level of accuracy equiva-
lent to the estimation provided byMonte Carlomethod using
20000 random numbers.

4. Discussion

To have a better evaluation of proposed method, we need to
use it for some other scenarios and check the results. Thus,
we define different LSFs and random variables here and try
to study the efficiency of proposed method in estimating
the exceedance probability. In this regard, three LSFs were
defined as follows:

LSF
1
= 𝑅 − 𝑄, (14a)

LSF
2
= 1 −

𝑄

𝑅
, (14b)

LSF
3
= ln(𝑅

𝑄
) . (14c)

Two different load-cases were assumed for each LSF
where any of them has different random variables 𝑅 and
𝑄. Thus, a total of 6 different load-cases were defined as
shown in Table 4. It should be noted that the required data
for the proposed method are the LSF random values. The
types of variables used tomake the LSF, and their distribution

functions, have no direct effects on the proposed algorithm.
Therefore, using random variables with different distribution
functions is one of the capabilities of proposedmethod,which
is examined in this section.

Each of the six defined load-cases was then analyzed by
conventional Monte Carlo method using 25, 1000, 10000,
and 20000 samples. The results are shown in columns 2 to
6 of Table 5. In addition, the same load-cases were analyzed
by the proposed method, so that we can carefully examine
the results. The results of analysis are shown in column 7 of
Table 5 and the probability plots are depicted in Figure 4.

As can be seen, in almost all cases, the result of the
proposed method to predict the probability of failure by 25
samples is close to the conventional Monte Carlo method
by 20000 samples. This issue demonstrates the efficiency
of proposed method for predicting the small probability
of failure. However, it should be noted that the proposed
method is an approximation algorithm and aims to make an
approximation of failure probability. Therefore, if increasing
of samples numbers is possible, the conventionalMonteCarlo
method is a better choice. Otherwise, the proposed algorithm
can be used to estimate the probability.

5. Application of Proposed Method

The proposed method could be used to evaluate the reli-
ability of building or geotechnical structures. To address
this capability, a geotechnical case study related to the rock
blasting excavation is used in this section. The subject is to
estimate the load-bearing capacity of rock mass against the
explosion load. After the explosion, the rock medium around
the explosion point undergoes a severe shock-load andwould
be intensely cracked. The size of this crushed zone should be
limited to a certain area to minimize the side effect of the
explosion. For this purpose, we use the proposed method to
estimate the probability of crushed zone exceeding a certain
radius. In other words, we try to predict the chance of cracks
going beyond a certain radius.

To start the calculation, we first must introduce Esen et
al.’s model [19]. Based on a series of in situ tests on concrete
and rock samples, Esen et al. [19] developed a formula to
predict the crushing zone radius around the blast-hole. Their
formula is as follows:

𝑟
𝑐
= 0.812𝑟

0
(

𝑃
3

𝑏

𝐾 × 𝜎2
𝑐

)

0.219

, (15)

where 𝑟
𝑐
is the crushed zone radius (mm), 𝑟

0
is the blast-

holes radius (mm), 𝑃
𝑏
is the blast-hole pressure (Pa),𝐾 is the

stiffness of rock mass (Pa), and 𝜎
𝑐
is the uniaxial compressive

strength of rock. 𝐾 and 𝑃
𝑏
could be calculated, respectively,

by

𝐾 =
𝐸
𝑑

1 + ]
𝑑

, (16a)

𝑃
𝑏
=
1

8
𝜌
0
𝐷
2

𝐶𝐽
, (16b)

where 𝐸
𝑑
is the dynamic elastic modulus (Pa), ]

𝑑
is dynamic

Poisson’s ratio, 𝜌
0

is the unexploded explosive density
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Figure 4: Probability plots for different load-cases.



Mathematical Problems in Engineering 7

Table 4: Different load-cases.

Case number LSF 𝑅 𝑄

𝑓 (𝑥)
∗

𝜇
∗∗

𝜎
∗∗∗

𝑓 (𝑥) 𝜇 𝜎

1 𝑔 = 𝑅 − 𝑄 Log-normal 100 10 Extreme Type I 50 8
2 𝑔 = 𝑅 − 𝑄 Uniform 80 5 Normal 50 8
3 𝑔 = 1 − 𝑄/𝑅 Uniform 100 5 Normal 70 10
4 𝑔 = 1 − 𝑄/𝑅 Normal 90 8 Log-normal 60 7
5 𝑔 = ln (𝑅/𝑄) Log-normal 100 7 Uniform 80 6
6 𝑔 = ln (𝑅/𝑄) Normal 100 8 Extreme Type I 60 10
∗
𝑓 (𝑥) is the probability distribution function.
∗∗𝜇 is the mean.
∗∗∗
𝜎 is the standard deviation.

Table 5: Comparison of proposed method with conventional Monte Carlo method for different load-cases.

Case number Conventional Monte Carlo sampling Proposed method
25 1000 5000 10000 20000 25

1 0 0 0.0002 0.0005 0.00055 0.000548
2 0 0 0.0002 0.0008 0.0005 0.000538
3 0 0.004 0.003 0.0029 0.0028 0.002818
4 0 0 0.0024 0.0033 0.00355 0.003654
5 0 0.011 0.0106 0.0102 0.0096 0.009637
6 0 0.006 0.0054 0.005 0.00485 0.004966

Table 6: Characteristics of involved random variables.

Variable Mean Standard deviation
𝜌
0
(g/cm3) 0.95 0.2

𝐷
𝐶𝐽

(m/s) 5000 750
𝐸
𝑑
(GPa) 70 20

]
𝑑

0.25 0.05
𝜎
𝑐
(Mpa) 80 30

𝑟
0
(mm) 80 30

(kg/m3), and 𝐷
𝐶𝐽

is the detonation velocity (m/s). For the
next step, the involved parameters should be defined as
random variables. Here, we assumed that these variables have
a normal probability distribution function by the character-
istics listed in Table 6.

The LSF was set as the difference of crushed zone radius
from 400mm, as shown in

LSF = 400 − 𝑟
𝑐
. (17)

The probability of LSF < 0 is identical to the exceeding
of crushed zone radius from 400mm, our study’s target
in this section. Besides the proposed method, we used the
conventional Monte Carlo method, First-Order Reliability
Method (FORM), and Second-Order Reliability Method
(SORM) to calculate this probability and then compare the
results [20–23].

The Monte Carlo sampling method was used by 25,
1000, 5000, 10000, and 20000 sample numbers. The results
are shown in Table 7. As seen, the exceedance probability
was converged to 3.465 percent after 20000 samples. The
proposed method was then used in the next step to analyze

Table 7: The results of Monte Carlo sampling method.

Samples number Exceedance probability
25 0
1000 0.026
5000 0.0306
10000 0.0327
20000 0.03465

Table 8: The results of proposed method.

Fitted equation Intercept Exceedance probability
𝑦 = 0.009𝑥 − 1.8303 −1.8303 0.0336

the established problem. The probability graph is depicted in
Figure 5, and the results are shown in Table 8.

To solve the case study problem by FORM and SORM
methods, a computer program, called Risk Tool (RT) [24,
25], developed for reliability analysis and risk assessment of
structures, was used. For this means, the random variables
were first defined in the “Models” section of the software,
according to the values of Table 6, and then the LSF in (17)was
entered in the “Functions” part of the software. The required
settings for both FORMand SORManalyses were done in the
“Methods” tab, and the analyses were finally performed using
the RT software. The results are shown in Table 9.

The results of the four methods used are shown in
Figure 6. As seen, the proposed algorithm could closely
approximate the results of both Monte Carlo and SORM
methods. However, there is a relatively high difference
between the results of FORMand othermethods. It should be
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Figure 5: The probability graph for crushed zone radius.

Table 9: The results of FORM and SORM analyses.

Reliability method Reliability index Exceedance probability
FORM 1.97907 0.0239043
SORM 1.80431 0.035591

addressed that this matter was due to the linear approxima-
tion of FORM, which simply does not match our nonlinear
LSF in this case study. Therefore, the FORM could not
accurately approximate its exceedance probability, compared
with the other three methods.

6. Conclusion

In this paper, the fact that theMonte Carlo method requires a
large number of samples in order to return acceptable results
when it comes to low-probability failures was discussed.
After this, a simplified method was presented to estimate the
probability of such failures to an equivalent level of accuracy
using a smaller volume of samples. A simple case study was
also introduced, with the proposed algorithm implemented
in a step-by-step fashion. Then, using 6 other load-cases,
the efficiency of proposed method was evaluated. Finally, the
application of proposed method was shown in a geotechnical
project, and the result was compared with other reliability
methods.

The following considerations should be notedwhen using
the proposed algorithm:

(1) The proposed method merely gives an estimation of
failure probability. Therefore, in cases where increas-
ing the number of samples is possible, original Monte
Carlo sampling method is preferred over the pro-
posed algorithm.

(2) The intercept of the fitted curve to data is highly
dependent on the curve fitting algorithm used, which
was not discussed in this paper. However, to give a
general idea, a curve fitting algorithm of the lowest
possible error is recommended.
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Figure 6: Comparison of different methods to calculate the
exceedance probability.

(3) Since the estimated probability depends on the gen-
erated random numbers, while repeating the anal-
ysis, the results may exhibit slight variations. Con-
sequently, it is recommended that the analysis is
repeated several times, with the average value being
used as the final result.

(4) As already explained, the problem with Monte Carlo
method is that only a few of the random numbers
would be generated on the tale of distribution func-
tion, which makes it difficult to calculate the failure
probability by small randomnumbers.There are some
algorithms proposed by other researchers to improve
the performance of Monte Carlo sampling method,
such as importance sampling techniques, particular
pattern for random number generating [9, 10], or
sampling in a certain range of numbers [11, 12]. As
these methods do not have any interdiction with our
algorithm, they can be used in conjunction with the
proposed method.
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