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This study covers records of various parameters affecting the power consumption of air-conditioning systems. Using the Support
Vector Machine (SVM), the chiller power consumption model, secondary chilled water pump power consumption model, air
handling unit fan power consumptionmodel, and air handling unit loadmodel were established. In addition, it was found that𝑅2 of
the models all reached 0.998, and the training time was far shorter than that of the neural network.Through genetic programming,
a combination of operating parameters with the least power consumption of air conditioning operation was searched. Moreover,
the air handling unit load in line with the air conditioning cooling load was predicted. The experimental results show that for the
combination of operating parameters with the least power consumption in line with the cooling load obtained through genetic
algorithm search, the power consumption of the air conditioning systems under said combination of operating parameters was
reduced by 22% compared to the fixed operating parameters, thus indicating significant energy efficiency.

1. Introduction

Conventional chillers require the highest power consumption
among components of air conditioning systems. In recent
years, with the availability of numerous studies on chiller
efficiency, chillers have continued to become more energy
efficient [1–3]; relatively, the power consumption ratios of
pumps and fans have become higher. In addition, central air
conditioning system control involves greater complexity, as a
centralized air conditioning system comes with many ancil-
lary parts. Therefore, the operating efficiency of pumps and
fans has particular importance. The main subject of discus-
sion in this paper is how to achieve optimized control of water
and air loop load changes through gear control. Through
the thermal load balance equation of the air handling unit,
the relationship between the load and relevant variables was
established [4]. In this equation, the variables include the
operating parameters of chiller, pump, and air handling unit.
In other words, optimized operation of these three types of
equipment can be simultaneously taken into consideration.
Through the powerful search capacity of genetic algorithm
[5–7], the optimized combination of outlet temperature of

chilled water, the air flow of air handling unit, and secondary
chilled water flow was searched simultaneously to obtain the
least power consumption for cooling load.

Schwedler and Bradley [8] proposed the correlations
among chiller power consumption, air conditioning load,
condenser, and outlet temperature of chilled water when
the operating characteristics of each chiller vary. The aver-
age loading method was adopted to control and solve the
optimized load distribution and chilled water temperature
setting point of the chiller [9–11]. Through chilled water flow
control, the water saving effect can be enhanced. Lu et al. [12]
put forth a comprehensive optimized control method, where
the influential relationships among all controllable variables
and objective functions in the system were expressed using
mathematical equations and the best control setting point
among them was found. Ding and Xianzhong [13] suggested
using linear regression to establish a load prediction model.
On the other hand, Yao et al. [14] mentioned the use of
the RBF neural network to establish a prediction model.
Chang et al. [15] proposed using the cubic polynomial
equation to express the performance curve of the chiller
and using the gradient method to engage in chiller load
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Figure 1: Illustration of the basic configuration of an air handling
unit together with a chiller and water pump.

distribution optimization in order to obtain the least total
power consumption. Beghi et al. [16] used the multiobjective
genetic algorithm to propose ways to manage energy saving
of multiple sets of chiller systems.

In this paper, the chiller, chilled water pump loop, and
air handling unit air loop were integrated and controlled.
Then, the air handling unit thermal balance equation was
adopted to serve as a reference for setting outlet temperature
of chilled water, air flow, and chilled water flow. The power
consumption model established through the neural network
and SVM replaced the model established through linear
regression [17–20]. Finally, genetic algorithm was conjunc-
tively used to search the optimized setting values of the three
variables in order to obtain the least power consumption of
the equipment under the various load conditions.

2. System Structure

Figure 1 illustrates the basic configuration of an air handling
unit. The air handling unit can be divided into air loop
and chilled water loop. The principle of cycling involves
transmitting the indoor cooling load to the chilled water.
Then, through the chilled water pump, the chilled water that
has undergone thermal exchange is sent back to the chiller to
complete one cycle. Based on the thermal balance equation
of the air handling unit, we can express the air handling unit
load equation as [21]
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The air handling unit fan power consumption and the
pump power consumption have a cubic relationship with air
handling unit air flow and chilled water flow [23], which
can be expressed as the following equations throughmultiple
regression:
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acquired from regression analysis.
The three operating parameters of the air conditioning

system: outlet temperature of chilled water of chiller (𝑇chw),
secondary chilled water flow (�̇�chw), and air handling unit
air flow (�̇�

𝑎
) affect the power consumption of the chiller

(𝑃chiller), secondary water pump power consumption (𝑃pump),
and air handling unit power consumption (𝑃fan). When the
same load is provided by the air conditioning system, the
three operating parameters will have multiple combinations.
The methodology is shown in Figure 2.

3. Support Vector Machine (SVM) and
Support Vector Regression (SVR)

Although many methods have been used to predict the
power consumption models of chillers [24], the SVM, com-
pared to the neural network, is a relatively newer artificial
intelligence classification method. Through the correlational
relationships of the independent variables and dependent
variables, low-dimensional vector spaces are projected to
high-dimensional vector spaces. Unlike the neural network,
there is no need to carry out the massive calculations of the
hidden layers during model training, thus greatly reducing
training time.The disadvantage of excessive learning can also
be prevented in nonlinear data classification. In terms of
classification, the SVM can be divided into linear SVM and
nonlinear SVM [25, 26]. In this study, we use nonlinear SVM
to do regression.

3.1. Support Vector Machine (SVM). In Figure 3 suppose that
we have some separating hyperplane to separate data, and we
have two support hyperplanes, where 𝑤 is the normal vector
to the hyperplane. Let 𝑑

+
, 𝑑
−
be the shortest distance from

the separating hyperplane to support hyperplane. Define the
“margin” of a separating hyperplane to be 𝑑

+
, 𝑑
−
[27].

In the case of “linear separable,” the hyperplane in exis-
tence can divide the input space. The separating hyperplane
in this area can be expressed as 𝑤𝑇𝑥 + 𝑏 = 0; the hyperplane
solution can be regarded as a quadratic programming solu-
tion, as the following equation:
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Figure 2: The flowchart of this study methodology in optimized operation of chilled water system.
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Figure 4: The feature space of SVR.

This condition is called the primal problem;whenwe through
the Lagrange [28], the multiplier can be rewritten as the
following equation:
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That can be efficiently solved by quadratic programming
algorithms and then through KKT (Karush-Kuhn-Tucker)
conditions [29], the equation can be converted as
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3.2. Support Vector Regression (SVR). SVR is SVM regression
through a new type of loss function called 𝜀-insensitive loss
function. And it can be described by introducing (nonnega-
tive) slack variables 𝜉, 𝜉∗ to measure the deviation of training
samples outside 𝜀-insensitive zone. Figure 4 shows the data
map to the high-dimensional feature space [30, 31].

Thus SVR is formulated as minimization of the following
function:
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The parameter 𝐶 is a penalty factor to control the degree
of punishment of samples beyond the error 𝜀. Training errors
above 𝜀 are denoted by 𝜉∗

𝑖
whereas training errors below 𝜀 are

denoted by 𝜉
𝑖
.

Through the Lagrange and KKT, the regression function
is shown as the below function:
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After SVR training, the power consumption for chiller,
air handling unit, secondary chilled water pump, and air
handling unit load models can be obtained, which can be
used to obtain optimized operating parameters by genetic
algorithm [32].
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4. Genetic Algorithm

The genetic algorithm (GA) is developed by Holland [33]
in his book in 1975. The genetic algorithm is based on
Darwinian’s theory of survival of the fittest to solve both con-
strained and unconstrained optimization problems. Genetic
algorithm is analogous to those in the selection process
that mimics biological evolution: selection, reproduction,
crossover, and mutation. The main advantage of the paral-
lelism of GA is having multiple points in search space so that
the problem of local maximum generally does not exist [34].

4.1. Initial Population. In order to find the best load distri-
bution, a highly accurate prediction model should be first
established to find the objective function of the least power
consumption, as shown in the following equation:
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The variables of the objective functions are randomly
selected, as shown in the following equations, to generate the
initial population made up of 900 sets of solutions:
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The error between the predicted air conditioning cooling
load and the actual air conditioning cooling load serves as the
raw fitness, as shown in the following equation:

𝐹 (𝑖, 𝑡) =

𝑁

∑
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 , (14)

where 𝐹(𝑖, 𝑡) is raw fitness of generation 𝑡 in individual 𝑖;
𝑄(𝑖, 𝑗) is load prediction value inputted at 𝑗 in individual; and
𝑄real(𝑗) is actual air conditioning load at 𝑗.

The smaller the fitness is, the closer the prediction value
is to the actual value.

As shown in the flowchart in Figure 5, under the con-
ditions of the known cooling load (𝑄Load), return air wet
bulb temperature (𝑇

𝑎
), and inlet temperature of cooling water

(𝑇cwr), three operating parameters were randomly produced:
the outlet temperature of chilled water in the chiller (𝑇chws),
secondary chilled water flow (�̇�chw), and air handling unit
air flow (�̇�

𝑎
). Then, the equipment power consumption

models were substituted into the equation to obtain the
power consumption (𝑃chiller), secondary water pump power
consumption (𝑃pump), and air handling unit fan power

consumption (𝑃fan). After computing fitness, those nearest
to the cooling load and with the least power consumption
in the population were arranged in sequence to retain the
moderately superior ones for reproducing a next population
and execute mating and mutation for inferior ones. After 500
times of iteration, we can get the least power consumption
and the cooling load is satisfied. Consider the following:

𝑃
𝑟
: the reproduction process,

𝑃
𝑐
: the crossover process,

𝑃
𝑚
: the mutation process.

4.2. Reproduction. Through the ranking approach, the 900
individuals in this paper were ranked according to fitness.
Those with the best fitness (i.e., the top 1% of the smallest
fitness) were used as targets for copying.

4.3. Crossover. Since it takes two to mate, after eliminating
the top 1%, the remaining 98% were used as the length of
mating. The chiller power consumption or the air handling
unit power consumption at the functional end was randomly
selected andmated to enter the next population and carry out
fitness ranking.

4.4. Mutation. Unlike mating, it takes only one to mutate,
as it is a type of asexual reproduction. For the remaining 1%
of the population, the chiller power consumption or the air
handling unit power consumption was randomly selected.
Through the outlet temperature of chilled water and air
handling unit air flow, mutation was calculated before finally
entering the next population and carrying out fitness ranking.

The calculation ends when the population reaches 500
through copying, mating, and mutation. In Figure 6, the
calculation has been converged. From the subpopulation
obtained, the best fitness solution will be the best solution
sought.

5. Results and Discussion

This experimental system is primary-secondary central air
conditioning system with a fixed-frequency scroll compres-
sor. When the preset outlet temperature of chilled water is
reached, the on/off control and hot gas bypass methods are
used in loading and unloading.Themodel establishment data
comes from the air conditioning experimental system actu-
ally operated for three months from 2009/4/17 to 2009/6/11.
The outlet and inlet temperature of chilledwater in the chiller,
the outlet and inlet temperature of chilled water in the air
handling unit, the outlet and inlet temperature of cooling
water, chilled water flow, return air wet bulb temperature,
chiller power consumption, pump power consumption, air
handling unit power consumption, and other related data
were compiled to calculate the actual load of the air handling
unit.

For three days from 2009/6/14 to 2009/6/16, the data
collected at partial loading rates of 0.3∼0.5, 0.75∼1, and 0.5∼
0.75 were used to crossmatch predicted air conditioning load
and power consumption. The experiment was crossmatched
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Figure 5: The flowchart of genetic algorithm applied in optimized operation of chilled water system.

with the air conditioning system at fixed outlet temperature
of chilled water, fixed air handling unit air flow, and fixed sec-
ondary flow model (hereinafter referred to as fixed operating
parametermodel) from 9:00 a.m. in themorning to 6:00 p.m.
in the evening to record the operating parameters. Then the
data taken every 20 minutes on average were compiled. As
shown in Table 1, there are a total of 81 operating parameter
conditions. The 3-day operation data serves as the base data
for comparison. In addition, based on the base data, the outlet
temperature of chilled water, air handling unit air flow, and
secondary chilled water flow operation model (hereinafter
referred to as optimized operating parameter model) were
compared.

Under the 81 known conditions (inlet temperature of
cooling water, return air wet bulb temperature, and air
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Figure 6: The convergence diagram of six segments of data for
model establishment.
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Table 1: Operating parameters.

Day Time Wet bulb temperature Inlet temperature of cooling water Load Initial total power consumption
∘C ∘C RT kW

2009/6/14 9:20 22.23 27.20 2.48 3.71
2009/6/14 9:40 18.94 27.62 2.49 3.74
2009/6/14 10:00 18.12 27.62 2.51 3.74
2009/6/14 10:20 17.59 27.57 2.48 3.76
2009/6/14 10:40 19.02 27.34 2.65 3.67
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2009/6/14 16:20 19.48 24.82 2.18 3.47
2009/6/14 16:40 19.47 24.77 2.15 3.46
2009/6/14 17:00 19.26 24.77 2.06 3.44
2009/6/14 17:20 19.20 24.85 2.07 3.46
2009/6/14 17:40 19.25 24.99 2.10 3.46
2009/6/14 18:00 19.29 25.08 2.11 3.46
2009/6/15 9:20 21.88 26.80 2.37 3.54
2009/6/15 9:40 17.48 28.12 4.27 6.07
2009/6/15 10:00 16.89 28.20 4.10 6.03
2009/6/15 10:20 16.85 28.28 4.13 6.04
2009/6/15 10:40 16.84 28.46 4.17 6.06
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2009/6/15 16:20 17.04 28.21 4.03 5.99
2009/6/15 16:40 16.84 28.13 3.97 5.98
2009/6/15 17:00 16.89 28.07 3.94 5.97
2009/6/15 17:20 16.80 27.95 3.93 5.95
2009/6/15 17:40 16.77 27.97 3.92 5.94
2009/6/15 18:00 16.70 27.91 3.90 5.94
2009/6/16 9:20 21.91 26.89 2.65 3.57
2009/6/16 9:40 21.57 27.12 2.77 3.60
2009/6/16 10:00 20.97 27.38 2.73 3.62
2009/6/16 10:20 20.39 27.27 2.75 3.58
2009/6/16 10:40 20.90 27.66 2.77 3.61
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2009/6/16 16:40 19.56 27.52 2.68 3.55
2009/6/16 17:00 19.43 27.62 2.69 3.57
2009/6/16 17:20 19.53 27.71 2.68 3.60
2009/6/16 17:40 19.44 27.65 2.68 3.58
2009/6/16 18:00 19.48 27.59 2.70 3.59
2009/6/16 16:40 19.56 27.52 2.68 3.55

conditioning cooling load), the best outlet temperatures of
chilled water, secondary chilled water flow, and air handling
unit air flow that are in line with the conditions with the least
cooling load and power consumption were simultaneously
searched. The convergence diagram is as shown in Figure 6.
Under different partial loads during the 3-day operation,
500 times of iteration calculation all reached convergence.
As shown in Figure 7, the chiller with the partial loading
rates of 0.3∼0.5, through SVR prediction, showed the actual
power consumption and simulated power consumption of

𝑅
2

= 0.999. As shown in Figure 8, the chiller with the
partial loading rates of 0.5∼1.0, through SVR prediction,
showed the actual power consumption and simulated power
consumption of 𝑅

2
= 0.998. As shown in Figure 9, the

relationship between the power consumption and flow of the
chilled water pump, as predicted by SVR, showed the actual
power consumption and simulated power consumption of
𝑅
2

= 0.999. As shown in Figure 10, the actual power
consumption and simulated power consumption of the fan,
as predicted by SVR, showed that 𝑅2 = 0.999. As shown in
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power consumption at low load.
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Figure 8: Actual load and simulated load of chiller through SVR
prediction.

Figure 11, the actual load and simulated load of air handling
unit, as predicted by SVR, showed that 𝑅2 = 0.999. Thus
supporting SVM training time is far lower than that of the
neural network, as shown in Table 2. The best operating
result of power consumption is as shown in Figure 12. Under
different partial loading rates during the 3-day operation,
the total power consumption under the best operation was
lower than the total power consumption under operation at
fixed water temperature, thus indicating significant energy
saving result. As shown in Figure 13, the 3-day total power
consumption under the best operation and the operation at
fixed water temperature was compared. On 6/14 under the
condition of low partial loading rate operation, the energy
reduction was 24.78 kW; on 6/15 under the condition of high
partial loading rate, the energy reduction was 30.21 kW; on
6/16 under the condition of medium partial loading rate,
27.35 kWof energywas saved.Through genetic algorithm, the
best operating settings for outlet temperature of chilled water,
air handling unit air flow, and chilled water flow results are as
shown in Table 3.
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Figure 9: Actual load and simulated load of pump through SVR
prediction.

Fan power consumption
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Figure 10: Actual load and simulated load of fan through SVR
prediction.

6. Conclusion

The dependent variables contained in the air handling unit
thermal balance equation used in this paper include chiller,
air handling unit, and pump operating parameters. At the
same time, optimized operation of these three types of
equipment can also be taken into account. Through the
powerful search capacity of genetic algorithm, the best
combination of outlet temperature of chilled water, air
handling unit air flow, and secondary chilled water flow is
simultaneously searched. With satisfied loading, the total
power consumption is also optimized. The 𝑅

2 values of
the chiller power consumption model, air handling power
consumption model, pump power consumption model, and
air condition loading model established through the SVM all
reached above 0.998. They also possess high reliability when
used to predict the power consumption and air condition
load of individual components. In terms of training time,
they are considered speedier and simpler compared to the
neural network. Compared to the total power consumption
when operated under fixed parameters, operating parameters
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Table 2: Training time.

Model SVR training time (s) 𝑅
2 Neural network training time (s) 𝑅

2

𝑃fan 21.41 0.9996 Over 1800 0.9966
𝑃pump 13.84 0.9998 Over 1800 0.9999
𝑃chiller up 221.03 0.9976 Over 1800 0.9981
𝑃chiller down 455.63 0.9997 Over 1800 0.9997
𝑄fan 32.84 0.9999 Over 1800 0.9965
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Figure 11: Actual load and simulated load of air handling unit
through SVR prediction.

Total power consumption under optimized operation
Total power consumption under fixed operation

6/15 6/166/14

12:20 15:20 9:20 12:20 15:20 9:20 12:20 15:20 18:009:20
Time

2

3

4

5

6

7

8

To
ta

l p
ow

er
 co

ns
um

pt
io

n 
(k

W
)

Figure 12: Curve diagram of total power consumption under fixed
operation and optimized operation.
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Figure 13: Bar chart of total power consumption before and after
system improvement.

Table 3: Optimized operation parameters setting.

Day Time 𝑇chw𝑠 �̇�
𝑎

�̇�chw
∘C CMH CMH

2009/6/14 9:20 12.94 962.88 1.9
2009/6/14 9:40 10.44 997.45 1.92
2009/6/14 10:00 10.25 1031.7 1.9
2009/6/14 10:20 10.06 1040.1 2
2009/6/14 10:40 10.5 1094.3 1.94
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2009/6/14 16:20 10.89 958.79 1.89
2009/6/14 16:40 12.98 1101.1 1.99
2009/6/14 17:00 13.12 1068 2.01
2009/6/14 17:20 13.39 1124 2.04
2009/6/14 17:40 13.22 1105.8 2.03
2009/6/14 18:00 13.05 1079.9 2
2009/6/15 9:20 12.26 963.27 1.9
2009/6/15 9:40 6.6 1417.1 1.9
2009/6/15 10:00 7.87 1589.3 1.86
2009/6/15 10:20 6.75 1499.2 2.15
2009/6/15 10:40 6.7 1451.6 1.85
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2009/6/15 16:20 6.49 1071.7 2.72
2009/6/15 16:40 6.43 1332.7 2.08
2009/6/15 17:00 6.55 1346.5 2.09
2009/6/15 17:20 7.49 1125.4 2.53
2009/6/15 17:40 7.24 1082.2 2.59
2009/6/15 18:00 7.13 1535.1 2.04
2009/6/16 9:20 10.4 1002.8 1.88
2009/6/16 9:40 10.98 992.85 1.97
2009/6/16 10:00 11.14 1142 1.85
2009/6/16 10:20 10.5 1115.3 2.01
2009/6/16 10:40 10.62 1048.3 1.99
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2009/6/16 16:40 10.53 1090.5 2
2009/6/16 17:00 10.61 1237.7 1.91
2009/6/16 17:20 10.62 1102.8 2.03
2009/6/16 17:40 10.57 1229.5 2
2009/6/16 18:00 10.49 1199.4 2.01
2009/6/16 16:40 10.53 1090.5 2

operated under the optimized model decrease energy con-
sumption by 22% on average.
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It can therefore be confirmed that the SVMcan accurately
predict power consumption of various equipment and air
handling unit loads. Additionally, genetic algorithm has
powerful search capacity to find the best combination of
operating parameters.

Nomenclature

kWtotal: Total power consumption
�̇�
𝑎
𝑛

: Air flow of air handling unit 𝑖 (m3/hr)
�̇�chw

𝑛

: Chilled water flow of air handling unit 𝑛
(m3/hr)

𝑃chiller
𝑖

: The chiller power consumption 𝑖 (kW)
𝑃fan
𝑛

: The air handling unit power consumption
𝑛 (kW)

𝑃pump
𝑗

: The pump power consumption 𝑗 (kW)
𝑄: Predicted cooling load of air handling unit

(Ton)
𝑄real: Cooling load of air conditioning system

provided to space (Ton)
𝑄chiller

𝑖

: Cooling capacity of chiller 𝑖 (Ton)
𝑇
𝑎
𝑛

: Return air wet bulb temperature of air
handling unit (∘C)

𝑇chw
𝑛

: Inlet temperature of chilled water of air
handling unit 𝑛 (∘C)

𝑇cwr
𝑖

: Inlet temperature of chilled water of
chiller 𝑖 (∘C)

𝑇cws
𝑖

: Outlet temperature of chilled water of
chiller 𝑖 (∘C).
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