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𝐹-measure is one of the most commonly used performance metrics in classification, particularly when the classes are highly
imbalanced. Direct optimization of this measure is often challenging, since no closed form solution exists. Current algorithms
design the classifiers by using the approximations to the 𝐹-measure. These algorithms are not efficient and do not scale well to
the large datasets. To fill the gap, in this paper, we propose a novel algorithm, which can efficiently optimize 𝐹-measure with
cost-sensitive SVM. First of all, we present an explicit transformation from the optimization of 𝐹-measure to cost-sensitive SVM.
Then we adopt bundle method to solve the inner optimization. For the problem where the existing bundle method may have
the fluctuations in the primal objective during iterations, an additional line search procedure is involved, which can alleviate
the fluctuations problem and make our algorithm more efficient. Empirical studies on the large-scale datasets demonstrate that
our algorithm can provide significant speedups over current state-of-the-art 𝐹-measure based learners, while obtaining better (or
comparable) precise solutions.

1. Introduction

SVM (Support Vector Machine) as a powerful classification
tool is well known for its strong theoretical foundation and
good generalization ability. In the binary setting, it is often
evaluated by accuracy (the rate of correct classification).
However, accuracy is not always a good measure and may be
misleading, when the setting is imbalanced. In this situation,
utility function such as 𝐹-measure provides a better way
for the classifier evaluation, since it is a trade-off between
precision and recall [1]. As a popular performance metric,
𝐹-measure has been widely used in diverse applications such
as information retrieval [2, 3], biometrics [4, 5], and natural
language processing [6, 7].

Owing to its importance, it has been well studied in
machine learning area, andmanyworks have been focused on
designing the 𝐹-measure based classifiers. However, directly
optimizing 𝐹-measure is often difficult as the resulting opti-
mization problem is nonconvex, and no closed form solution
exists. Therefore, various approximation algorithms have
been proposed, which mainly fall into two paradigms [8].
The Empirical Utility Maximization (EUM) approach learns

a classifier having optimal performance on training data
[9–16], while the decision-theoretic (DT) approach learns a
probabilistic model and then predicts labels with maximum
expected𝐹-measure [17–20]. Since, in this paper, our aim is to
design an efficient classifier for maximizing 𝐹-measure, and
DT approach possibly needs high computational complexity
for the prediction step [8], in the following, we are focused on
the Empirical Utility Maximization approach.

As the 𝐹-measure is a nonconvex metric, EUM approach
often designs convex surrogates for optimizing 𝐹-measure
and results in the development of two types of methods.
The first type belongs to the “direct method,” which directly
defines different surrogate objective functions for maximiz-
ing 𝐹-measure [9–15]. One representative work is SVMperf,
which adopts structural SVM as surrogate framework, and
uses cutting plane algorithm to solve the inner optimization
[11]. This algorithm has many virtues (such as good gener-
alization performance and rapid convergence speed) and is
viewed as the most important and successful algorithm in
EUM approach. Suzuki et al., Cheng et al., and Chinta et al.
extended the work of SVMperf and applied it into different
areas [12–15]. The second type belongs to the “indirect
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method” and is recently proposed by Parambath et al. [16]. It
is a novel method, which solves the problem by transforming
it into a cost-sensitive classification.

Although those two methods are effective and are
known to work fairly well in many different areas, there
is still one disadvantage with those methods, where both
of them are not very efficient, which may prohibit them
from the large-scale applications. Moreover, for the novel
“indirect method,” its key contribution is the theoretical
part, and the authors presented a theoretical analysis that
the optimal 𝐹-measure classifier can be obtained by the
reduction to cost-sensitive classification. But how to con-
vert the procedure of maximizing 𝐹-measure into a cost-
sensitive problem, that paper does not give an explicit
solution.

To fill the gap, in this paper we focus on binary classifi-
cation and propose a novel algorithm, which can efficiently
optimize 𝐹-measure with cost-sensitive SVM. It seems that
our algorithm belongs to the “indirect method”; however,
it uses similar optimization technique like SVMperf, which
means our algorithm can be viewed as the combination of the
“directmethod” and the “indirectmethod.”More specifically,
this paper makes the following contributions:

(1) Different from Parambath’s work, which only gives a
theoretical analysis, we present an explicit transfor-
mation frommaximizing 𝐹-measure to cost-sensitive
SVM.

(2) For the new cost-sensitive problem, we propose to
solve it with bundle method, which is similar to the
cutting plane algorithm used in SVMperf and has
𝑂(1/𝜀) rate of convergence.

(3) Different from SVMperf, which is bothered with the
fluctuations in primal objective, an additional line
search procedure is introduced to the bundlemethod,
which can avoid this undesirable effect and make our
algorithm more efficient.

(4) Empirical evaluations on the large-scale imbalanced
datasets demonstrate that when compared with cur-
rently existing𝐹-measure based classifiers, the learner
we proposed can greatly reduce the training time,
while obtaining better (or comparable) accuracy of
the model.

The remainder of the paper is organized as follows. In
Section 2, the related work is presented. Section 3 discusses
the details of our proposed algorithm and the empirical
results on the benchmark datasets are reported in Section 4.
Section 5 concludes the paper and discusses the future
work.

2. Related Work

2.1. Problem Setup and Notations. As discussed in the
introduction, in this paper, we only consider the binary

Table 1: Confusion matrix.

𝑦 = 1 𝑦 = −1

sign(𝑓(𝑥)) = 1 TP FP
sign(𝑓(𝑥)) = −1 FN TN

classification problem. Given a training dataset 𝐷 =

{(𝑥
𝑖
, 𝑦
𝑖
)}
𝑛

𝑖=1
, where 𝑥

𝑖
∈ 𝑅
𝑑 is 𝑖th example and 𝑦

𝑖
∈

{+1, −1} is the corresponding class label. For simplicity, we
assume that positive instances are ahead of negative ones,
which means 𝑖 ∈ {1, 2, 3, . . . , #pos}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

#pos
are the indexes of

positive instances and the rest 𝑖 ∈ {#pos + 1, . . . , 𝑛}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

#neg
are

those of the negatives. #pos and #neg denote the number of
positive instances and the negative ones, respectively. Binary
classification problem is to construct a classifier function
𝑓(𝑥), which gives good generalization performance. In this
paper, we assume the classifier is of the form 𝑓(𝑥) = 𝑤 ⋅
𝑥 and the decision function 𝑦 = sign(𝑓(𝑥)) is used to
find the label of an unseen example. Note that we have
not included the bias term in the classifier function for
notational convenience. However, it can be incorporated in
a straightforward way.

In machine learning area, a common way to find the
linear parameter 𝑤 ∈ 𝑅𝑑 is to minimize a regularized risk
function:

𝑤 = arg min
𝑤∈𝑅
𝑑

1

2
‖𝑤‖
2
+ 𝐶

𝑛

∑

𝑖=1

𝑙 (𝑥
𝑖
, 𝑦
𝑖
, 𝑤) , (1)

where 𝐶 > 0 is a constant that controls the trade-off between
training error minimization and margin maximization. 𝑙 is
a suitable loss function which measures the discrepancy
between a true label 𝑦

𝑖
and a predicted value from using

parameter𝑤. Different loss functions yield different learners.
One of the most famous loss functions is the hinge loss in
SVM, which has the form of 𝑙hinge(𝑥𝑖, 𝑦𝑖, 𝑤) = max(0, 1 −
𝑦
𝑖
𝑤𝑥
𝑖
).

2.2. Relevant Background. When given a SVM classifier 𝑓, its
performance can be evaluated by Table 1.

TP, TN, FP, and FN in Table 1 denote true positive,
true negative, false positive, and false negative, respectively,
and

TP = 󵄨󵄨󵄨󵄨{𝑦𝑖 = 1 : sign (𝑓 (𝑥𝑖)) = 1}
󵄨󵄨󵄨󵄨 ,

TN = 󵄨󵄨󵄨󵄨{𝑦𝑖 = −1 : sign (𝑓 (𝑥𝑖)) = −1}
󵄨󵄨󵄨󵄨 ,

FP = #neg − TN,

FN = #pos − TP.

(2)
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By using the confusion matrix in Table 1, precision and
recall can be expressed as

PRE = TP
TP + FP

,

REC = TP
TP + FN

.

(3)

In the imbalanced learning, people often use weighted
harmonic mean of precision and recall, which is named 𝐹-
measure to evaluate the performance of a classifier [1], and it
can be formally defined as

𝐹-measure =
(𝛽
2
+ 1) ⋅ PRE ⋅ REC
𝛽2 ⋅ PRE + REC

, (4)

where 𝛽 ≥ 0. It is obvious that if 𝛽 = 0, 𝐹-measure is the
precision and if 𝛽 → +∞, 𝐹-measure turns to the recall. In
practice, themost widely used 𝐹-measure is 𝐹1, whichmeans
𝛽 = 1.

Because of its popular usage in the imbalanced classi-
fication, various approaches have been proposed for maxi-
mizing 𝐹-measure. One main paradigm is Empirical Utility
Maximization, which learns a classifier having optimal 𝐹-
measure on the training data.However, direct optimization of
𝐹-measure is difficult as the resulting optimization problem
is nonconvex.Thus, approximation techniques are often used
instead (since these algorithms directly design approximation
objective functions oriented to𝐹-measure, they are termed as
“direct method” [8]). For example, Musicant et al., Liu et al.,
and Joachims et al. have designed different surrogate algo-
rithms for optimizing the 𝐹-measure [9–11]. Among them,
the work of Joachims et al. (which referred to SVMperf) is
the most important, since not only their work provides a
general framework for optimizing any imbalanced measure,
but also their inner optimization technique is efficient. This
algorithm makes use of a cutting plane solver along the lines
of the structural SVM and has 𝑂(1/𝜀) rate of convergence
for any desired precision 𝜀. Based on this work, Suzuki et al.
and Cheng et al. applied SVMperf to the CRF and topical
classification [12, 13], while Chinta et al. and Dembczynski
et al. further extended it to the sparse learning andmultilabel

learning [14, 15]. Recently, an “indirect method” for opti-
mizing 𝐹-measure which used cost-sensitive technology has
been proposed by Parambath et al. [16]. The authors took the
advantage of the pseudolinearity of 𝐹-measure and presented
a theoretical analysis that the optimal classifier for𝐹-measure
can be obtained by solving a cost-sensitive problem. Both
“direct method” and “indirect method” are effective and are
suitable for many various applications. However, those two
methods have a common limitation that they are not very
efficient, which may prohibit them from being used in the
large-scale datasets. For the “direct method,” we take the
SVMperf as an example, which is one of the most efficient
algorithms in EUM.Although it has rapid convergence speed,
its inner optimization can only guarantee the dual objective
function increases monotonically and does not guarantee
the primal objective decreases monotonically [21]. These
fluctuations in primal objectives may slow down the practical
convergence speed andmake the SVMperf inefficient. Similar
problem occurs on the “indirect method,” because this
method should be implemented with other existing SVMs,
which may also have these undesirable fluctuations during
the iterations. Furthermore, for the recently proposed “indi-
rect method,” the main contribution of it is the theoretical
part, and the authors only present a theoretical analysis that
maximizing 𝐹-measure can be reduced to a cost-sensitive
classification. However, they do not give an explicit transfor-
mation from the optimization of 𝐹-measure to cost-sensitive
SVM.

So in the following, by giving an explicit transformation,
we will present a novel cost-sensitive SVM based algorithm
that canmaximize𝐹-measure.The algorithm uses the bundle
method as the inner optimizer and avoids the fluctuations
in primal objective by adding a line search procedure, which
means our algorithm can be more efficient than the existing
algorithms such as [8, 11, 16].

3. Efficient Algorithm for Optimizing
𝐹-Measure with Cost-Sensitive SVM

3.1. From Maximizing 𝐹-Measure to the Cost-Sensitive Classi-
fication. Based on the definition of formula (4), 𝐹-measure
can be further expressed as

𝐹-measure =
(𝛽
2
+ 1) ⋅ PRE ⋅ REC
𝛽2 ⋅ PRE + REC

=

(𝛽
2
+ 1) ⋅ (TP/ (TP + FP)) ⋅ (TP/ (TP + FN))
𝛽2 ⋅ (TP/ (TP + FP)) + TP/ (TP + FN)

=

(𝛽
2
+ 1) ⋅ TP ⋅ TP

𝛽2 ⋅ TP ⋅ (TP + FN) + TP ⋅ (TP + FP)
=

(𝛽
2
+ 1) ⋅ TP

𝛽2 ⋅ (TP + FN) + TP + FP

=

(𝛽
2
+ 1) ⋅ (#pos − FN)

𝛽2 ⋅ (#pos − FN + FN) + (#pos − FN) + FP
=

(#pos − FN)
𝛽2/ (𝛽2 + 1) ⋅ (#pos) + ((#pos − FN) + FP) / (𝛽2 + 1)

=
1

𝛽2/ (𝛽2 + 1) ⋅ (#pos) / (#pos − FN) + ((#pos − FN) + FP) / ((𝛽2 + 1) ⋅ (#pos − FN))
.

(5)
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By assuming #pos ̸= FN, we can find that maximizing 𝐹-
measure is equivalent to minimizing the following problem:

min
𝑤∈𝑅
𝑑

[
𝛽
2

(𝛽2 + 1)
⋅
(#pos)

(#pos − FN)

+
1 + FP/ (#pos − FN)

(𝛽2 + 1)
] ⇐⇒

min
𝑤∈𝑅
𝑑

[
𝛽
2

(𝛽2 + 1)
⋅
(#pos)

(#pos − FN)

+
FP

(𝛽2 + 1) (#pos − FN)
] ⇐⇒

min
𝑤∈𝑅
𝑑

[
𝛽
2
(#pos) + FP

(𝛽2 + 1) ⋅ (#pos − FN)
] ⇐⇒

min
𝑤∈𝑅
𝑑

{𝛽
2
(#pos) + FP − 𝜗 [(𝛽2 + 1) ⋅ (#pos − FN)]} ,

(6)

where 𝜗 is a positive constant. Since 𝛽 and #pos are both
constants, formula (6) can be simplified as

min
𝑤∈𝑅
𝑑

{FP + 𝜗 [(𝛽2 + 1) ⋅ FN]}

⇐⇒ min
𝑤∈𝑅
𝑑

[FP + 𝜗̂ ⋅ FN] ,
(7)

where 𝜗̂ = 𝜗(𝛽2 + 1) is a positive constant. Based on the
definitions of FP and FN, formula (7) can be rewritten as

min
𝑤∈𝑅
𝑑

[

𝑛

∑

𝑖=#pos+1
𝐼 (𝑦
𝑖
̸= sign (𝑓 (𝑥

𝑖
))) + 𝜗̂

⋅

#pos

∑

𝑖=1

𝐼 (𝑦
𝑖
̸= sign (𝑓 (𝑥

𝑖
)))] ⇐⇒

min
𝑤∈𝑅
𝑑

[𝐶
𝑝
⋅

#pos

∑

𝑖=1

𝐼 (𝑦
𝑖
̸= sign (𝑓 (𝑥

𝑖
))) + 𝐶

𝑛

⋅

𝑛

∑

𝑖=#pos+1
𝐼 (𝑦
𝑖
̸= sign (𝑓 (𝑥

𝑖
)))] ,

(8)

where 𝐶
𝑝
+ 𝐶
𝑛
= 1 and 0 ≤ 𝐶

𝑝
, 𝐶
𝑛
≤ 1 are the

misclassification cost parameters for positive and negative
classes, respectively. It is obvious that formula (8) is a cost-
sensitive problem, and the lower the total cost, the better the
classification performance.

3.2. Efficient Algorithm for the Cost-Sensitive SVM. Based
on formula (8), we can transform the maximization of 𝐹-
measure problem to a cost-sensitive SVM, which is demon-
strated as

𝑤 = arg min
𝑤∈𝑅
𝑑

1

2
‖𝑤‖
2
+ 𝐶 ⋅ [𝐶

𝑝

⋅

#pos

∑

𝑖=1

𝑙hinge (𝑦𝑖 ̸= sign (𝑓 (𝑥
𝑖
))) + 𝐶

𝑛

⋅

𝑛

∑

𝑖=#pos+1
𝑙hinge (𝑦𝑖 ̸= sign (𝑓 (𝑥

𝑖
)))] .

(9)

Formula (9) is equivalent to

OP1:

𝑤 = arg min
𝑤∈𝑅
𝑑

𝐽(𝑤)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝛿

2
‖𝑤‖
2
+ [𝐶
𝑝
⋅

#pos

∑

𝑖=1

𝑙hinge (𝑦𝑖 ̸= sign (𝑓 (𝑥
𝑖
))) + 𝐶

𝑛
⋅

𝑛

∑

𝑖=#pos+1
𝑙hinge (𝑦𝑖 ̸= sign (𝑓 (𝑥

𝑖
)))]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑅
cs
emp(𝑤)

, (10)

where 𝛿 = 1/𝐶 is a constant that controls the trade-off
between training error minimization and margin maximiza-
tion. For the OP1 above, we regard it as a regularized risk
minimization problem and adopt the bundle method to solve
it. Bundle method uses subgradients of the empirical risk
function to approximate its piecewise linear lower bound,
which is similar to the cutting plane algorithm (CPA) used
in SVMperf. In contrast to CPA, the linear lower bound
of bundle method is augmented with a stabilization term,
which can guarantee a good quality solution [22]. By taking
the first-order Taylor approximation to the empirical risk
function, the lower bounder is tightened iteratively until the
difference gap between the approximated lower bound and
the real risk function is smaller than a predefined threshold
𝜀. The whole algorithm can be described as shown in
Algorithm 1.

It has been proved that the bundle method in Algorithm 1
had 𝑂(1/𝜀) rate of convergence for any desired precision 𝜀
[22]. Although the bundle method is effective, it also has
the fluctuations in primal objective, which also occurred
on the CPA of SVMperf. More specifically, when solving
the subproblem of step (8), it always selects a new cutting
plane such that the dual objective monotonically increases.
However, this selection does not guarantee that the primal
problem monotonically decreases, which means that the pri-
mal objective values can heavily fluctuate between iterations,
and it may slow down the practical convergence speed of the
algorithm.

To solve this problem and speed up the convergence,
in the following, we will present an additional line search
algorithm for step (8), which can guarantee that the primal
objective function monotonically decreases and make our
algorithm more efficient.
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(1) Input: convergence threshold 𝜀 > 0;
(2) Initialize: weight vector 𝑤

0
and iteration index 𝑡 = 0;

(3) repeat
(4) 𝑡 = 𝑡 + 1;
(5) Compute 𝛼

𝑡
= 𝜕
𝑤
𝑅
cs
emp(𝑤𝑡−1);

(6) Compute bias 𝑏
𝑡
= 𝑅

cs
emp(𝑤𝑡−1) − 𝑤𝑡−1𝛼𝑡;

(7) Update the lower bound 𝑅BM
𝑡
(𝑤) = max

1≤𝑖≤𝑡
{𝑤 ⋅ 𝛼

𝑖
+ 𝑏
𝑖
};

(8) 𝑤
𝑡
= argmin

𝑤∈𝑅
𝑑 ((𝛿/2) ‖𝑤‖

2
+ 𝑅

BM
𝑡
(𝑤))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽𝑡(𝑤)

;

(9) Compute current gap 𝜀
𝑡
= min

0≤𝑖≤𝑡
(𝐽(𝑤
𝑖
) − 𝐽
𝑡
(𝑤
𝑡
));

(10) until 𝜀
𝑡
≤ 𝜀;

(11)Output: 𝑤
𝑡
as the 𝑤∗ of OP1.

Algorithm 1: Bundle method for solving OP1 within tolerance 𝜀.

3.3. Efficient Line Search Algorithm. First of all, we
introduce an intermediate variable 𝑤𝑐

𝑡
maintaining the

best-so-best solution during the first 𝑡 iterations, which
means 𝐽(𝑤𝑐

1
), . . . , 𝐽(𝑤

𝑐

𝑡
) is amonotonically decrease sequence.

Secondly, the new 𝑤𝑐
𝑡
is found by searching a line along

the previous 𝑤𝑐
𝑡−1

and the origin solution 𝑤
𝑡
, which gives the

following:

OP2:
𝑤
𝑐

𝑡
= min
𝑙≥0

𝐽 (𝑤
𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙) . (11)

Finally, the new cutting plane is computed to approximate
the primal objective 𝐽 at a point𝑤𝑑

𝑡
, which lies in a vicinity of

the 𝑤𝑐
𝑡
. More specifically, the variable 𝑤𝑑

𝑡
is obtained by

𝑤
𝑑

𝑡
= 𝑤
𝑐

𝑡
(1 − 𝜆) + 𝑤𝑡𝜆, (12)

where 𝜆 ∈ (0, 1] is a predefined parameter. With the point
𝑤
𝑑

𝑡
, the new cutting plane is given by 𝛼

𝑡+1
∈ 𝜕
𝑤
𝑅
cs
emp(𝑤

𝑑

𝑡
), and

𝑏
𝑡+1
= 𝑅

cs
emp(𝑤

𝑑

𝑡
) − 𝑤
𝑑

𝑡
𝛼
𝑡+1

.
Similar to step (9) of Algorithm 1, a nature stopping

condition for our improved algorithm is

𝐽 (𝑤
𝑐

𝑡
) − 𝐽
𝑡
(𝑤
𝑡
) ≤ 𝜀. (13)

With those changes to bundle method, we can generate
a monotonically decrease sequence of primal objective and
achieve faster convergence. However, in practice, there is still
one problem with our improved algorithm, which is how to
compute the OP2 efficiently. So in the following, we will give
an efficient algorithm for solving this problem, which only
needs 𝑂(𝑛 log 𝑛) time.

Firstly, combining formulas (10) and (11), we can obtain

𝐽 (𝑤
𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙) =

𝛿

2

󵄩󵄩󵄩󵄩𝑤
𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙

󵄩󵄩󵄩󵄩

2
+ [𝐶
𝑝

⋅

#pos

∑

𝑖=1

𝑙hinge (𝑤
𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙) + 𝐶𝑛

⋅

𝑛

∑

𝑖=#pos+1
𝑙hinge (𝑤

𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙)] .

(14)

We abbreviate 𝑗(𝑙) ≡ 𝐽(𝑤𝑐
𝑡−1
(1 − 𝑙) + 𝑤

𝑡
𝑙) and get

𝑗 (𝑙) =
𝛿

2

󵄩󵄩󵄩󵄩𝑤
𝑐

𝑡−1
+ (𝑤
𝑡
− 𝑤
𝑐

𝑡−1
) 𝑙
󵄩󵄩󵄩󵄩

2

+

#pos

∑

𝑖=1

𝐶
𝑝
⋅ 𝑙hinge (𝑤

𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙)

+

𝑛

∑

𝑖=#pos+1
𝐶
𝑛
⋅ 𝑙hinge (𝑤

𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙)

=
1

2
𝛿
󵄩󵄩󵄩󵄩(𝑤𝑡 − 𝑤

𝑐

𝑡−1
)
󵄩󵄩󵄩󵄩

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴0

𝑙
2
+ 𝛿 ⟨𝑤

𝑐

𝑡−1
, 𝑤
𝑡
− 𝑤
𝑐

𝑡−1
⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵0

𝑙

+
𝛿

2

󵄩󵄩󵄩󵄩𝑤
𝑐

𝑡−1

󵄩󵄩󵄩󵄩

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑍0

+

#pos

∑

𝑖=1

𝐶
𝑝
⋅max {0, 1 − 𝑦

𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙)}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔pos(𝑙)

+

𝑛

∑

𝑖=#pos+1
𝐶
𝑛
⋅max {0, 1 − 𝑦

𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
(1 − 𝑙) + 𝑤𝑡𝑙)}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔neg(𝑙)

.

(15)

That is,

𝑗 (𝑙) =
1

2
𝑙
2
𝐴
0
+ 𝑙𝐵
0
+ 𝑍
0
+ 𝑔pos (𝑙) + 𝑔neg (𝑙)

=
1

2
𝑙
2
𝐴
0
+ 𝑙𝐵
0
+ 𝑍
0
+

#pos

∑

𝑖=1

𝑔
𝑖

pos (𝑙)

+

𝑛

∑

𝑖=#pos+1
𝑔
𝑖

neg (𝑙) ,

(16)

where

𝑔
𝑖

pos (𝑙)

= max {0, 𝐶
𝑝
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) + 𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) 𝑙}

𝑔
𝑖

neg (𝑙)

= max {0, 𝐶
𝑛
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) + 𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) 𝑙} .

(17)

The OP2 is equivalent to solving 𝑙∗ = argmin
𝑙≥0
𝑗(𝑙).

Since 𝑗(𝑙) is a convex function, its minimum is attained at
the point 𝑙∗, where the subdifferential 𝜕𝑗(𝑙) contains zero,
which means 0 ∈ 𝜕𝑗(𝑙) hold. The subdifferential 𝜕𝑗(𝑙) can be
expressed as

𝜕𝑗 (𝑙) = 𝐴0𝑙 + 𝐵0 +

#pos

∑

𝑖=1

𝜕𝑔
𝑖

pos (𝑙) +
𝑛

∑

𝑖=#pos+1
𝜕𝑔
𝑖

neg (𝑙) , (18)

where
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0 l

l1

l2 l3l
∗

𝜕j(l)

(a) Case 1. 𝑙∗ lies in the slash area

𝜕j(l)

l
∗
= l2

0 l

l1

l3

(b) Case 2. 𝑙∗ lies in the vertical area

Figure 1: The step function of 𝜕𝑗(𝑙).

𝜕𝑔
𝑖

pos (𝑙) =

{{{{

{{{{

{

0 if 𝐶
𝑝
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) + 𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) 𝑙 < 0

𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) if 𝐶

𝑝
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) + 𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) 𝑙 > 0

[0, 𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
)] if 𝐶

𝑝
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) + 𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) 𝑙 = 0

𝜕𝑔
𝑖

neg (𝑙) =

{{{{

{{{{

{

0 if 𝐶
𝑛
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) + 𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) 𝑙 < 0

𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) if 𝐶

𝑛
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) + 𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) 𝑙 > 0

[0, 𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
)] if 𝐶

𝑛
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) + 𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) 𝑙 = 0.

(19)

For formula (18), the first two terms constitute an ascend-
ing linear function 𝐴

0
𝑙 + 𝐵
0
, since 𝐴

0
= 𝛿‖𝑤

𝑡
− 𝑤
𝑐

𝑡−1
‖
2
≥ 0.

Note 𝐴
0
= 0 means that 𝑤

𝑡
= 𝑤
𝑐

𝑡−1
, which indicates that

our algorithm has converged to the optimum 𝑤∗. The latter
two terms 𝜕𝑔𝑖pos(𝑙) and 𝜕𝑔

𝑖

neg(𝑙) are either constants or step
functions by the definitions of formula (19). Hence, 𝜕𝑗(𝑙) is a
monotonically increasing function, which can be depicted as
in Figure 1.

From Figure 1, we can begin with 𝑙 = 0 to find the best
solution of 𝑙∗ = argmin

𝑙≥0
𝑗(𝑙):

𝜕𝑗 (0) = 𝐵0 +

#pos

∑

𝑖=1

𝜕𝑔
𝑖

pos (0) +
𝑛

∑

𝑖=#pos+1
𝜕𝑔
𝑖

neg (0) , (20)

where

𝜕𝑔
𝑖

pos (0)

=

{{{{

{{{{

{

0 if 𝐶
𝑝
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) < 0

𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) if 𝐶

𝑝
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) > 0

[0, 𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
)] else 𝐶

𝑝
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) = 0,

𝜕𝑔
𝑖

neg (0)

=

{{{{

{{{{

{

0 if 𝐶
𝑛
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) < 0

𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) if 𝐶

𝑛
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) > 0

[0, 𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
)] else 𝐶

𝑛
(1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
) = 0.

(21)

Based on equalities (20) and (21), we can find that if
max(𝜕𝑗(0)) ≥ 0, the minimum 𝑗(𝑙) is attained at the point
equal to 0, which means 𝑙∗ = 0. While if max(𝜕𝑗(0)) < 0, the
optimum 𝑙∗ is obtained by finding an intersection between
𝜕𝑗(𝑙) and the 𝑥-axis (as Figure 1 shows). This can be done
efficiently by sorting every step points. The whole algorithm
is described as shown in Algorithm 2.

For Algorithm 2, the theorem below guarantees that it
only requires 𝑂(𝑛 log 𝑛) time.

Theorem 1. The total running time of Algorithm 2 is
𝑂(𝑛 log 𝑛).
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(1) Input: 𝑤
𝑡
, 𝑤
𝑐

𝑡−1
, 𝐴
0
, 𝐵
0
, 𝑍
0
, 𝐶
𝑝
, 𝐶
𝑛
, 𝑥
𝑖
, 𝑦
𝑖

(2) Compute max (𝜕𝑗(0)) with formula (19) and (20)
(3) if max (𝜕𝑗(0)) ≥ 0 then
(4) 𝑙

∗
= 0

(5) else
(6) 𝐿 ← {𝑙

𝑖
| 𝑙
𝑖
= (1 − 𝑦

𝑖
𝑥
𝑖
𝑤
𝑐

𝑡−1
)/𝑦
𝑖
𝑥
𝑖
(𝑤
𝑡
− 𝑤
𝑐

𝑡−1
) > 0} // find the step point sets with 𝑙

𝑖
> 0

(7) Sort 𝐿 in ascending order→ {𝑙
1
, . . . , 𝑙

𝐾
} where 𝐾 = |𝐿|

(8) 𝑙
0
= 0 // begin with zero point

(9) for 𝑘 = 1, . . . , 𝐾 do
(10) 𝜕𝑗(𝑙

𝑘
) = 𝜕𝑗(𝑙

𝑘−1
) + 𝐴

0
(𝑙
𝑘
− 𝑙
𝑘−1
)

(11) if 𝜕𝑗(𝑙
𝑘
) > 0 then

(12) 𝑙
∗
= (−∑

𝑘−1

𝑖=0
𝐵
𝑖
)/𝐴
0
// Case 1 𝑙∗ lies in the slash area

where 𝐵
𝑖
=

{{{{

{{{{

{

𝐵
0

if 𝑖 = 0

𝐶
𝑝
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) if 𝑖 ̸= 0, 𝑦

𝑖
= +1

𝐶
𝑛
𝑦
𝑖
𝑥
𝑖
(𝑤
𝑐

𝑡−1
− 𝑤
𝑡
) else 𝑖 ̸= 0, 𝑦

𝑖
= −1

(13) else
(14) 𝜕𝑗(𝑙

𝑘
) = 𝜕𝑗(𝑙

𝑘
) + 𝐵
𝑘

(15) if 𝜕𝑗(𝑙
𝑘
) ≥ 0 then

(16) 𝑙
∗
= 𝑙
𝑘
// Case 2 𝑙∗ lies in the vertical area

(17) end if
(18) end if
(19) end for
(20) end if
(21)Output: 𝑙∗.

Algorithm 2: Efficient line search for solving OP2.

Proof. From the pseudo code of Algorithm 2, we can find
that the time of step (1) to step (4) is 𝑂(1), and step (6)
needs at most 𝑂(𝑛) time. Step (7) is sorting, which can be
implemented in 𝑂(𝐾 log𝐾) time. Step (9) to step (19) take
𝑂(𝐾) time, and other steps all require 𝑂(1) time. Therefore,
Algorithm 2 has the complexity of 𝑂(𝑛 + 𝐾 log𝐾). Since in
practice 𝐾 ≤ 𝑛, which means that even in the worst case the
total running time of Algorithm 2 is 𝑂(𝑛 log 𝑛).

4. Experiments

In this section, we will compare our classifier with other
existing learners for maximizing 𝐹-measure and give details
about results on the benchmark datasets.

4.1. Baselines and Datasets. We evaluate the performance
of our algorithm (termed as BM-ls-CS) with SVMperf [11],
SVM-CS [16], BM-nls-CS, and LR-ML𝐸 [8], which are all 𝐹-
measure based learners. The first three baselines follow EUM
approach, while the last one falls into DT approach. More
specifically, the first one, SVMperf, uses direct method and
is the most popular imbalanced classifier for EUM approach.
It adopts the structured SVM to maximize 𝐹-measure and
applies the cutting plane algorithm for inner optimization,
which is similar to ours. The second one, SVM-CS, is a
recently proposed classifier, and as mentioned before, it
belongs to indirect method. Same as our BM-ls-CS, it is a
cost-based algorithm.The main difference between SVM-CS
and ours is the inner solver. The third comparison algorithm

BM-nls-CS uses bundle method without line search as the
optimizer.We include it in evaluations to see whether the line
search technologyweproposed can improve the speed of con-
vergence. In addition, we also compare our algorithm with a
decision-theoretic method named LR-ML𝐸, which is recently
proposed by Ye et al. We select it as the fourth baseline, since
it is an efficient algorithm and only needs 𝑂(𝑛2) time for
computing the optimal predictions. Finally, it should be noted
that, in our experiments, we do not implement the𝐹-measure
based learners with “approximative solver” (such as SGD).
Although these learnersmay have a low per-iteration cost and
low total training time, their approximations to the optimal
solution are crude and often fail to achieve a precise solution.

All the comparison algorithms adopt the same experi-
mental setup and are carried out on a Linux machine with
3.4GHz Intel Core and 8GB of RAM.The penalty parameter
𝐶 for SVMperf is selected from set {2−4, . . . , 28} by cross-
validation, and the corresponding parameters for SVM-CS
and LR-ML𝐸 are determined from set {𝑛 ⋅ 2−4, . . . , 𝑛 ⋅ 28} (the
parameters𝐶 in SVMperf and𝐶 in SVM-CS and LR-ML𝐸 sat-
isfy the following relation:𝐶perf = 𝑛 ⋅𝐶cs = 𝑛 ⋅𝐶LR-ML𝐸), while
for BM-ls-CS and BM-nls-CS, the regularization parameter
𝛿 ∈ {2

−8
/100, . . . , 2

4
/100} (the parameters 𝐶 in SVMperf

and 𝛿 in bundle method satisfy the following relation: 𝐶 =
1/100𝛿) and the parameter𝜆 in formula (12) are selected from
{0.1, 0.2, . . . , 1}. For all the cost-sensitive algorithms (BM-ls-
CS, SVM-CS, and BM-nls-CS), we set 𝐶

𝑝
= (1 − 𝑡/2) and

𝐶
𝑛
= 𝑡/2. The proper 𝑡 is chosen from 𝑡 ∈ {0.1, 0.2, . . . , 0.9},

which is suggested by Proposition 6 in Parambath’s paper.
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Table 2: Characteristics of the experimental datasets.

Dataset #Examples #Features Min (%)
a3a 32561 123 0.2396
acoustic 98528 50 0.2324
ijcnn1 141691 22 0.0971
letter 20000 16 0.0396
news20 19928 62061 0.0500
satimage 6435 36 0.2417

The approximation gap 𝜀 is set as 𝜀 = 10−3 for each EUM
algorithm.

With the algorithms above (SVMperf, SVM-CS, BM-nls-
CS,LR-ML𝐸, and BM-ls-CS), we perform experiments on six
datasets, which are a3a, acoustic, ijcnn1, letter, news20, and
satimage. We choose them as the experimental sets, since
they are all imbalanced datasets with large sample sizes.
These datasets can be downloaded from LIBSVM website
(https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/),
and their characteristics are summarized in Table 2.

In Table 2, the “#Examples” and “#Features” denote
the number of examples and features, respectively. “Min”
represents the proportion of examples in the minority class.
For each dataset, we use the same split as in LIBSVM
repository and report the results from the following two
aspects.

4.2. Experimental Results

4.2.1. The Performance Behaviors of Different Learners (𝐹1
Value and Running Time). Since the main goal of this paper
is to produce an efficient 𝐹-measure learner, in the first part
of experiments, we are concerned about the performance
behaviors of different algorithms, and the comparison results
are depicted in Table 3.

Note that, in Table 3, there are two values in each blank,
the top one denotes the objective value measured by 𝐹1, and
the bottom one is the running time in seconds. Higher value
and lower time are better.

From Table 3, we can find that when measured by 𝐹1, the
performances of EUM algorithms (SVMperf, SVM-CS, BM-
nls-CS, and BM-ls-CS) and DT algorithm (LR-ML𝐸) vary
from one dataset to another, and there is no one algorithm
that can outperform other algorithms on all the datasets. For
example, on news20 set, EUM algorithms are almost better
than DT algorithm, while, on satimage set, DT algorithm
is superior to EUM algorithms. This is coherent with the
result of Ye et al., according to which both two approaches
are effective, and it is difficult to say which one is better on
the large datasets [8]. Meanwhile, statistics show that, for the
EUM approach, three cost-sensitive algorithms (SVM-CS,
BM-nls-CS, and BM-ls-CS) are better than (or comparable
to) SVMperf, which once again indicate that we can produce
a good 𝐹-measure based classifier by transforming it into a
cost-sensitive problem.

Moreover, Table 3 also shows that if measured by run-
ning time, our BM-ls-CS consistently outperforms SVMperf,

BM-nls-CS, and LR-ML𝐸 on all benchmark datasets. For
example, when compared with SVMperf, BM-ls-CS performs
better in terms of both 𝐹1 value and CPU time. Especially
for CPU time, BM-ls-CS can gain speedups of hundreds
orders of magnitude over SVMperf on several experimental
datasets. Similar comparison results appear with BM-nls-
CS and LR-ML𝐸. Statistics show that our algorithm with
line search is significantly faster than those two baselines,
while obtaining better (or comparable) 𝐹1 values. However,
for SVM-CS which is implemented by Liblinear, it is a bit
different. Experimental results show that our algorithm is
faster than SVM-CS on five out of the six datasets (a3a,
acoustic, ijcnn1, letter, and satimage) and is only slower than
SVM-CS on news20. Statistics demonstrate that BM-ls-CS
performs better than SVM-CS in terms of 𝐹1 value (98.70
versus 81.67), while SVM-CS can achieve speedups of several
orders of magnitude over BM-ls-CS (0.21 s versus 12.64 s).
The reason maybe lies in their different inner optimizers.
SVM-CS adopts Liblinear, which is specially designed for the
dataset with large features, while the bundle method we use
does not give special consideration of this situation (note that
the cutting plane algorithm which SVMperf uses also does
not consider this situation).

All the statistical data above proves that as an 𝐹-measure
based learner, our BM-ls-CS is both efficient and effective,
when compared with other existing baselines.

Finally, from Table 3 we can observe that, although BM-
nls-CS and SVMperf solve the same equivalent problem with
similar optimization technique, their performances are quite
different. Experimental results show that BM-nls-CS is faster
than SVMperf on all the datasets, and it is largely due to their
different implementations (e.g., QP solver). Therefore, in
order to see whether our line search technology can enhance
the convergence speed, in the following we will only compare
the BM-ls-CS with BM-nls-CS for fair play.

4.2.2. The Comparison between BM-ls-CS and BM-nls-CS.
In the second part of experiments, we are interested in the
convergence speed between our algorithm and BM-nls-CS,
which uses the same inner solver without line search. Thus,
we consider the number of iterations used in reducing the
primal objective value, and Figure 2 gives the objective value
as a function of training iterations for the two algorithms on
various datasets.

From Figure 2, we can find that even though the BM-
nls-CS ultimately converges to the minimum, its values
heavily fluctuate during the iterations. The reason for these
fluctuations lies in the fact that, during the iterations, the
cutting plane selected by BM-nls-CS only guarantees that
dual value monotonically increases. However, there is no
guarantee that such a cutting plane will lead the primal
value to monotonically decrease, as the figure depicts that
𝐹(𝑤
𝑡+1
) > 𝐹(𝑤

𝑡
) often occurs. On the contrary, it is clear

from the figure that our algorithm enjoys progression with
“strictly” decreasing objective values and achieves speedups
of more than one order of magnitude over BM-nls-CS. This
fact implies that our line search technology can help to avoid
the “stalling” steps and accelerate the convergence speed of
algorithm.
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Figure 2: Convergence behaviors of the BM-ls-CS and BM-nls-CS.
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Table 3: The 𝐹1 value and running time of different algorithms.

a3a acoustic ijcnn1 letter news20 satimage

SVMperf 67.08 60.88 47.16 52.38 98.04 95.58
81.81 s 86.81 s 75.89 s 1.53 s 71.95 s 4.30 s

SVM-CS 67.55 63.26 55.97 63.12 81.67 95.78
3.22 s 0.97 s 0.84 s 0.68 s 0.21 s 0.02 s

BM-nls-CS 67.38 64.34 56.13 63.37 98.70 96.57
0.64 s 1.13 s 0.26 s 0.11 s 41.04 s 0.04 s

LR-ML𝐸 67.36 60.22 52.84 52.57 88.65 97.39
6.97 s 38.84 s 5.12 s 0.19 s 18.12 s 0.02 s

BM-ls-CS 67.38 64.02 56.19 63.38 98.70 96.61
0.19 s 0.49 s 0.14 s 0.03 s 12.64 s 0.01 s

5. Conclusion

In this paper, we have presented a novel cost-sensitive SVM
algorithm that can optimize 𝐹-measure efficiently. We began
our work with an explicit transformation from maximizing
𝐹-measure to cost-sensitive classification and then proposed
to use the bundle method for the inner optimization, which
had 𝑂(1/𝜀) rate of convergence. For the problem where
the existing bundle method only guaranteed that the dual
objective increases monotonically and did not guarantee that
the primal objective decreases monotonically, an efficient
line search algorithm has been proposed, which can avoid
this undesirable effect, and accelerated the practical conver-
gence speed of our BM-ls-CS algorithm. Experiments on the
benchmark datasets showed that when compared with other
existing 𝐹-measure based learners, BM-ls-CS we proposed
not only gave better generalization performance, but also
provided significant speedups during the training. There are
two issues that are worthy of further investigations in the
future. The first topic is to extend our approach to other
imbalanced measures such as PAUC [23] or SAUC [24] and
design the efficient algorithms for optimizing these metrics.
The second one is to solve our problem from the view of
Multiobjective Optimization, since recent works on MOO
[25, 26] show that a cost-sensitive problem can be regarded as
a multiobjective problem. In the future, we plan to produce
an efficient 𝐹-measure classifier through the Multiobjective
Optimization.
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