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The problem on cluster synchronization will be investigated for a class of delayed dynamical networks based on pinning control
strategy. Through utilizing the combined convex technique and Kronecker product, two sufficient conditions can be derived to
ensure the desired synchronizationwhen the designed feedback controller is employed to each cluster.Moreover, the inner coupling
matrices are unnecessarily restricted to be diagonal and the controller design can be converted into solving a series of linear matrix
inequalities (LMIs), which greatly improve the present methods. Finally, two numerical examples are provided to demonstrate the
effectiveness and reduced conservatism.

1. Introduction

In past decade, the synchronization of various chaotic sys-
tems has received considerable attention since the pioneering
works have appeared [1, 2]. Presently, it is widely known
that many benefits of having synchronization can be existent.
In particular, the synchronization in language emergence
and development results can come up with the common
vocabulary and agents’ synchronization in organizationman-
agement can improve their work efficiency. Thus recently,
the synchronization has been widely studied owing to its
great potential applications. Furthermore, since chaos syn-
chronization in arrays of coupled dynamical networks was
initially studied [3], various coupled networks have received
the attention because they can exhibit some interesting phe-
nomena [4, 5], and many elegant results have been reported
[6–32]. In particular, in [6, 7, 33], time-delay is unavoidable
and delayed neural networks (DNNs) are verified to exhibit
some complex and unpredictable behaviors, such as periodic
oscillations, bifurcation, and chaotic attractors; then, the
impulsive and adaptive synchronization has also been studied
[8–11], and some uneasy-to-test results have been presented.
Most recently, through using Kronecker product, the global

synchronization has been studied and elegant criteria have
been obtained in terms of LMIs [12–20, 23]. Yet it is worth
noting that, in the above works, some most developed
techniques were not utilized and the addressed networks
seemed to be of simple forms. Thus, researchers have used
some effective tools to give less conservative results ensuring
the synchronization for more general coupled DNNs [23].

In 1992, as the truth that the effective coupling among
neurons varies temporally in a rather short time scale has
been found [34], some researchers have mentioned that the
degree of synchronization among pairs of neurons changed
both temporally and by the choice of pairs. Therefore, the
cluster synchronization has been imposed to various dynami-
cal networks [21, 22, 24–31, 35]. However, due to the existence
of embedding of invariant synchronization manifolds, it
may occur that the system can reach different clustering
patterns from the different initial conditions [24–29]. Thus,
together with pinning control, some suitable methods have
appeared but have been independent of initial states [30]. In
[30], the pinning control strategy has been used to realize
the cluster synchronization for stochastic coupled DNNs,
in which the upper bound of delay variation was less than
1. Later, some effective techniques were used to overcome
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the shortcoming during tackling the delayed dynamical net-
works [31, 35]. Yet though these results above were elegant,
there still exist some points waiting for the improvements.
Firstly, most works above have not contained lower bound
of delay variation and, in fact, its information can play an
important role in reducing the conservatism. Secondly, in
[30, 31], the inner couplingmatrices had to be diagonal, which
unavoidably limits the application areas. Thirdly, as for delay
𝜏(𝑡) ∈ [𝜏

0
, 𝜏
𝑚
], since the triple integral LKF terms such as

((𝜏
2

𝑚
− 𝜏
2

0
)/2) ∫

−𝜏0

−𝜏𝑚

∫
0

󰜚
∫
𝑡

𝑡+𝜃
𝑥̇
𝑇
(𝑠)𝑄𝑥̇(𝑠)𝑑𝑠 𝑑𝜃 𝑑󰜚 were firstly put

forward [35], it has been used and improved owing to the fact
that it could help reduce the conservatism greatly [36]. Yet the
authors noticed that some important terms have been ignored
when estimating its derivative [35, 36], which also induces
the conservatism. Therefore, the tighter estimation should
be given. Overall, as for the pinning cluster synchronization
of coupled networks, the mentioned points above have not
been considered, which remains important and motivates
this work.

Inspired by the above discussions, this paper aims to
study the problem on cluster synchronization for a class of
coupled time-delay networks with linear hybrid coupling by
means of pinning control. Through choosing two augmented
Lyapunov-Krasovskii functionals (LKFs) and using the com-
bined convex technique, some novel sufficient conditions are
presented via Kronecker product and LMIs, whose feasibility
can be easily checked by resorting to Matlab LMI Toolbox.
In particular, we will give the tighter upper bounds on time
derivative of LKF terms.The efficiency and less conservatism
can be verified on the basis of two numerical examples.

Notations. R𝑛×𝑚 is the set of all 𝑛 × 𝑚 real matrices; 𝐼
𝑚

represents the 𝑚 × 𝑚 identity matrix and 0
𝑚⋅𝑛

denotes the
𝑚 × 𝑛 zero matrix; 𝐴 ⊗ 𝐵 represents Kronecker product of
matrices 𝐴 and 𝐵.

2. Problem Formulations and Preliminaries

Firstly, suppose the nodes are coupled with states 𝑥
𝑖
(𝑡),

𝑖 ∈ {1, . . . , 𝑁}; we consider the dynamical networks with
each node being an 𝑛-dimensional DNN with linear hybrid
coupling as

𝑥̇
𝑖
(𝑡) = −𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐼 (𝑡) + 𝑢
𝑖
(𝑡) +

𝑁

∑

𝑗=1

𝑙
1

𝑖𝑗
𝐺𝑥
𝑗
(𝑡)

+

𝑁

∑

𝑗=1

𝑙
2

𝑖𝑗
𝐻𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑙
3

𝑖𝑗
𝐾(∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑗 (𝑠) 𝑑𝑠) ,

(1)

where 𝑥
𝑖
(𝑡) = [𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡)]
𝑇 are the state vectors;

here 𝐶 = diag(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) > 0, 𝐴 = [𝑎

𝑖𝑗
]
𝑛×𝑛

, 𝐵 = [𝑏
𝑖𝑗
]
𝑛×𝑛

,
and 𝑓(𝑥

𝑖
(⋅)) = [𝑓

1
(𝑥
𝑖1
(⋅)), . . . , 𝑓

𝑛
(𝑥
𝑖𝑛
(⋅))]
𝑇 are the activation

functions; also here we assume 𝐺 = [𝑔
𝑖𝑗
]
𝑛×𝑛

, 𝐻 = [ℎ
𝑖𝑗
]
𝑛×𝑛

,

𝐾 = [𝑘
𝑖𝑗
]
𝑛×𝑛

denote the inner coupling matrices, 𝑢
𝑖
(𝑡) is the

control input, and 𝐼(𝑡) ∈ R𝑛 is the input vector.

Remark 1. In system (1), the hybrid coupling is utilized in
model (1) and it should be emphasized that the inner coupling
matrices 𝐺, 𝐻, and 𝐾 are not necessarily restricted to be of
diagonal form, which can represent more general cases than
the ones in [30, 31].

Suppose that networks (1) will be controlled onto
some desired inhomogeneous state as {𝑥

1
(𝑡), . . . , 𝑥

𝑚1
(𝑡)} →

𝑠
1
(𝑡), {𝑥

𝑚1+1
(𝑡), . . . , 𝑥

𝑚2
(𝑡)} → 𝑠

2
(𝑡), . . . , {𝑥

𝑚𝑘−1+1
(𝑡), . . . ,

𝑥
𝑚𝑘
(𝑡)} → 𝑠

𝑘
(𝑡); that is, M = {{𝑠

1
(𝑡), . . . , 𝑠

1
(𝑡)}, {𝑠

2
(𝑡), . . . ,

𝑠
2
(𝑡)}, . . . , {𝑠

𝑘
(𝑡), . . . , 𝑠

𝑘
(𝑡)}} ∈ R𝑛×𝑁 is the desired cluster syn-

chronization pattern under the pinning control, where
𝑥
𝑖
(𝑡) → 𝑠

𝑙
(𝑡) means that lim

𝑡→+∞
‖𝑥
𝑖
(𝑡) − 𝑠

𝑙
(𝑡)‖ = 0 for

𝑖 ∈ {𝑚
𝑙−1
, . . . , 𝑚

𝑙
}with𝑚

0
= 0 and 𝑙 ∈ {1, . . . , 𝑘}.The function

𝑠
𝑙
(𝑡) is defined as

̇𝑠
𝑙
(𝑡) = −𝐶𝑠

𝑙
(𝑡) + 𝐴𝑓 (𝑠

𝑙
(𝑡)) + 𝐵𝑓 (𝑠

𝑙
(𝑡 − 𝜏 (𝑡)))

+ 𝐼 (𝑡) , 𝑙 = 1, . . . , 𝑘.

(2)

For the dynamical networks described by (1), the follow-
ing assumptions are utilized.

(A1) Here 𝜏(𝑡) denotes the interval time-varying delay
satisfying

0 ≤ 𝜏
0
≤ 𝜏 (𝑡) ≤ 𝜏

𝑚
,

𝜇
0
≤ 𝜏̇ (𝑡) ≤ 𝜇𝑚 < +∞.

(3)

Moreover, we give the denotations as 𝜏
𝑚
= 𝜏
𝑚
− 𝜏
0
, 𝜇
𝑚
=

𝜇
𝑚
− 𝜇
0
, and 𝛿

𝑚
= 𝜏
2

𝑚
− 𝜏
2

0
.

(A2) For ] = 1, 2, 3 and the configuration matrices

𝐿
]
=

[
[
[
[
[
[

[

𝐿
]
11

𝐿
]
12
⋅ ⋅ ⋅ 𝐿

]
1𝑘

𝐿
]
21

𝐿
]
22
⋅ ⋅ ⋅ 𝐿

]
2𝑘

.

.

.

.

.

. d
.
.
.

𝐿
]
𝑘1

𝐿
]
𝑘2

⋅ ⋅ ⋅ 𝐿
]
𝑘𝑘

]
]
]
]
]
]

]

(4)

with 𝐿]
𝑖𝑖
∈ 𝑅
(𝑚𝑖−𝑚𝑖−1)×(𝑚𝑖−𝑚𝑖−1) and 𝐿]

𝑖𝑗
∈ 𝑅
(𝑚𝑖−𝑚𝑖−1)×(𝑚𝑗−𝑚𝑗−1),

𝑖, 𝑗 ∈ {1, . . . , 𝑘}, assume that every matrix 𝐿]
𝑖𝑖
= [𝑙

]
𝑖𝑖,𝑔ℎ

] for
𝑖 ∈ {1, . . . , 𝑘} satisfies 𝑙]

𝑖𝑖,𝑔𝑔
≥ 0, 𝑙]

𝑖𝑖,𝑔𝑔
= −∑

𝑚𝑖−𝑚𝑖−1

ℎ=1,ℎ ̸=𝑔
𝑙
]
𝑖𝑖,𝑔ℎ

, and
the sums of all rows in every 𝐿]

𝑖𝑗
(𝑖 ̸= 𝑗) are zeros.

(A3) There exist constants 𝜎−
𝑖
, 𝜎
+

𝑖
∈ R such that the

bounded functions 𝑓
𝑖
(⋅) satisfy

𝜎
−

𝑖
≤
𝑓
𝑖
(𝛼) − 𝑓

𝑖
(𝛽)

𝛼 − 𝛽
≤ 𝜎
+

𝑖
, ∀𝛼, 𝛽 ∈ R, 𝑖 = 1, . . . , 𝑛. (5)

Here we set Σ+ = diag(𝜎+
1
, . . . , 𝜎

+

𝑛
), Σ− = diag(𝜎−

1
, . . . , 𝜎

−

𝑛
),

and

Σ
1
= diag (𝜎+

1
𝜎
−

1
, . . . , 𝜎

+

𝑛
𝜎
−

𝑛
) ,

Σ
2
= diag(

𝜎
+

1
+ 𝜎
−

1

2
, . . . ,

𝜎
+

𝑛
+ 𝜎
−

𝑛

2
) .

(6)
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In this paper, we consider one special case that the
accurate information on time-delay is available. Without loss
of generality, to achieve the goal of cluster synchronization

in this work, we will apply the pinning control strategy on
the nodes set 𝐽 = {𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑘
} and adopt the following

pinning controller as

𝑢
𝑖
(𝑡) =

{

{

{

−𝑙
𝑖
𝐺 [𝑥
𝑖 (𝑡) − 𝑠𝑙 (𝑡)] − 𝑟𝑖𝐻[𝑥

𝑖 (𝑡 − 𝜏 (𝑡)) − 𝑠𝑙 (𝑡 − 𝜏 (𝑡))] , 𝑖 = 𝑚
𝑙
, 𝑙 = 1, . . . , 𝑘,

0, 𝑖 ̸= 𝑚
𝑙
.

(7)

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠

𝑙
(𝑡); one can check that

∑
𝑁

𝑗=1
𝑙
1

𝑖𝑗
𝐺𝑥
𝑗
(⋅) = ∑

𝑁

𝑗=1
𝑙
1

𝑖𝑗
𝐺𝑒
𝑗
(⋅), ∑𝑁
𝑗=1
𝑙
2

𝑖𝑗
𝐻𝑥
𝑗
(⋅) = ∑

𝑁

𝑗=1
𝑙
2

𝑖𝑗
𝐻𝑒
𝑗
(⋅),

and ∑𝑁
𝑗=1
𝑙
3

𝑖𝑗
𝐾𝑥
𝑗
(⋅) = ∑

𝑁

𝑗=1
𝑙
3

𝑖𝑗
𝐾𝑒
𝑗
(⋅). Then, combining (1) and

(2) with (7) yields

̇𝑒
𝑖
(𝑡) = − (𝐶 + 𝑙

𝑖
𝐺) 𝑒
𝑖
(𝑡) + 𝐴𝑓 (𝑒

𝑖
(𝑡))

+ 𝐵𝑓 (𝑒
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑟

𝑖
𝐻𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑙
1

𝑖𝑗
𝐺𝑒
𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝑙
2

𝑖𝑗
𝐻𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑙
3

𝑖𝑗
𝐾(∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑗
(𝑠) 𝑑𝑠) ,

(8)

where 𝑓(𝑒
𝑖
(⋅)) = 𝑓((𝑒

𝑖
(⋅) + 𝑠

𝑙
(⋅))) − 𝑓(𝑠

𝑙
(⋅)) and

𝑙
𝑖
=

{

{

{

𝑙
𝑖
, 𝑖 = 𝑚

𝑙
, 𝑙 = 1, 2, . . . , 𝑘,

0, 𝑖 ̸= 𝑚
𝑙
,

𝑟
𝑖
=

{

{

{

𝑟
𝑖
, 𝑖 = 𝑚

𝑙
, 𝑙 = 1, 2, . . . , 𝑘,

0, 𝑖 ̸= 𝑚
𝑙
.

(9)

Then, we can easily check that the functions 𝑓(⋅) satisfy
assumption (A3) and we set

Ξ = diag (0, . . . , 0, 𝑙
𝑚1
, . . . , 0, . . . , 0, 𝑙

𝑚𝑘
) ,

Θ = diag (0, . . . , 0, 𝑟
𝑚1
, . . . , 0, . . . , 0, 𝑟

𝑚𝑘
) .

(10)

In what follows, some useful basic definition and denota-
tions will be introduced.

Definition 2 (see [30]). The dynamical network (1) with 𝑁
nodes is said to achieve the cluster synchronization, if the
𝑁 nodes are split into 𝑘 clusters 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑘
as {𝐺

1
=

(1, . . . , 𝑚
1
), 𝐺
2
= (𝑚

1
+ 1, . . . , 𝑚

2
), . . . , 𝐺

𝑘
= (𝑚

𝑘−1
+

1, . . . , 𝑚
𝑘
)} such that the nodes synchronize with each other

in the same cluster; namely, for the states 𝑥
𝑖
(𝑡) and 𝑥

𝑗
(𝑡) of the

arbitrary nodes 𝑖 and 𝑗 in the same cluster 𝐺
𝑙
(𝑙 = 1, . . . , 𝑘),

lim
𝑡→+∞

‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ = 0 holds, in which ‖ ⋅ ‖ stands for the

Euclidean norm.

Denotation 1. Denote the 3𝑁𝑛 × 3𝑁𝑛 constant matrix E as
E

= [ E1 E
𝑁+1

E
2𝑁+1

E
2
E
𝑁+2

E
2𝑁+2 ⋅ ⋅ ⋅ E

𝑁
E
2𝑁

E
3𝑁 ] ,

(11)

in which the 3𝑁𝑛 × 𝑛 matrix E
𝑖
(𝑖 = 1, . . . , 3𝑁) can be

expressed as follows:

E𝑇
𝑖
= [0𝑛 0𝑛 ⋅ ⋅ ⋅ 𝐼𝑛 ⋅ ⋅ ⋅ 0𝑛 0𝑛] (12)

with the identity matrix 𝐼
𝑛
denoting the 𝑖th one in the matrix

vector E
𝑖
.

Denotation 2. Denote

𝑒
𝑇
(⋅) = [𝑒

𝑇

1
(⋅) 𝑒
𝑇

2
(⋅) ⋅ ⋅ ⋅ 𝑒

𝑇

𝑁
(⋅)] ,

̇𝑒
𝑇
(𝑡) = [ ̇𝑒

𝑇

1
(𝑡) ̇𝑒
𝑇

2
(𝑡) ⋅ ⋅ ⋅ ̇𝑒

𝑇

𝑁
(𝑡)] .

(13)

3. Pinning Cluster Synchronization

Prior to addressing the main results, the following lemmas
will be useful in the proof.

Lemma 3 (see [35]). For any constant matrix 𝑋 ∈ R𝑛×𝑛, 𝑋 =

𝑋
𝑇
≥ 0, two scalars ℎ

2
≥ ℎ
1
≥ 0, such that the following

integrations are well defined; then

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ1

𝑡−ℎ2

𝑥
𝑇
(𝑠)𝑋𝑥 (𝑠) 𝑑𝑠

≤ −(∫

𝑡−ℎ1

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑋(∫

−ℎ1

−ℎ2

𝑥 (𝑠) 𝑑𝑠) ;

−
ℎ
2

2
− ℎ
2

1

2
∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

𝑥
𝑇
(𝑠)𝑋𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −(∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃)

𝑇

⋅ 𝑋(∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃) .

(14)

Lemma 4 (see [37]). For any vectors 𝜁
1
and 𝜁

2
, constant

matrices 𝑅 and 𝑆, and real scalars 𝛼 ≥ 0 and 𝛽 ≥ 0 satisfying
that [ 𝑅 𝑆

∗ 𝑅
] ≥ 0 and 𝛼 + 𝛽 = 1, the inequality holds:

−
1

𝛼
𝜁
𝑇

1
𝑅𝜁
1
−
1

𝛽
𝜁
𝑇

2
𝑅𝜁
2
≤ −[

𝜁
1

𝜁
2

]

𝑇

[

𝑅 𝑆

∗ 𝑅
][

𝜁
1

𝜁
2

] . (15)

Lemma 5 (see [23]). Suppose that Ω, Ξ
1
, and Ξ

2
are the

constant matrices of appropriate dimensions, 𝛼 ∈ [0, 1]; then
Ω + 𝛼Ξ

1
+ (1 − 𝛼)Ξ

2
< 0 holds, if and only if Ω + Ξ

1
< 0,

Ω + Ξ
2
< 0.
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Lemma 6 (see [37]). For the symmetric appropriately dimen-
sional matrices 𝑅 > 0, Ξ, and matrix Γ, the two following
statements are equivalent: (i) Ξ − Γ𝑇𝑅Γ < 0; (ii) there exists
a matrix of appropriate dimension Π such that

[

Ξ + Γ
𝑇
Π
𝑇
+ ΠΓ Π𝑅

−1

∗ −𝑅
−1
] < 0

or [
Ξ + Γ
𝑇
Π
𝑇
+ ΠΓ Π

∗ −𝑅

] < 0.

(16)

Now, together with the pinning control strategy, two less
conservative criteria will be presented for the cluster synchro-
nization based on Kronecker product and LMI approach.

Theorem 7. Suppose that assumptions (A1)–(A3) are true;
then, the controlled dynamical networks (1) can achieve the
desired cluster synchronization, if there exist two 6𝑁𝑛 × 𝑁𝑛
matrices Π

𝑖
(𝑖 = 1, 2) making Π = [Π1 Π2], 𝑛 × 𝑛 constant

matrices 𝑃 > 0, 𝑃
𝑖
> 0 (𝑖 = 1, 2, 3, 4), 𝑄

𝑗
> 0, 𝑅

𝑗
> 0,

𝑆
𝑗
(𝑗 = 1, 2, 3), and 𝑀

𝑙
, 𝑁
𝑙
> 0 (𝑙 = 1, 2) guaranteeing

[
𝑅𝑗 𝑆𝑗

∗ 𝑅𝑗
] ≥ 0 and 𝑛 × 𝑛 diagonal matrices 𝐸 > 0, 𝐹 > 0, 𝑈 > 0,

and 𝑉 > 0 such that the LMIs in (17)-(18) hold:

[
[
[

[

Φ + [IE (𝐼
𝑁
⊗ Υ
𝑖
)]Π
𝑇
+ Π [IE (𝐼

𝑁
⊗ Υ
𝑖
)]
𝑇

Π
1

Π
2

∗ −𝐼
𝑁
⊗ 𝑅
1
−𝐼
𝑁
⊗ 𝑆
1

∗ ∗ −𝐼
𝑁
⊗ 𝑅
1

]
]
]

]

< 0, 𝑖 = 1, 2, (17)

Ω + 𝜇
𝑚
Γ
1
[

𝑃
1
0

0 𝑃
3

] Γ
𝑇

1
< 0,

Ω + 𝜇
𝑚
Γ
2
𝑃
4
Γ
𝑇

2
< 0,

(18)

where E is expressed in Denotation 1 and

Φ =

[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
11
Φ
12
Φ
13
Φ
14

0 Φ
16

∗ Φ
22

0 0 0 Φ
26

∗ ∗ Φ
33

0 0 Φ
36

∗ ∗ ∗ Φ
44
Φ
45
Φ
46

∗ ∗ ∗ ∗ Φ
55

0

∗ ∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Ω =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
11

𝑄
3
𝑀
1
𝐵 0 Ω

15
𝑀
1
𝐵 Ω

17

∗ Ω
22

Ω
23

𝑆
3

0 0 0

∗ ∗ Ω
33

Ω
34

0 𝑉Σ
2

0

∗ ∗ ∗ Ω
44

0 0 0

∗ ∗ ∗ ∗ Ω
55

0 Ω
57

∗ ∗ ∗ ∗ ∗ Ω
66

𝐵
𝑇
𝑀
𝑇

2

∗ ∗ ∗ ∗ ∗ ∗ Ω
77

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

I𝑇 =
[
[
[

[

𝐼
𝑁𝑛

0
𝑁𝑛⋅3𝑁𝑛

0
𝑁𝑛⋅2𝑁𝑛

0
𝑁𝑛⋅3𝑁𝑛

𝐼
𝑁𝑛

0
𝑁𝑛⋅2𝑁𝑛

0
𝑁𝑛⋅4𝑁𝑛

𝐼
𝑁𝑛

0
𝑁𝑛⋅𝑁𝑛

]
]
]

]

,

Υ
1
=

[
[
[

[

𝜏
𝑚
𝐼
𝑛
0
𝑛

−𝐼
𝑛

0
𝑛

0
𝑛

−𝐼
𝑛

]
]
]

]

,

Υ
2
=
[
[

[

0
𝑛
𝜏
𝑚
𝐼
𝑛

−𝐼
𝑛

0
𝑛

0
𝑛

−𝐼
𝑛

]
]

]

,

Γ
1
=
[
[

[

0
5𝑛⋅𝑛

0
3𝑛⋅𝑛

𝐼
𝑛

𝐼
𝑛

0
𝑛

0
3𝑛⋅𝑛

]
]

]

,

(19)

and Γ
2
= [0𝑛⋅3𝑛 𝐼𝑛 0𝑛⋅3𝑛]

𝑇 with

Φ
11
= 𝐿
1
⊗ (𝑀
2
𝐺) + (𝐿

1
⊗𝑀
2
𝐺)
𝑇

− 2Ξ ⊗ (𝑀
1
𝐺)

− 𝐼
𝑁
⊗ (𝜏
2

0
𝑄
1
) ,

Φ
12
= [(𝐿

2
)
𝑇

− Θ] ⊗ (𝑀
1
𝐻) ,

Φ
13
= 𝐼
𝑁
⊗ (𝜏
0
𝑄
1
) + 𝐿
3
⊗ (𝑀
1
𝐾) ,

Φ
14
= 𝐿
3
⊗ (𝑀
1
𝐾) ,

Φ
16
= [(𝐿

1
)
𝑇

− Ξ] ⊗ (𝑀
2
𝐺)
𝑇
,

Φ
22
= −𝐼
𝑁
⊗ 𝑁
2
,

Φ
26
= [(𝐿

2
)
𝑇

− Θ] ⊗ (𝑀
2
𝐻)
𝑇
,

Φ
33
= −𝐼
𝑁
⊗ (𝑄
1
+ 𝑄
2
) ,

Φ
36
= (𝐿
3
⊗𝑀
2
𝐾)
𝑇

,



Mathematical Problems in Engineering 5

Φ
44
= −𝐼
𝑁
⊗ 𝑅
2
,

Φ
45
= −𝐼
𝑁
⊗ 𝑆
2
,

Φ
46
= (𝐿
3
⊗𝑀
2
𝐾)
𝑇

,

Φ
55
= −𝐼
𝑁
⊗ 𝑅
2
,

Φ
66
= −𝐼
𝑁
⊗ 𝑁
1
,

Ω
11
= 𝑃
2
+ 𝜏
2

0
𝑄
2
+ 𝜏
2

𝑚
𝑅
2
− 𝑄
3
− 𝑈Σ
1
−𝑀
1
𝐶

− 𝐶𝑀
𝑇

1
,

Ω
15
= 𝑀
1
𝐴 + 𝑈Σ

2
,

Ω
17
= 𝑃 − 𝐶𝑀

𝑇

2
−𝑀
1
+ 𝐹Σ
+
− 𝐸Σ
−
,

Ω
22
= −𝑃
2
− 𝑄
3
− 𝑅
3
+ 𝑃
3
,

Ω
23
= 𝑅
3
− 𝑆
3
,

Ω
33
= (𝜇
0
− 1) 𝑃

3
+ (1 − 𝜇

𝑚
) 𝑃
4
− 2𝑅
3
+ 𝑆
3
+ 𝑆
𝑇

3

− 𝑉Σ
1
+ 𝑁
2
,

Ω
34
= 𝑅
3
− 𝑆
3
,

Ω
44
= −𝑃
4
− 𝑅
3
,

Ω
55
= −𝑈 + 𝑃

1
,

Ω
57
= 𝐸
𝑇
− 𝐹
𝑇
+ 𝐴
𝑇
𝑀
𝑇

2
,

Ω
66
= −𝑉 + (𝜇

0
− 1) 𝑃

1
,

Ω
77
= −𝑀

2
−𝑀
𝑇

2
+ 𝑁
1
+ 𝜏
2

0
𝑄
3
+ 𝜏
2

𝑚
𝑅
3
+
𝜏
4

0

4
𝑄
1

+
𝛿
2

𝑚

4
𝑅
1
.

(20)

In what follows, based onTheorem 7, we can consider the
pinning cluster synchronization for the dynamical networks
composed of𝑁 time-delay Lur’e systems [32]:

𝑥̇
𝑖 (𝑡) = −𝐶𝑥𝑖 (𝑡) + 𝐴𝑓 (𝑊

𝑇
𝑥
𝑖 (𝑡)) +

𝑁

∑

𝑗=1

𝑙
1

𝑖𝑗
𝐺𝑥
𝑗 (𝑡)

+

𝑁

∑

𝑗=1

𝑙
2

𝑖𝑗
𝐻𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑢𝑖 (𝑡) ,

(21)

where 𝐶 = [𝑎
𝑖𝑗
]
𝑛×𝑛

, 𝐴 = [𝑐
𝑖𝑗
]
𝑛×𝑛1

, and 𝑊 = [𝑤
𝑖𝑗
]
𝑛×𝑛1

=

[𝑊
1
,𝑊
2
, . . . ,𝑊

𝑛1
] are constant matrices; here 𝑓(𝑊𝑇𝑥(𝑡))

denotes the nonlinear function satisfying (A3) and 𝑓(0) = 0.
Then, by using the pinning controller (7), we can derive the
following theorem.

Theorem 8. Suppose that assumptions (A1)–(A3) are true;
then, the controlled dynamical networks (21) can achieve the
desired cluster synchronization, if there exist two 6𝑁𝑛 × 𝑁𝑛
matrices Π

𝑖
(𝑖 = 1, 2) making Π = [Π1 Π2], 𝑛 × 𝑛 constant

matrices 𝑃 > 0, 𝑃
𝑖
> 0, 𝑄

𝑖
> 0, 𝑅

𝑖
> 0, 𝑆

𝑖
(𝑖 = 1, 2, 3), and

𝑀
𝑙
, 𝑁
𝑙
> 0 (𝑙 = 1, 2) guaranteeing [ 𝑅𝑖 𝑆𝑖

∗ 𝑅𝑖
] ≥ 0, and 𝑛

1
× 𝑛
1

diagonal matrices 𝐸 > 0, 𝐹 > 0, and 𝑈 > 0 such that the LMIs
in (22) hold:

[
[
[

[

Φ + [IE (𝐼
𝑁
⊗ Υ
𝑖
)]Π
𝑇
+ Π [IE (𝐼

𝑁
⊗ Υ
𝑖
)]
𝑇

Π
1

Π
2

∗ −𝐼
𝑁
⊗ 𝑅
1
−𝐼
𝑁
⊗ 𝑆
1

∗ ∗ −𝐼
𝑁
⊗ 𝑅
1

]
]
]

]

< 0, 𝑖 = 1, 2,

Ω + 𝜇
𝑚
Γ𝑃
2
Γ
𝑇
< 0,

Ω + 𝜇
𝑚
Γ𝑃
3
Γ
𝑇
< 0,

(22)

where E is expressed in Denotation 1, I is expressed in
Theorem 7, and

Φ =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
11
Φ
12
Φ
13

0 0 Φ
16

∗ Φ
22

0 0 0 Φ
26

∗ ∗ Φ
33

0 0 0

∗ ∗ ∗ Φ
44
Φ
45

0

∗ ∗ ∗ ∗ Φ
55

0

∗ ∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Ω =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
11

𝑄
3

0 0 Ω
15
Ω
16

∗ Ω
22
Ω
23

𝑆
3

0 0

∗ ∗ Ω
33

𝑅
3
− 𝑆
3

0 0

∗ ∗ ∗ −𝑃
3
− 𝑅
3

0 0

∗ ∗ ∗ ∗ −𝑈 Ω
56

∗ ∗ ∗ ∗ ∗ Ω
66

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Υ
1
=

[
[
[

[

𝜏
𝑚
𝐼
𝑛
0
𝑛

−𝐼
𝑛

0
𝑛

0
𝑛

−𝐼
𝑛

]
]
]

]

,
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Υ
2
=
[
[

[

0
𝑛
𝜏
𝑚
𝐼
𝑛

−𝐼
𝑛

0
𝑛

0
𝑛

−𝐼
𝑛

]
]

]

,

Γ =
[
[

[

0
3𝑛⋅𝑛

𝐼
𝑛

0
2𝑛⋅𝑛

]
]

]

(23)

with

Φ
11
= 𝐿
1
⊗ (𝑀
2
𝐺) + (𝐿

1
⊗𝑀
2
𝐺)
𝑇

− 2Ξ ⊗ (𝑀
1
𝐺)

− 𝐼
𝑁
⊗ (𝜏
2

0
𝑄
1
) ,

Φ
12
= [(𝐿

2
)
𝑇

− Θ] ⊗ (𝑀
1
𝐻) ,

Φ
13
= 𝐼
𝑁
⊗ (𝜏
0
𝑄
1
) ,

Φ
16
= [(𝐿

1
)
𝑇

− Ξ] ⊗ (𝑀
2
𝐺)
𝑇
,

Φ
22
= −𝐼
𝑁
⊗ 𝑁
2
,

Φ
26
= [(𝐿

2
)
𝑇

− Θ] ⊗ (𝑀
2
𝐻)
𝑇
,

Φ
33
= −𝐼
𝑁
⊗ (𝑄
1
+ 𝑄
2
) ,

Φ
44
= −𝐼
𝑁
⊗ 𝑅
2
,

Φ
45
= −𝐼
𝑁
⊗ 𝑆
2
,

Φ
55
= −𝐼
𝑁
⊗ 𝑅
2
,

Φ
66
= −𝐼
𝑁
⊗ 𝑁
1
,

Ω
11
= 𝑃
1
+ 𝜏
2

0
𝑄
2
+ 𝜏
2

𝑚
𝑅
2
− 𝑄
3
−𝑊𝑈Σ

1
𝑊
𝑇
−𝑀
1
𝐶

− 𝐶𝑀
𝑇

1
,

Ω
15
= 𝑀
1
𝐴 +𝑊𝑈Σ

2
,

Ω
16
= −𝑀

1
+ 𝑃 − 𝐶𝑀

𝑇

2
+ 𝐹Σ
+
𝑊
𝑇
− 𝐸Σ
−
𝑊
𝑇
,

Ω
22
= −𝑃
1
− 𝑄
3
− 𝑅
3
+ 𝑃
2
,

Ω
23
= 𝑅
3
− 𝑆
3
,

Ω
33
= (𝜇
0
− 1) 𝑃

2
+ (1 − 𝜇

𝑚
) 𝑃
3
− 2𝑅
3
+ 𝑆
3
+ 𝑆
𝑇

3

− 𝑉Σ
1
+ 𝑁
2
,

Ω
56
= 𝐸
𝑇
− 𝐹
𝑇
+ 𝐴
𝑇
𝑀
𝑇

2
,

Ω
66
= 𝑁
1
+ 𝜏
2

0
𝑄
3
+ 𝜏
2

𝑚
𝑅
3
+
𝜏
4

0

4
𝑄
1
+
𝛿
2

𝑚

4
𝑅
1
−𝑀
2

−𝑀
𝑇

2
.

(24)

4. Numerical Examples

Two numerical examples will be provided to illustrate the
derived results with some typical cases.

Example 1. Consider one 2-dimensional delayed dynamical
network (1) described by

𝑥̇
𝑖
(𝑡) = −𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝑢
𝑖 (𝑡) +

4

∑

𝑗=1

𝑙
1

𝑖𝑗
𝐺𝑥
𝑗 (𝑡) +

4

∑

𝑗=1

𝑙
1

𝑖𝑗
𝐻𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+

4

∑

𝑗=1

𝑙
1

𝑖𝑗
𝐾(∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠) , 𝑖 = 1, 2, 3, 4,

(25)

with the following parameters:

𝐶 = [

1.25 0

0 1.25

] ,

𝐴 = [

1.8 −0.15

−5.2 −3.5

] ,

𝐵 = [

−1.7 −0.12

−0.26 −2.5

] ,

𝐺 = [

2.5 0.2

0.2 0.5

] ,

𝐻 = [

0.5 0.25

0.25 0.5
] ,

𝐾 = [

0.5 0.25

0.25 0.5
] ,

𝑓 (𝑥
𝑖
) = [

tanh (𝑥
𝑖1
)

tanh (𝑥
𝑖2
)

] .

(26)

Then, through adopting the pinning controller in (7),

𝑢
𝑖
(𝑡) =

{

{

{

−1.5𝐺 [𝑥
𝑖 (𝑡) − 𝑠𝑙 (𝑡)] − 0.25𝐻 [𝑥

𝑖 (𝑡 − 𝜏 (𝑡)) − 𝑠𝑙 (𝑡 − 𝜏 (𝑡))] , 𝑖 = 𝑚
𝑙
, 𝑙 = 1, 2,

0, 𝑖 ̸= 𝑚
𝑙
,

(27)

with Ξ = diag(0, 1.5, 0, 1.5) and Θ = diag(0, 0.25, 0, 0.25),
we assume that the desired cluster synchronization states of
DNNs (25) are 𝑠

1
(𝑡) and 𝑠

2
(𝑡), which can satisfy

̇𝑠
𝑖 (𝑡) = −𝐶𝑠𝑖 (𝑡) + 𝐴𝑓 (𝑠𝑖 (𝑡)) + 𝐵𝑓 (𝑠𝑖 (𝑡 − 𝜏 (𝑡))) ,

𝑖 = 1, 2,

(28)
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Table 1: The calculated MAUBs 𝜏max by setting 𝜏
0
= 0, 𝜇

0
=

−0.2, −0.1, and unavailable 𝜇
0
.

Methods 𝜇
𝑚

0.4 0.6 0.8 1.2
Li and Cao [30]

−0.2

1.112 1.035 1.004 —
Wang et al. [31] 1.154 1.074 1.048 0.987
Theorem 7 1.243 1.126 1.100 1.022
Li and Cao [30]

−0.1

1.112 1.035 1.004 —
Wang et al. [31] 1.165 1.084 1.077 0.996
Theorem 7 1.263 1.132 1.127 1.065
Li and Cao [30]

—
1.112 1.035 1.004 —

Wang et al. [31] 1.127 1.046 1.035 0.945
Theorem 8 1.195 1.094 1.067 0.996

with different initial conditions. In order to reduce the
number of controllers and realize the cluster synchronization,
we can use the controlled networks sets {𝑚

1
, 𝑚
2
} = {2, 4}

and, respectively, choose the configuration matrices as 𝐿1 =
[
𝐿
1

11
𝐿
1

12

𝐿
1

21
𝐿
1

22

] with

𝐿
1

11
= [

−1.5 1.5

1.5 −1.5
] ,

𝐿
1

12
= [

−1 1

−1 1
] ,

𝐿
1

21
= [

0.5 −0.5

0.5 −0.5

] ,

𝐿
1

22
= [

−2 2

2 −2

] .

(29)

In what follows, two cases will be given to illustrate the
efficiency and reduced conservatism of our results.

Case 1. Given 𝜏
0
= 0, choose three inner coupling matrices

of diagonal form as

𝐺 = [

0.5 0

0 0.5
] ,

𝐻 = [

0.25 0

0 0.25

] ,

𝐾 = [

0.25 0

0 0.25

] .

(30)

Then, through, respectively, setting 𝜇
0
= −0.2, −0.1, and

unavailable 𝜇
0
, we can compute the correspondingmaximum

allowable upper bounds (MAUBs) in Table 1 based on
Theorem 7 and Remark A.2 by resorting to Matlab LMI
Toolbox.

In Table 1, the term “—” means that the corresponding
value is unavailable. Based on the MAUBs in Table 1, one
can verify that our results can be less conservative than some
existent ones. In particular, as the inner coupling matrices

𝐺, 𝐻, and 𝐾 are not diagonal, our theorems still can be
applicable while [30, 31] fail.

Case 2. Choosing 𝜏(𝑡) = 0.2 + 0.8 sin2(2𝑡) and the inner
coupling matrices 𝐺, 𝐻, and 𝐾 as Case 1, one can derive
𝜏
0
= 0.2, 𝜏

𝑚
= 1.0, 𝜇

0
= −1.6, and 𝜇

𝑚
= 1.6. Owing to the fact

that 𝜇
𝑚
> 1 and𝐺,𝐻, and𝐾 are not diagonal, the methods in

[30, 31] fail to verify the synchronization. Yet, by resorting to
Matlab LMI Toolbox, Theorem 7 can guarantee the pinning
cluster synchronization and the feasible solution to LMIs in
(17)-(18) can be obtained as follows:

𝑃
1
= [

0.562 0.121

0.121 0.532
] ,

𝑃
2
= [

0.343 0.022

0.022 0.346
] ,

𝑃
3
= [

1.206 0.202

0.202 0.987

] ,

𝑃
4
= [

1.633 0.193

0.193 0.857

] ,

𝑄
1
= [

0.002 0.001

0.001 0.001

] ,

𝑄
2
= [

0.005 0.001

0.001 0.012
] ,

𝑄
3
= [

1.214 0.314

0.314 0.685
] ,

𝑅
1
= [

1.073 0.511

0.511 1.034
] ,

𝑅
2
= [

1.428 0.544

0.544 1.428

] ,

𝑅
3
= [

1.224 0.124

0.124 0.985

] ,

𝑆
1
= [

0.335 0.050

0.132 0.325

] ,

𝑆
2
= [

0.544 0.224

0.327 0.675
] ,

𝑆
3
= [

0.220 0.091

0.068 0.202
] ,

𝑀
1
= [

1.304 −0.101

−0.114 0.132

] ,

𝑀
2
= [

1.142 1.102

0.786 0.132

] ,
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𝑁
1
= [

0.562 0.121

0.121 0.867

] ,

𝑁
2
= [

0.445 0.342

0.342 0.766

] ,

𝑃 = [

0.154 0.105

0.105 0.445

] ,

𝐸 = 0.202𝐼
2
,

𝐹 = 0.175𝐼
2
,

𝑈 = 0.006𝐼
2
,

𝑉 = 0.010𝐼
2
.

(31)

Example 2. In this example, we consider the well-known
Chua’s circuit to illustrate our synchronization results, which
can be expressed as

𝑥̇
1
= 𝛼 [𝑥

2
− 𝑚
1
𝑥
1
+ ℎ (𝑥

1
)] ,

𝑥̇
2
= 𝑥
1
− 𝑥
2
+ 𝑥
3
,

𝑥̇
3
= −𝛽𝑥

2

(32)

with ℎ(𝑥
1
) = (1/2)(𝑚

1
− 𝑚
0
)(|𝑥
1
+ 𝑐| − |𝑥

1
− 𝑐|) and the

parameters 𝑚
0
= −1/7, 𝑚

1
= 2/7, 𝛼 = 9, 𝛽 = 14.286, and

𝑐 = 1. Then, the circuit model can be represented as the Lur’e
system:

𝑥̇ (𝑡) =

[
[
[

[

−
18

7
9 0

1 −1 1

0 −14.286 0

]
]
]

]

𝑥 (𝑡)

+

[
[
[

[

27

7
0 0

0 0 0

0 0 0

]
]
]

]

𝑓 (𝑊
𝑇
𝑥 (𝑡))

(33)

with 𝑊 = [1 0 0]
𝑇 and 𝑓

1
(𝜉) = (1/2)(|𝜉 + 1| − |𝜉 − 1|)

belonging to the sector [0, 1]. Now we consider the cluster
synchronization of the dynamical networks with each node
being a 2-dimensional system (33) with linear coupling as

𝑥̇
𝑖
(𝑡) = −𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑊

𝑇
𝑥
𝑖
(𝑡)) +

4

∑

𝑗=1

𝑙
1

𝑖𝑗
𝐺𝑥
𝑗
(𝑡)

+

4

∑

𝑗=1

𝑙
2

𝑖𝑗
𝐻𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑢𝑖 (𝑡) .

(34)

In order to reduce the number of controllers and realize the
cluster synchronization, we adopt the pinning controller (7)
as

𝑢
𝑖
(𝑡) =

{

{

{

−1.5𝐺 [𝑥
𝑖
(𝑡) − 𝑠

𝑙
(𝑡)] , 𝑖 = 𝑚

𝑙
, 𝑙 = 1, 2,

0, 𝑖 ̸= 𝑚
𝑙

(35)

and the desired cluster synchronization states of (A.15) satisfy

̇𝑠
𝑖 (𝑡) = −𝐶𝑠𝑖 (𝑡) + 𝐴𝑓 (𝑊

𝑇
𝑠
𝑖 (𝑡)) , 𝑖 = 1, 2 (36)

with the initial conditions 𝑠
1
(0) = [

0.4

−0.5
] and 𝑠

2
(0) = [

−0.2

0.3
].

Now through setting Ξ = diag(0, 1.5, 0, 1.5), 𝐺 = [
1.5 0.2

0.2 1.5
],

and the configuration matrices as 𝐿1 = [ 𝐿
1

11
𝐿
1

12

𝐿
1

21
𝐿
1

22

] with

𝐿
1

11
= [

−1.5 1.5

1.5 −1.5

] ,

𝐿
1

12
= [

−1 1

−1 1

] ,

𝐿
1

21
= [

0 0

0 0
] ,

𝐿
1

22
= [

−2 2

2 −2
] ,

(37)

together with Theorem 8 and LMI in Matlab Toolbox, we
can easily verify that network (34) can achieve the desired
cluster synchronization, which can be further supported by
the synchronization error states in Figure 1.

5. Conclusions

This paper has investigated the problem on pinning clus-
ter synchronization for delayed dynamical networks with
linearly hybrid coupling. Two novel conditions have been
derived by employing the Lyapunov-Krasovskii stability
theory. It is worth pointing out that some most recently
developed techniques such as combined convex technique
and triple integral LKF terms have been employed, which
can help extend the application areas. The synchronization
criteria are presented in the forms of LMIs, which can be
checked easily by referring to Matlab LMI Toolbox. Finally,
two numerical examples can illustrate the less conservatism
of our theorems based on some comparing results.

Appendix

Proof ofTheorem 7. Based on assumptions (A1)–(A3), we can
choose the Lyapunov-Krasovskii functional as

𝑉 (𝑒 (𝑡)) = 𝑉
1
(𝑒 (𝑡)) + 𝑉

2
(𝑒 (𝑡)) + 𝑉

3
(𝑒 (𝑡)) , (A.1)
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Figure 1: Phase and state trajectories of the error states.

where

𝑉
1
(𝑒 (𝑡)) =

𝑁

∑

𝑖=1

[

[

𝑒
𝑇

𝑖
(𝑡) 𝑃𝑒
𝑖
(𝑡)

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑓
𝑇
(𝑒
𝑖
(𝑠)) 𝑃
1
𝑓 (𝑒
𝑖
(𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏0

𝑒
𝑇

𝑖
(𝑠) 𝑃
2
𝑒
𝑖
(𝑠) 𝑑𝑠 + ∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑇

𝑖
(𝑠) 𝑃
3
𝑒
𝑖
(𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑇

𝑖
(𝑠) 𝑃
4
𝑒
𝑖
(𝑠) 𝑑𝑠

+ 2

𝑛

∑

𝑗=1

𝑒
𝑗
∫

𝑒𝑖𝑗(𝑡)

0

[𝑓
𝑗
(𝑠) − 𝜎

−

𝑗
𝑠] 𝑑𝑠

+ 2

𝑛

∑

𝑗=1

𝑓
𝑗
∫

𝑒𝑖𝑗(𝑡)

0

[𝜎
+

𝑗
𝑠 − 𝑓
𝑗
(𝑠)] 𝑑𝑠]

]

,

𝑉
2 (𝑒 (𝑡)) =

𝑁

∑

𝑖=1

[
𝜏
2

0

2
∫

0

−𝜏0

∫

0

󰜚

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

𝑖
(𝑠) 𝑄1 ̇𝑒𝑖 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑󰜚

+
𝛿
𝑚

2
∫

−𝜏0

−𝜏𝑚

∫

0

󰜚

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

𝑖
(𝑠) 𝑅1 ̇𝑒𝑖 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑󰜚] ,

𝑉
3 (𝑒 (𝑡))

=

𝑁

∑

𝑖=1

𝜏
0
∫

0

−𝜏0

∫

𝑡

𝑡+𝜃

[𝑒
𝑇

𝑖
(𝑠) 𝑄2𝑒𝑖 (𝑠) + ̇𝑒

𝑇

𝑖
(𝑠) 𝑄3 ̇𝑒𝑖 (𝑠)] 𝑑𝑠 𝑑𝜃

+

𝑁

∑

𝑖=1

𝜏
𝑚
∫

−𝜏0

−𝜏𝑚

∫

𝑡

𝑡+𝜃

[𝑒
𝑇

𝑖
(𝑠) 𝑅
2
𝑒
𝑖
(𝑠) + ̇𝑒

𝑇

𝑖
(𝑠) 𝑅
3
̇𝑒
𝑖
(𝑠)] 𝑑𝑠 𝑑𝜃

(A.2)

with 𝑛 × 𝑛 constant matrices 𝑃 > 0, 𝑃
𝑖
> 0 (𝑖 = 1, 2, 3, 4),

𝑄
𝑗
> 0, and 𝑅

𝑗
> 0 (𝑗 = 1, 2, 3) and 𝑛 × 𝑛 diagonal matrices

𝐸 = diag(𝑒
1
, . . . , 𝑒

𝑛
) > 0 and 𝐹 = diag(𝑓

1
, . . . , 𝑓

𝑛
) > 0 waiting

to be determined.
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Then, the time derivative of 𝑉
𝑖
(𝑒(𝑡)) (𝑖 = 1, 2) along

system (8) can be directly computed as

𝑉̇
1
(𝑒 (𝑡)) =

𝑁

∑

𝑖=1

[2𝑒
𝑇

𝑖
(𝑡) 𝑃 ̇𝑒
𝑖
(𝑡)

+ 𝑓
𝑇
(𝑒
𝑖
(𝑡)) 𝑃
1
𝑓 (𝑒
𝑖
(𝑡))

− [1 − 𝜏̇ (𝑡)] 𝑓
𝑇
(𝑒
𝑖
(𝑡 − 𝜏 (𝑡))) 𝑃

1
𝑓 (𝑒
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝑒
𝑇

𝑖
(𝑡) 𝑃2𝑒𝑖 (𝑡) − 𝑒

𝑇

𝑖
(𝑡 − 𝜏
0
) (𝑃
2
− 𝑃
3
) 𝑒
𝑖
(𝑡 − 𝜏
0
)

− [1 − 𝜏̇ (𝑡)] 𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) (𝑃

3
− 𝑃
4
) 𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

− 𝑒
𝑇

𝑖
(𝑡 − 𝜏
𝑚
) 𝑃
4
𝑒
𝑖
(𝑡 − 𝜏
𝑚
)

+ 2𝑓
𝑇
(𝑒
𝑖
(𝑡)) (𝐸 − 𝐹) ̇𝑒

𝑖
(𝑡)

+ 2𝑒
𝑇

𝑖
(𝑡) (𝐹Σ

+
− 𝐸Σ
−
) ̇𝑒
𝑖
(𝑡)] ,

(A.3)

𝑉̇
2 (𝑒 (𝑡)) =

𝑁

∑

𝑖=1

[ ̇𝑒
𝑇

𝑖
(𝑡) (

𝜏
4

0

4
𝑄
1
+
𝛿
2

𝑚

4
𝑅
1
) ̇𝑒
𝑖 (𝑡)

−
𝜏
2

0

2
∫

0

−𝜏0

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

𝑖
(𝑠) 𝑄
1
̇𝑒
𝑖
(𝑠) 𝑑𝑠 𝑑𝜃

−
𝛿
𝑚

2
∫

−𝜏0

−𝜏𝑚

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

𝑖
(𝑠) 𝑅
1
̇𝑒
𝑖
(𝑠) 𝑑𝑠 𝑑𝜃] .

(A.4)

Through employing Lemmas 3 and 4 and [ 𝑅1 𝑆1
∗ 𝑅1

] > 0, we can
estimate two terms in (A.4) as

−
𝜏
2

0

2
∫

0

−𝜏0

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

𝑖
(𝑠) 𝑄
1
̇𝑒
𝑖
(𝑠) 𝑑𝑠 𝑑𝜃

≤ [∫

𝑡

−𝜏0

∫

𝑡

𝑡+𝜃

̇𝑒
𝑖
(𝑠) 𝑑𝑠 𝑑𝜃]

𝑇

𝑅
1
[∫

𝑡

−𝜏0

∫

𝑡

𝑡+𝜃

̇𝑒
𝑖
(𝑠) 𝑑𝑠 𝑑𝜃]

= − [𝜏
0
𝑒
𝑖 (𝑡) − ∫

𝑡

𝑡−𝜏0

𝑒
𝑖 (𝑠) 𝑑𝑠]

𝑇

𝑄
1
[𝜏
0
𝑒
𝑖 (𝑡)

− ∫

𝑡

𝑡−𝜏0

𝑒
𝑖
(𝑠) 𝑑𝑠] ,

−
𝜏
2

𝑚
− 𝜏
2

0

2
∫

−𝜏0

−𝜏𝑚

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

𝑖
(𝑠) 𝑅
1
̇𝑒
𝑖
(𝑠) 𝑑𝑠 𝑑𝜃

= −
𝜏
2

𝑚
− 𝜏
2

0

2
[
𝜏
2
(𝑡) − 𝜏

2

0

𝜏
2
(𝑡) − 𝜏

2

0

∫

−𝜏0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

𝑖
(𝑠) 𝑅
1
̇𝑒
𝑖
(𝑠) 𝑑𝑠 𝑑𝜃

+
𝜏
2

𝑚
− 𝜏
2
(𝑡)

𝜏
2

𝑚
− 𝜏
2
(𝑡)
∫

−𝜏(𝑡)

−𝜏𝑚

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

𝑖
(𝑠) 𝑅
1
̇𝑒
𝑖
(𝑠) 𝑑𝑠 𝑑𝜃]

≤ − [[𝜏 (𝑡) − 𝜏0] 𝑒𝑖 (𝑡) − ∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑖 (𝑠) 𝑑𝑠]

𝑇

⋅ 𝑅
1
[[𝜏 (𝑡) − 𝜏0] 𝑒𝑖 (𝑡) − ∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑖 (𝑠) 𝑑𝑠]

− [[𝜏 (𝑡) − 𝜏
0
] 𝑒
𝑖
(𝑡) − ∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑖
(𝑠) 𝑑𝑠]

𝑇

(2𝑆
1
)

⋅ [[𝜏
𝑚
− 𝜏 (𝑡)] 𝑒

𝑖
(𝑡) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑖
(𝑠) 𝑑𝑠]

− [[𝜏
𝑚
− 𝜏 (𝑡)] 𝑒

𝑖
(𝑡) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑖
(𝑠) 𝑑𝑠]

𝑇

⋅ 𝑅
1
[[𝜏
𝑚
− 𝜏 (𝑡)] 𝑒

𝑖
(𝑡) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑖
(𝑠) 𝑑𝑠]

= −
[
[

[

𝑒
𝑖 (𝑡)

𝜙
𝑖
(𝑡)

𝜓
𝑖 (𝑡)

]
]

]

𝑇

⋅
[
[

[

𝛼 (𝑡) 𝐼𝑛 𝛽 (𝑡) 𝐼𝑛

−𝐼
𝑛

0

0 −𝐼
𝑛

]
]

]

[

𝑅
1
𝑆
1

∗ 𝑅
1

]
[
[

[

𝛼 (𝑡) 𝐼𝑛 𝛽 (𝑡) 𝐼𝑛

−𝐼
𝑛

0

0 −𝐼
𝑛

]
]

]

𝑇

⋅
[
[

[

𝑒
𝑖
(𝑡)

𝜙
𝑖 (𝑡)

𝜓
𝑖
(𝑡)

]
]

]

(A.5)

with denoting

𝛼 (𝑡) = 𝜏 (𝑡) − 𝜏0,

𝛽 (𝑡) = 𝜏
𝑚
− 𝜏 (𝑡) ,

𝜙
𝑖
(𝑡) = ∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑖
(𝑠) 𝑑𝑠,

𝜓
𝑖 (𝑡) = ∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑖 (𝑠) 𝑑𝑠.

(A.6)

Furthermore, together with Lemmas 3 and 4 and [ 𝑅𝑖 𝑆𝑖
∗ 𝑅𝑖

] >

0 (𝑖 = 2, 3), we can compute

𝑉̇
3 (𝑒 (𝑡)) ≤

𝑁

∑

𝑖=1

{𝑒
𝑇

𝑖
(𝑡) (𝜏
2

0
𝑄
2
+ 𝜏
2

𝑚
𝑅
2
) 𝑒
𝑖 (𝑡) + ̇𝑒

𝑇

𝑖
(𝑡)

⋅ (𝜏
2

0
𝑄
3
+ 𝜏
2

𝑚
𝑅
3
) ̇𝑒
𝑖 (𝑡) − (∫

𝑡

𝑡−𝜏0

𝑒
𝑖 (𝑠) 𝑑𝑠)

𝑇

⋅ 𝑄
2
(∫

𝑡

𝑡−𝜏0

𝑒
𝑖
(𝑠) 𝑑𝑠) − (∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑖
(𝑠) 𝑑𝑠)

𝑇

⋅ 𝑅
2
(∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑖
(𝑠) 𝑑𝑠) − 2(∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑖
(𝑠) 𝑑𝑠)

𝑇

⋅ 𝑆
2
(∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑖 (𝑠) 𝑑𝑠) − (∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑖 (𝑠) 𝑑𝑠)

𝑇

⋅ 𝑅
2
(∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑖
(𝑠) 𝑑𝑠) − [𝑒

𝑖
(𝑡) − 𝑒

𝑖
(𝑡 − 𝜏
0
)]
𝑇
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⋅ 𝑄
3
[𝑒
𝑖 (𝑡) − 𝑒𝑖 (𝑡 − 𝜏0)]

− [𝑒
𝑖
(𝑡 − 𝜏
0
) − 𝑒
𝑖
(𝑡 − 𝜏 (𝑡))]

𝑇

⋅ 𝑅
3
[𝑒
𝑖
(𝑡 − 𝜏
0
) − 𝑒
𝑖 (𝑡 − 𝜏 (𝑡))]

− 2 [𝑒
𝑖
(𝑡 − 𝜏
0
) − 𝑒
𝑖
(𝑡 − 𝜏 (𝑡))]

𝑇

⋅ 𝑆
3
[𝑒
𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑒

𝑖
(𝑡 − 𝜏
𝑚
)]

− [𝑒
𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑒

𝑖
(𝑡 − 𝜏
𝑚
)]
𝑇

⋅ 𝑅
3
[𝑒
𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑒

𝑖
(𝑡 − 𝜏
𝑚
)]} .

(A.7)

For any 𝑛×𝑛 constant matrices𝑀
𝑖
(𝑖 = 1, 2) and𝑁

𝑗
> 0 (𝑗 =

1, 2), it follows from (8) and Denotation 2 that

0 = 2

𝑁

∑

𝑖=1

[𝑒
𝑇

𝑖
(𝑡)𝑀
1
+ ̇𝑒
𝑇

𝑖
(𝑡)𝑀
2
] [− ̇𝑒
𝑖
(𝑡) − 𝐶𝑒

𝑖
(𝑡)

+ 𝐴𝑓 (𝑒
𝑖
(𝑡)) + 𝐵𝑓 (𝑒

𝑖
(𝑡 − 𝜏 (𝑡)))] − 2𝑒

𝑇
(𝑡)

⋅ [(Ξ ⊗𝑀
1
𝐺) 𝑒 (𝑡) + (Θ ⊗𝑀

1
𝐻) 𝑒 (𝑡 − 𝜏 (𝑡))]

− 2 ̇𝑒
𝑇
(𝑡) [(Ξ ⊗𝑀

2
𝐺) 𝑒 (𝑡)

+ (Θ ⊗𝑀
2
𝐻) 𝑒 (𝑡 − 𝜏 (𝑡))] + 2𝑒

𝑇
(𝑡)

⋅ [(𝐿
1
⊗𝑀
1
𝐺) 𝑒 (𝑡) + (𝐿

2
⊗𝑀
1
𝐻) 𝑒 (𝑡 − 𝜏 (𝑡))

+ (𝐿
3
⊗𝑀
1
𝐾)(∫

𝑡

𝑡−𝜏(𝑡)

𝑒 (𝑠) 𝑑𝑠)] + 2 ̇𝑒
𝑇
(𝑡)

⋅ [(𝐿
1
⊗𝑀
2
𝐺) 𝑒 (𝑡) + (𝐿

2
⊗𝑀
2
𝐻) 𝑒 (𝑡 − 𝜏 (𝑡))

+ (𝐿
3
⊗𝑀
2
𝐾)(∫

𝑡

𝑡−𝜏(𝑡)

𝑒 (𝑠) 𝑑𝑠)] ,

0 =

𝑁

∑

𝑖=1

[

̇𝑒
𝑖
(𝑡)

𝑒
𝑖 (𝑡 − 𝜏 (𝑡))

]

𝑇

[

𝑁
1
0

0 𝑁
2

][

̇𝑒
𝑖
(𝑡)

𝑒
𝑖 (𝑡 − 𝜏 (𝑡))

]

− [

̇𝑒 (𝑡)

𝑒 (𝑡 − 𝜏 (𝑡))

]

𝑇

⋅ [

𝐼
𝑁
⊗ 𝑁
1

0

0 𝐼
𝑁
⊗ 𝑁
2

][

̇𝑒 (𝑡)

𝑒 (𝑡 − 𝜏 (𝑡))

] .

(A.8)

Together with (A3) and any 𝑛 × 𝑛 diagonal matrices 𝑈 > 0

and 𝑉 > 0, one can easily derive

0 ≤ −

𝑁

∑

𝑖=1

{[𝑒
𝑇

𝑖
(𝑡) 𝑈Σ1𝑒𝑖 (𝑡) − 2𝑒

𝑇

𝑖
(𝑡) 𝑈Σ2𝑓 (𝑒𝑖 (𝑡))

+ 𝑓
𝑇
(𝑒
𝑖 (𝑡)) 𝑈𝑓 (𝑒𝑖 (𝑡))]

+ [𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑉Σ

1
𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

− 2𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑉Σ

2
𝑓 (𝑒
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝑓
𝑇
(𝑒
𝑖
(𝑡 − 𝜏 (𝑡))) 𝑉𝑓 (𝑒

𝑖
(𝑡 − 𝜏 (𝑡)))]} .

(A.9)

Then, through employing Denotations 1 and 2 and the right
terms in (A.3), (A.4), (A.5), (A.7), (A.8), and (A.9), the term
𝑉̇(𝑒(𝑡)) can be estimated as

𝑉̇ (𝑒 (𝑡)) ≤

𝑁

∑

𝑖=1

𝜁
𝑇

𝑖
(𝑡) [Ω + [𝜏̇ (𝑡) − 𝜇

0
] Γ
1
[

𝑃
1
0

0 𝑃
3

] Γ
𝑇

1

+ [𝜇
𝑚
− 𝜏̇ (𝑡)] Γ

2
𝑃
4
Γ
𝑇

2
] 𝜁
𝑖
(𝑡) + 𝜉

𝑇
(𝑡) [Φ

− IE(𝐼
𝑁
⊗ Υ (𝑡) [

𝑅
1
𝑆
1

∗ 𝑅
1

]Υ
𝑇
(𝑡)) (IE)𝑇] 𝜉 (𝑡) ,

(A.10)

where Υ𝑇(𝑡) = [ 𝛼(𝑡)𝐼𝑛 −𝐼𝑛 0𝑛
𝛽(𝑡)𝐼𝑛 0𝑛 −𝐼𝑛

], the denotationsΦ,Ω, I, Γ
1
, and

Γ
2
are expressed in (17)-(18), and

𝜉
𝑇
(𝑡) = [𝑒

𝑇
(𝑡) 𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) (∫

𝑡

𝑡−𝜏0

𝑒 (𝑠) 𝑑𝑠)

𝑇

(∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒 (𝑠) 𝑑𝑠)

𝑇

(∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒 (𝑠) 𝑑𝑠)

𝑇

̇𝑒
𝑇
(𝑡)] ,

𝜁
𝑇

𝑖
(𝑡) = [𝑒

𝑇

𝑖
(𝑡) 𝑒
𝑇

𝑖
(𝑡 − 𝜏
0
) 𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑒

𝑇

𝑖
(𝑡 − 𝜏
𝑚
) 𝑓
𝑇
(𝑒
𝑖 (𝑡)) 𝑓

𝑇
(𝑒
𝑖 (𝑡 − 𝜏 (𝑡))) ̇𝑒

𝑇

𝑖
(𝑡)] .

(A.11)

Now as for the terms in (A.10), if the two following inequali-
ties

Ω + (𝜏̇ (𝑡) − 𝜇0) Γ1 [

𝑃
1
0

0 𝑃
3

]Γ
𝑇

1

+ (𝜇
𝑚
− 𝜏̇ (𝑡)) Γ

2
𝑃
4
Γ
𝑇

2
< 0,

Φ − IE(𝐼
𝑁
⊗ Υ (𝑡) [

𝑅
1
𝑆
1

∗ 𝑅
1

]Υ
𝑇
(𝑡)) (IE)𝑇 < 0

(A.12)

can be true simultaneously, then we can obtain 𝑉̇(𝑒(𝑡)) < 0

for any 𝑒(𝑡) ̸= 0.
Together with Lemma 5, the LMIs in (18) can make

Ω + [𝜏̇(𝑡) − 𝜇
0
]Γ
1
[
𝑃1 0

0 𝑃3
] Γ
𝑇

1
+ [𝜇
𝑚
− 𝜏̇(𝑡)]Γ

2
𝑃
4
Γ
𝑇

2
< 0 hold.
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Meanwhile, with the denotations Υ
1
and Υ

2
in (17), the LMI

results in (17) mean the following inequalities

Φ + IE (𝐼
𝑁
⊗ Υ
1
)Π
𝑇
+ Π (𝐼

𝑁
⊗ Υ
𝑇

1
) (IE)𝑇 < 0,

Φ + IE (𝐼
𝑁
⊗ Υ
2
)Π
𝑇
+ Π (𝐼

𝑁
⊗ Υ
𝑇

2
) (IE)𝑇 < 0

(A.13)

to be true. Then, based on Lemma 5, the terms Φ + IE(𝐼
𝑁
⊗

Υ
𝑖
)Π
𝑇
+Π(𝐼
𝑁
⊗Υ
𝑇

𝑖
)(IE)𝑇 < 0 (𝑖 = 1, 2) in (A.13) can guarantee

Φ + [IE (𝐼
𝑁
⊗ Υ (𝑡))]Π

𝑇
+ Π [IE (𝐼

𝑁
⊗ Υ (𝑡))]

𝑇

< 0.

(A.14)

Furthermore, one can easily check

[
[
[

[

Φ + [IE (𝐼
𝑁
⊗ Υ (𝑡))] Π

𝑇
+ Π [IE (𝐼

𝑁
⊗ Υ (𝑡))]

𝑇
Π
1

Π
2

∗ −𝐼
𝑁
⊗ 𝑅
1
−𝐼
𝑁
⊗ 𝑆
1

∗ ∗ −𝐼
𝑁
⊗ 𝑅
1

]
]
]

]

< 0. (A.15)

Then, based on Lemma 6, the matrix inequality in (A.15) can
make the following term true:

Φ − [IE (𝐼
𝑁
⊗ Υ (𝑡))]

⋅ [

𝐼
𝑁
⊗ 𝑅
1
𝐼
𝑁
⊗ 𝑆
1

∗ 𝐼
𝑁
⊗ 𝑅
1

] [IE (𝐼
𝑁
⊗ Υ (𝑡))]

𝑇
< 0.

(A.16)

Therefore, the LMIs in (17)-(18) can make 𝑉̇(𝑒(𝑡)) < 0 for
any 𝑒(𝑡) ̸= 0. Then, based on Lyapunov stability theory and
Definition 2, the error system (8) is asymptotically stable; that
is, the controlled networks (1) can achieve the desired cluster
synchronization.

Remark A.1. During the proof procedure in Theorem 7, one
can easily check that, firstly, two triple integral Lyapunov
terms in 𝑉

2
(𝑒(𝑡)) could play an essential role in reducing

the conservatism, and some tighter upper bounds on the
derivatives were presented; secondly, we combined recip-
rocal convex technique with normal convex one to tackle
time-delay issue; thirdly, through employing the Kronecker
product in (A.10), (A.13), and (A.15), the forms of the inner
coupling matrices 𝐺, 𝐻, and 𝐾 can be described more
generally than the ones in [30, 31].

Remark A.2. As for time-delay issue, most present works on
delayed dynamical networks have only considered the case
𝜏̇(𝑡) ≤ 𝜇

𝑚
. Thus, through replacing ∫𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑇

𝑖
(𝑠)𝑃
4
𝑒
𝑖
(𝑠)𝑑𝑠 by

∫
𝑡−𝜏0

𝑡−𝜏𝑚

𝑒
𝑇

𝑖
(𝑠)𝑃
4
𝑒
𝑖
(𝑠)𝑑𝑠 in (A.1) and using the similar proving

procedure, we also can derive some relevant results.

Proof ofTheorem 8. Based on assumptions (A1)–(A3), we can
choose the Lyapunov-Krasovskii functional as

𝑉 (𝑒 (𝑡)) = 𝑉
1
(𝑒 (𝑡)) + 𝑉

2
(𝑒 (𝑡)) + 𝑉

3
(𝑒 (𝑡)) , (A.17)

where

𝑉
1 (𝑒 (𝑡)) =

𝑁

∑

𝑖=1

[

[

𝑒
𝑇

𝑖
(𝑡) 𝑃𝑒𝑖 (𝑡) + ∫

𝑡

𝑡−𝜏0

𝑒
𝑇

𝑖
(𝑠) 𝑃1𝑒𝑖 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏0

𝑡−𝜏(𝑡)

𝑒
𝑇

𝑖
(𝑠) 𝑃2𝑒𝑖 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑚

𝑒
𝑇

𝑖
(𝑠) 𝑃
3
𝑒
𝑖
(𝑠) 𝑑𝑠

+ 2

𝑛1

∑

𝑗=1

𝑒
𝑗
∫

𝑊
𝑇

𝑖
𝑒𝑗(𝑡)

0

[𝑓
𝑗
(𝑠) − 𝜎

−

𝑗
𝑠] 𝑑𝑠

+ 2

𝑛1

∑

𝑗=1

𝑓
𝑗
∫

𝑊
𝑇

𝑖
𝑒𝑗(𝑡)

0

[𝜎
+

𝑗
𝑠 − 𝑓
𝑗 (𝑠)] 𝑑𝑠

]

]

,

(A.18)

with setting 𝑛×𝑛 diagonal matrices 𝐸 = diag(𝑒
1
, . . . , 𝑒

𝑛1
) > 0,

𝐹 = diag(𝑓
1
, . . . , 𝑓

𝑛1
) > 0, and 𝑉

𝑖
(𝑒(𝑡)) (𝑖 = 2, 3) identical to

the ones inTheorem 7.

Remark A.3. Theorems 7 and 8 provide two less conservative
criteria that ensure the cluster synchronization of network
models (1) and (28) via pinning control, which can be easily
checked by resorting to LMI in theMatlabToolbox anddonot
require the inner coupling matrices to be of diagonal form.
Moreover, as for ℎ = 1, the derived theorems can be reduced
to guarantee the pinning global synchronization.

Remark A.4. Presently, the reciprocal convex technique in
[37] has beenwidely put forward to tackle time-delay systems,
owing to the fact that it could reduce the conservatism more
efficiently than some previous ones [23, 31]. Yet it comes
to our attention that the reciprocal technique has not been
utilized to tackle the pinning cluster synchronization on
delayed complex networks and it has been fully considered
in this work.
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