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The main aim in this paper is to use all the possible arrangements of objects such that 𝑟
1
of them are equal to 1 and 𝑟

2
(the others)

of them are equal to 2, in order to generalize the definitions of Riemann-Liouville and Caputo fractional derivatives (about order
0 < 𝛽 < 𝑛) for a fuzzy-valued function. Also, we find fuzzy Laplace transforms for Riemann-Liouville and Caputo fractional
derivatives about the general fractional order 𝑛 − 1 < 𝛽 < 𝑛 under H-differentiability. Some fuzzy fractional initial value problems
(FFIVPs) are solved using the above two generalizations.

1. Introduction

Fuzzy Fractional Differential Equations (FFDEs) can offer a
more comprehensive account of the process or phenomenon.
This has recently captured much attention in FFDEs. As the
derivative of a function is defined in the sense of Riemann-
Liouville, Grünwald-Letnikov, or Caputo in fractional calcu-
lus, the used derivative is to be specified and defined in FFDEs
as well [1].

Many researchers have worked on the field of Fuzzy
Fractional Differential Equations (FFDEs); for example,
Salahshour et al. [2] dealt with the solutions of FFDEs under
Riemann-LiouvilleH-differentiability by fuzzy Laplace trans-
forms; Mazandarani and Kamyad [1] presented the solution
to FFIVP under Caputo-type fuzzy fractional derivatives by
a modified fractional Euler method; Wu and Baleanu [3]
proposed a novel modification of the variational iteration
method (VIM) by means of the Laplace transform; they
extended the method successfully to fractional differen-
tial equations; Ahmadian et al. [4] reveal a computational
method based on using a Tau method with Jacobi polyno-
mials for the solution of fuzzy linear fractional differential
equations of order 0 < V < 1, and Allahviranloo et al. [5]
introduced the fuzzy Caputo fractional differential equations
under the generalized Hukuhara differentiability.

This paper is arranged as follows. Basic concepts are
given in Section 2. In Section 3, the general formula of
the fuzzy Riemann-Liouville fractional derivatives and the
general formula of Laplace transforms of the fuzzy Riemann-
Liouville fractional derivatives for a fuzzy-valued function
𝑓 are found. In Section 4, the general formula of the fuzzy
Caputo fractional derivatives and the general formula of
Laplace transforms of the fuzzy Caputo fractional derivatives
for a fuzzy-valued function𝑓 are found. In Section 5, conclu-
sions are drawn.

2. Basic Concepts

In this section, we give the basic concepts which are needed
in the next sections. We denote 𝐶𝐹[𝑎, 𝑏] as the space of all
continuous fuzzy-valued functions on [𝑎, 𝑏]. Also, we denote
the space of all Lebesgue integrable fuzzy-valued functions on
the bounded interval [𝑎, 𝑏] ⊂ R by 𝐿𝐹[𝑎, 𝑏].

Theorem 1 (see [6]). Let 𝑛 be a positive integer. Let 𝐷𝑛−1𝑓
be continuous on 𝐽 = [0,∞); 𝐶 is the class of piecewise
continuous functions on 𝐽


= (0,∞) and integrable on any

finite subinterval of 𝐽 = [0,∞) and let 𝜐 > 0.Then, one finds
the following:
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(a) If𝐷𝑛𝑓 is of class C, then

𝐷
−𝜐
𝑓 (𝑥) = 𝐷

−𝜐−𝑛
[𝐷
𝑛
𝑓 (𝑥)] + 𝑄

𝑛
(𝑥, 𝜐) (1)

and
(b) if𝐷𝑛𝑓 is continuous on 𝐽, then for 𝑥 > 0

𝐷
𝑛
[𝐷
−𝜐
𝑓 (𝑥)] = 𝐷

−𝜐
[𝐷
𝑛
𝑓 (𝑥)] + 𝑄

𝑛
(𝑥, 𝜐 − 𝑛) , (2)

where

𝑄
𝑛
(𝑥, 𝜐) =

𝑛−1

∑

𝑘=0

𝑥
𝜐+𝑘

Γ (𝜐 + 𝑘 + 1)

𝐷
𝑘
𝑓 (0) . (3)

Definition 2 (see [7]). A fuzzy number 𝑢 in parametric form
is a pair (𝑢, 𝑢) of functions 𝑢(𝑟), 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1, which satisfy
the following requirements.

(1) 𝑢(𝑟) is a bounded nondecreasing left continuous
function in (0, 1] and right continuous at 0.

(2) 𝑢(𝑟) is a bounded nonincreasing left continuous
function in (0, 1] and right continuous at 0.

(3) Consider 𝑢(𝑟) ≤ 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1.

We denote the set of all real numbers by R and the set of all
fuzzy numbers on R is indicated by 𝐸.

Definition 3 (see [8]). Let 𝑥, 𝑦 ∈ 𝐸. If there exists 𝑧 ∈ 𝐸 such
that 𝑥 = 𝑦 + 𝑧, then 𝑧 is called the H-difference of 𝑥 and
𝑦, and it is denoted by 𝑥 ⊖ 𝑦. The sign “⊖” always stands for
H-difference and also note that 𝑥 ⊖ 𝑦 ̸= 𝑥 + (−1)𝑦.

Definition 4 (see [9]). Let 𝑓(𝑥) be continuous fuzzy-
valued function; suppose that 𝑓(𝑥)𝑒−𝑠𝑥 is improper fuzzy
Rimann-integrable on [0,∞) then ∫

∞

0
𝑓(𝑥)𝑒

−𝑠𝑥
𝑑𝑥 is called

fuzzy Laplace transforms and is denoted as 𝐿[𝑓(𝑥)] =

∫

∞

0
𝑓(𝑥)𝑒

−𝑠𝑥
𝑑𝑥, (𝑠 > 0).

We have

∫

∞

0

𝑓 (𝑥) 𝑒
−𝑠𝑥

𝑑𝑥

= (∫

∞

0

𝑓 (𝑥; 𝑟) 𝑒
−𝑠𝑥

𝑑𝑥, ∫

∞

0

𝑓 (𝑥; 𝑟) 𝑒
−𝑠𝑥

𝑑𝑥) ;

(4)

also by using the definition of classical Laplace transform:

ℓ [𝑓 (𝑥; 𝑟)] = ∫

∞

0

𝑓 (𝑥; 𝑟) 𝑒
−𝑠𝑥

𝑑𝑥,

ℓ [𝑓 (𝑥; 𝑟)] = ∫

∞

0

𝑓 (𝑥; 𝑟) 𝑒
−𝑠𝑥

𝑑𝑥

(5)

then, we follow:

𝐿 [𝑓 (𝑥)] = (ℓ [𝑓 (𝑥; 𝑟)] , ℓ [𝑓 (𝑥; 𝑟)]) . (6)

Definition 5 (see [2]). Let 𝑓 ∈ 𝐶
𝐹
[𝑎, 𝑏] ∩ 𝐿

𝐹
[𝑎, 𝑏]. The

fuzzy Riemann-Liouville integral of fuzzy-valued function 𝑓
is defined as follows:

(𝐼
𝛽

𝑎+
𝑓) (𝑥) =

1

Γ (𝛽)

∫

𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡

(𝑥 − 𝑡)
1−𝛽

, 𝑥 > 𝑎, 0 < 𝛽 ≤ 1. (7)

3. Generalization of Fuzzy Laplace
Transforms of the Fuzzy Riemann-Liouville
Fractional Derivatives of Order 𝑛 − 1 < 𝛽 < 𝑛

In this section, we define Riemann-Liouville fractional
derivatives of the general fractional order 0 < 𝛽 < 𝑛 and
we find fuzzy Laplace transforms for Riemann-Liouville frac-
tional derivatives of the general fractional order 𝑛−1 < 𝛽 < 𝑛

for fuzzy-valued function 𝑓 under H-differentiability.

Definition 6. Let 𝑓(𝑥) ∈ 𝐶𝐹[0, 𝑏] ∩ 𝐿𝐹[0, 𝑏], and ⌈𝛽⌉ and ⌊𝛽⌋
are values of 𝛽 rounded up and down to the nearest integer
number, respectively. One can see that 𝜙(𝑥) = (1/Γ(⌈𝛽⌉ −

𝛽)) ∫

𝑥

0
(𝑓(𝑡)𝑑𝑡/(𝑥− 𝑡)

1−⌈𝛽⌉+𝛽
), and the functions 𝜙

𝑖
1
,𝑖
2
,...,𝑖
𝑗
,1
and

𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗
,2
are defined as:

𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗
,1
(𝑥
0
) = lim
ℎ→0

+

𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗

(𝑥
0
+ ℎ) ⊖ 𝜙

𝑖
1
,𝑖
2
,...,𝑖
𝑗

(𝑥
0
)

ℎ

= lim
ℎ→0

+

𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗

(𝑥
0
) ⊖ 𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗

(𝑥
0
− ℎ)

ℎ

,

(8)

𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗
,2
(𝑥
0
) = lim
ℎ→0

+

𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗

(𝑥
0
) ⊖ 𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗

(𝑥
0
+ ℎ)

−ℎ

= lim
ℎ→0

+

𝜙
𝑖
1
,𝑖
2
,...,𝑖
𝑗

(𝑥
0
− ℎ) ⊖ 𝜙i

1
,𝑖
2
,...,𝑖
𝑗

(𝑥
0
)

−ℎ

,

(9)

for 𝑗 = 0, 1, . . . , 𝑛−2, such that 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑗
are all the possible

arrangements of 𝑗 objects which have the number given in the
rule:

𝑗𝑃
𝑟
1
,𝑟
2

=

𝑗!

𝑟
1
!𝑟
2
!

, 𝑟
1
+ 𝑟
2
= 𝑗, (10)

where 𝑟
1
of them equal 1 (meaning Riemann-Liouville type

derivative in the first form) and 𝑟
2
of them equal 2 (meaning

Riemann-Liouville type derivative in the second form) and
𝜙
𝑖
1
,...,𝑖
0

= 𝜙. 𝑓(𝑥) is the Riemann-Liouville type fuzzy frac-
tional differentiable function of order 0 < 𝛽 < 𝑛, 𝛽 ̸=

1, 2, . . . , 𝑛 − 1, at 𝑥
0

∈ (0, 𝑏), if there exists an element
(
RL
𝐷
𝛽
𝑓)(𝑥
0
) ∈ 𝐶

𝐹 such that for all 0 ≤ 𝑟 ≤ 1 and for ℎ > 0

sufficiently near zero. Then:

(1) If 𝑖
⌈𝛽⌉

= 1, then

(
RL
𝐷
𝛽
𝑓) (𝑥
0
)

= lim
ℎ→0

+

𝜙
𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋

(𝑥
0
+ ℎ) ⊖ 𝜙

𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋

(𝑥
0
)

ℎ

= lim
ℎ→0

+

𝜙
𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋

(𝑥
0
) ⊖ 𝜙
𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋

(𝑥
0
− ℎ)

ℎ

.

(11)

(2) If 𝑖
⌈𝛽⌉

= 2, then

(
RL
𝐷
𝛽
𝑓) (𝑥
0
)
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= lim
ℎ→0

+

𝜙
𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋

(𝑥
0
) ⊖ 𝜙
𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋

(𝑥
0
+ ℎ)

−ℎ

= lim
ℎ→0

+

𝜙
𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋

(𝑥
0
− ℎ) ⊖ 𝜙

𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋

(𝑥
0
)

−ℎ

,

(12)

for 𝑘 − 1 < 𝛽 < 𝑘, 𝑘 = 1, 2, . . . , 𝑛, such that 𝑖
1
, 𝑖
2
, . . . , 𝑖

⌊𝛽⌋
are

all the possible arrangements of ⌊𝛽⌋ objects which have the
number given by the rule:

⌊𝛽⌋ 𝑃
𝑟
1
,𝑟
2

=

⌊𝛽⌋!

𝑟
1
!𝑟
2
!

, 𝑟
1
+ 𝑟
2
= ⌊𝛽⌋ . (13)

If the fuzzy-valued function 𝑓(𝑥) is differentiable as in
Definition 6 cases defined in (11), it is the Riemann-
Liouville type differentiable in the first form and denoted
by (

RL
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋
,1
𝑓)(𝑥
0
). If 𝑓(𝑥) is differentiable as in

Definition 6 cases defined in (12), it is the Riemann-Liouville
type differentiable in the second form and denoted by
(
RL
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
⌊𝛽⌋
,2
𝑓)(𝑥
0
).

We note that if we take 𝑛 = 1 (0 < 𝛽 < 1) in Definition 6
we get Definition 3.2 [2] which is introduced by Salahshour
et al.

Theorem 7. Let 𝑓(𝑥) ∈ 𝐶
𝐹
[0, 𝑏] ∩ 𝐿

𝐹
[0, 𝑏] be a fuzzy-valued

function such that 𝑓(𝑥) = [𝑓(𝑥; 𝑟), 𝑓(𝑥; 𝑟)] for 𝑟 ∈ [0, 1], 𝑥
0
∈

(0, 𝑏), and 𝜙(𝑥) = (1/Γ(⌈𝛽⌉ − 𝛽)) ∫

𝑥

0
(𝑓(𝑡)𝑑𝑡/(𝑥 − 𝑡)

1−⌈𝛽⌉+𝛽
).

Suppose that 0 < 𝛽 < 𝑛 and 𝑚 is the number of repetitions
of number 2 among 𝑖

1
, 𝑖
2
, . . . , 𝑖

⌈𝛽⌉
for 𝑘 − 1 < 𝛽 < 𝑘, 𝑘 =

1, 2, . . . , 𝑛, say, 𝑖
𝑘
1

, 𝑖
𝑘
2

, . . . , 𝑖
𝑘
𝑚

, such that 𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑚
;

that is, 𝑖
𝑘
1

= 𝑖
𝑘
2

= ⋅ ⋅ ⋅ = 𝑖
𝑘
𝑚

= 2 and 0 ≤ 𝑚 ≤ ⌈𝛽⌉. Then, one
has the following:

If𝑚 is an even number, then

(
RL
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
⌈𝛽⌉

𝑓) (𝑥
0
)

= [(
RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (

RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(14)

If𝑚 is an odd number, then

(
RL
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
⌈𝛽⌉

𝑓) (𝑥
0
)

= [(
RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (

RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] ,

(15)

where
(
RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)

= [

1

Γ (⌈𝛽⌉ − 𝛽)

(

𝑑

𝑑𝑥

)

⌈𝛽⌉

∫

𝑥

0

𝑓 (𝑡; 𝑟)

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

𝑑𝑡]

𝑥=𝑥
0

,

(
RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)

= [

1

Γ (⌈𝛽⌉ − 𝛽)

(

𝑑

𝑑𝑥

)

⌈𝛽⌉

∫

𝑥

0

𝑓 (𝑡; 𝑟)

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

𝑑𝑡]

𝑥=𝑥
0

.

(16)

Proof. Suppose that 𝑚 is an even number, and then 𝑚 = 2𝑠,
𝑠 ∈ 𝑁. Now, we have two probabilities as follows.

The first probability is (RL𝐷𝛽
𝑖
1
,...,𝑖
𝑘1
,...,𝑖
𝑘2
,...,𝑖
𝑘2𝑠
,...,𝑖
⌊𝛽⌋

𝑓)(𝑥
0
) is

the Riemann-Liouville type fuzzy fractional differentiable
function in the first form (𝑖

⌈𝛽⌉
= 1), and then from (11) of

Definition 6, we have:

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
+ ℎ) ⊖ 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
) = [𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
+ ℎ; 𝑟)

− 𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) , 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
+ ℎ; 𝑟)

− 𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟)] ,

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
) ⊖ 𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
− ℎ) = [𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟)

− 𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
− ℎ; 𝑟) , 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟)

− 𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
− ℎ; 𝑟)] .

(17)

Multiplying both sides by 1/ℎ, ℎ > 0, we obtain:

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
+ ℎ) ⊖ 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
)

ℎ

=
[

[

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
+ ℎ; 𝑟) − 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟)

ℎ

,

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
+ ℎ; 𝑟) − 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟)

ℎ

]

]

,

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
) ⊖ 𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
− ℎ)

ℎ

=
[

[

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) − 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
− ℎ; 𝑟)

ℎ

,

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) − 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
− ℎ; 𝑟)

ℎ

]

]

.

(18)

By taking ℎ → 0
+ on both sides of the above equations, we

get:

(
RL
𝐷
𝛽
𝑓) (𝑥
0
)

= [

𝑑

𝑑𝑥

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) ,

𝑑

𝑑𝑥

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟)] .

(19)

Now, since 𝜙
𝑖
1
,...,𝑖
𝑘1−1

(𝑥
0
) is equal to the limits defined in (8) of

Definition 6, then by applying (8) for (𝑘
1
− 1) times, we get

𝜙
𝑖
1
,...,𝑖
𝑘1−1

(𝑥
0
) = [𝜙

(𝑘
1
−1)

(𝑥
0
; 𝑟) , 𝜙

(𝑘
1
−1)

(𝑥
0
; 𝑟)] . (20)
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Since 𝜙
𝑖
1
,...,𝑖
𝑘1

(𝑥
0
) is equal to the limits defined in (9) of

Definition 6, then by applying (9) once, we get:

𝜙
𝑖
1
,...,𝑖
𝑘1

(𝑥
0
) = [𝜙

(𝑘
1
)

(𝑥
0
; 𝑟) , 𝜙

(𝑘
1
)
(𝑥
0
; 𝑟)] . (21)

Since 𝜙
𝑖
1
,...,𝑖
𝑘2−1

(𝑥
0
) is equal to the limits defined in (8) of

Definition 6, then by applying (8) for (𝑘
2
− 1 − 𝑘

1
) times, we

get:

𝜙
𝑖
1
,...,𝑖
𝑘2−1

(𝑥
0
) = [𝜙

(𝑘
2
−1)

(𝑥
0
; 𝑟) , 𝜙

(𝑘
2
−1)

(𝑥
0
; 𝑟)] . (22)

Since 𝜙
𝑖
1
,...,𝑖
𝑘2

(𝑥
0
) is equal to the limits defined in (9) of

Definition 6, then by applying (9) once, we get:

𝜙
𝑖
1
,...,𝑖
𝑘2

(𝑥
0
) = [𝜙

(𝑘
2
)
(𝑥
0
; 𝑟) , 𝜙

(𝑘
2
)

(𝑥
0
; 𝑟)] . (23)

In other words, from (23) we note that, after applying
(8) and (9) for any even number from 𝑖

𝑘
1

, 𝑖
𝑘
2

, . . . , 𝑖
𝑘
𝑚

, we will
get an equation similar to (23). Therefore, for 𝜙

𝑖
1
,...,𝑖
𝑘2𝑠

(𝑥
0
), we

have:

𝜙
𝑖
1
,...,𝑖
𝑘2𝑠

(𝑥
0
) = [𝜙

(𝑘
2𝑠
)
(𝑥
0
; 𝑟) , 𝜙

(𝑘
2𝑠
)

(𝑥
0
; 𝑟)] , (24)

since 2𝑠 is an even number.
Finally, since 𝜙

𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
) is equal to the limits defined in

(8) of Definition 6, then by applying (8) for (⌊𝛽⌋ − 𝑘
2𝑠
) times,

we get:

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
) = [𝜙

(⌊𝛽⌋)
(𝑥
0
; 𝑟) , 𝜙

(⌊𝛽⌋)

(𝑥
0
; 𝑟)] . (25)

Then,

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) = 𝜙

(⌊𝛽⌋)
(𝑥
0
; 𝑟) ,

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) = 𝜙

(⌊𝛽⌋)

(𝑥
0
; 𝑟) .

(26)

Substituting (26) in (19) yields the following:

(
RL
𝐷
𝛽
𝑓) (𝑥
0
)

= [(

𝑑

𝑑𝑥

)

⌈𝛽⌉

𝜙 (𝑥
0
; 𝑟) , (

𝑑

𝑑𝑥

)

⌈𝛽⌉

𝜙 (𝑥
0
; 𝑟)]

= [(
RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (

RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(27)

The second probability is (RL𝐷𝛽
𝑖
1
,...,𝑖
𝑘1
,...,𝑖
𝑘2
,...,𝑖
𝑘2𝑠−1
,...𝑖
⌊𝛽⌋

𝑓)(𝑥
0
) is

the Riemann-Liouville type fuzzy fractional differentiable
function in the second form (𝑖

⌈𝛽⌉
= 2), and then, by applying

(12) of Definition 6, we can get

(
RL
𝐷
𝛽
𝑓) (𝑥
0
)

= [

𝑑

𝑑𝑥

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) ,

𝑑

𝑑𝑥

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟)] .

(28)

Since 2𝑠 − 2 is an even number, then by replacing 2𝑠 by 2𝑠 − 2
in (24), we get:

𝜙
𝑖
1
,...,𝑖
𝑘2𝑠−2

(𝑥
0
) = [𝜙

(𝑘
2𝑠−2
)
(𝑥
0
; 𝑟) , 𝜙

(𝑘
2𝑠−2
)

(𝑥
0
; 𝑟)] . (29)

Similarly, by applying (8) (𝑘
2𝑠−1

− 1 − 𝑘
2𝑠−2

) times for
𝜙
𝑖
1
,...,𝑖
𝑘2𝑠−1−1

(𝑥
0
) and (9) once for 𝜙

𝑖
1
,...,𝑖
𝑘2𝑠−1

(𝑥
0
), we get:

𝜙
𝑖
1
,...,𝑖
𝑘2𝑠−1

(𝑥
0
) = [𝜙

(𝑘
2𝑠−1
)

(𝑥
0
; 𝑟) , 𝜙

(𝑘
2𝑠−1
)
(𝑥
0
; 𝑟)] . (30)

Finally, since 𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
) is equal to the limits defined in (8)

of Definition 6, then, by applying (8) for (⌊𝛽⌋ − 𝑘
2𝑠−1

) times,
we get:

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
) = [𝜙

(⌊𝛽⌋)

(𝑥
0
; 𝑟) , 𝜙

(⌊𝛽⌋)
(𝑥
0
; 𝑟)] . (31)

Then,

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) = 𝜙

(⌊𝛽⌋)

(𝑥
0
; 𝑟) ,

𝜙
𝑖
1
,...,𝑖
⌊𝛽⌋

(𝑥
0
; 𝑟) = 𝜙

(⌊𝛽⌋)
(𝑥
0
; 𝑟) .

(32)

Substituting (32) in (28) yields:

(
RL
𝐷
𝛽
𝑓) (𝑥
0
)

= [(

𝑑

𝑑𝑥

)

⌈𝛽⌉

𝜙 (𝑥
0
; 𝑟) , (

𝑑

𝑑𝑥

)

⌈𝛽⌉

𝜙 (𝑥
0
; 𝑟)]

= [(
RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (

RL
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(33)

If𝑚 is an odd number, the proof is similar.

We note that if we take 𝑛 = 1 (0 < 𝛽 < 1) in Theorem 7,
we get Theorem 3.2 [2] which is found by Salahshour et al.

Corollary 8. Let 𝑓(𝑥) ∈ 𝐶𝐹[0, 𝑏] ∩ 𝐿𝐹[0, 𝑏] be a fuzzy-valued
function and 𝑓(𝑥) = [𝑓(𝑥; 𝑟), 𝑓(𝑥; 𝑟)] for 𝑟 ∈ [0, 1] and 𝑥

0
∈

(0, 𝑏). Suppose that 0 < 𝛽 < 3 and 𝑚 is the number of
repetitions of number 2 among 𝑖

1
, 𝑖
2
, . . . , 𝑖

⌈𝛽⌉
for 𝑘 − 1 < 𝛽 <

𝑘, 𝑘 = 1, 2, 3. Then, one has the following.
If 𝑓(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued function,

then for 0 < 𝛽 < 1

(
𝑅𝐿
𝐷
𝛽

1
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(34)

If 𝑓(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued function,
then for 0 < 𝛽 < 1

(
𝑅𝐿
𝐷
𝛽

2
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(35)
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If (𝑅𝐿𝐷𝛽
1
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 1 < 𝛽 < 2

(
𝑅𝐿
𝐷
𝛽

1,1
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(36)

If (𝑅𝐿𝐷𝛽
1
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 1 < 𝛽 < 2

(
𝑅𝐿
𝐷
𝛽

1,2
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(37)

If (𝑅𝐿𝐷𝛽
2
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 1 < 𝛽 < 2

(
𝑅𝐿
𝐷
𝛽

2,1
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(38)

If (𝑅𝐿𝐷𝛽
2
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 1 < 𝛽 < 2

(
𝑅𝐿
𝐷
𝛽

2,2
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(39)

If (𝑅𝐿𝐷𝛽
1,1
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 2 < 𝛽 < 3

(
𝑅𝐿
𝐷
𝛽

1,1,1
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(40)

If (𝑅𝐿𝐷𝛽
1,1
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 2 < 𝛽 < 3

(
𝑅𝐿
𝐷
𝛽

1,1,2
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(41)

If (𝑅𝐿𝐷𝛽
1,2
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 2 < 𝛽 < 3

(
𝑅𝐿
𝐷
𝛽

1,2,1
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(42)

If (𝑅𝐿𝐷𝛽
1,2
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 2 < 𝛽 < 3

(
𝑅𝐿
𝐷
𝛽

1,2,2
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(43)

If (𝑅𝐿𝐷𝛽
2,1
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 2 < 𝛽 < 3

(
𝑅𝐿
𝐷
𝛽

2,1,1
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(44)

If (𝑅𝐿𝐷𝛽
2,1
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 2 < 𝛽 < 3

(
𝑅𝐿
𝐷
𝛽

2,1,2
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(45)

If (𝑅𝐿𝐷𝛽
2,2
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 2 < 𝛽 < 3

(
𝑅𝐿
𝐷
𝛽

2,2,1
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(46)

If (𝑅𝐿𝐷𝛽
2,2
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then for 2 < 𝛽 < 3

(
𝑅𝐿
𝐷
𝛽

2,2,2
𝑓) (𝑥
0
)

= [(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] ,

(47)

where

(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)

= [

1

Γ (⌈𝛽⌉ − 𝛽)

(

𝑑

𝑑𝑥

)

⌈𝛽⌉

∫

𝑥

0

𝑓 (𝑡; 𝑟) 𝑑𝑡

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

]

𝑥=𝑥
0

,

(
𝑅𝐿
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)

= [

1

Γ (⌈𝛽⌉ − 𝛽)

(

𝑑

𝑑𝑥

)

⌈𝛽⌉

∫

𝑥

0

𝑓 (𝑡; 𝑟) 𝑑𝑡

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

]

𝑥=𝑥
0

.

(48)

Theorem 9. Suppose that 𝑓(𝑥) ∈ 𝐶
𝐹
[0,∞) ∩ 𝐿

𝐹
[0,∞) is

fuzzy-valued function; 𝑓(𝑥) = [𝑓(𝑥; 𝑟), 𝑓(𝑥; 𝑟)] for 𝑟 ∈ [0, 1].
One supposes that 𝑛−1 < 𝛽 < 𝑛 and𝑚 is the number of repeti-
tions of 2 among 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑛
, say, 𝑖

𝑘
1

, 𝑖
𝑘
2

, . . . , 𝑖
𝑘
𝑚

, such that
𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑚
; that is, 𝑖

𝑘
1

= 𝑖
𝑘
2

= ⋅ ⋅ ⋅ = 𝑖
𝑘
𝑚

= 2 and 0 ≤
𝑚 ≤ 𝑛. Then, one has the following:

If𝑚 is an even number, we have:

𝐿 [(
𝑅𝐿
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)]

= 𝑠
𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

𝑛−1
(
𝑅𝐿
𝐷
𝛽−𝑛

𝑓) (0)

⊗

𝑛−2

∑

𝑘=0

𝑠
𝑘
(
𝑅𝐿
𝐷
𝛽−𝑘−1

𝑓) (0) ,

(49)
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such that

⊗ =

{

{

{

⊖, 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 2 𝑎𝑚𝑜𝑛𝑔 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛−(𝑘+1)
𝑖𝑠 𝑎𝑛 𝑒V𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟,

−, 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 2 𝑎𝑚𝑜𝑛𝑔 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛−(𝑘+1)
𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟.

(50)

If𝑚 is an odd number, we have:

𝐿 [(
𝑅𝐿
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)]

= −𝑠
𝑛−1

(
𝑅𝐿
𝐷
𝛽−𝑛

𝑓) (0) ⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

⊗

𝑛−2

∑

𝑘=0

𝑠
𝑘
(
𝑅𝐿
𝐷
𝛽−𝑘−1

𝑓) (0) ,

(51)

such that

⊗ =

{

{

{

⊖, 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 2 𝑎𝑚𝑜𝑛𝑔 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛−(𝑘+1)
𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟,

−, 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 2 𝑎𝑚𝑜𝑛𝑔 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛−(𝑘+1)
𝑖𝑠 𝑎𝑛 𝑒V𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟.

(52)

Proof. By (
RL
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓)(𝑥) we mean
(
RL
𝐷
𝛽

𝑖
1
,...,𝑖
𝑘1
,...,𝑖
𝑘2
,...,𝑖
𝑘𝑚
,...,𝑖
𝑛

𝑓)(𝑥). Suppose that 𝑚 is an odd
number; then, fromTheorem 7, when 𝑛 − 1 < 𝛽 < 𝑛, we get:

(
RL
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)

= [(
RL
𝐷
𝛽
𝑓) (𝑥; 𝑟) , (

RL
𝐷
𝛽
𝑓) (𝑥; 𝑟)] .

(53)

Therefore, we get:

(
RL
𝐷
𝛽
𝑓) (𝑥; 𝑟) = (

RL
𝐷
𝛽
𝑓) (𝑥; 𝑟) ,

(
RL
𝐷
𝛽
𝑓) (𝑥; 𝑟) = (

RL
𝐷
𝛽
𝑓) (𝑥; 𝑟) .

(54)

Then, from (54), we get:

𝐿 [(
RL
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)]

= 𝐿 [(
RL
𝐷
𝛽
𝑓) (𝑥; 𝑟) , (

RL
𝐷
𝛽
𝑓) (𝑥; 𝑟)]

= [ℓ [(
RL
𝐷
𝛽
𝑓) (𝑥; 𝑟)] , ℓ [(

RL
𝐷
𝛽
𝑓) (𝑥; 𝑟)]] .

(55)

We know from Laplace transform of the Riemann-
Liouville fractional derivative of order 𝛽 > 0 that

ℓ [(
RL
𝐷
𝛽
𝑓) (𝑥; 𝑟)]

= 𝑠
𝛽
ℓ [𝑓 (𝑥; 𝑟)] −

𝑛−1

∑

𝑘=0

𝑠
𝑘
(
RL
𝐷
𝛽−𝑘−1

𝑓) (0; 𝑟)

= 𝑠
𝛽
ℓ [𝑓 (𝑥; 𝑟)] − 𝑠

𝑛−1
(
RL
𝐷
𝛽−𝑛

𝑓) (0; 𝑟)

−

𝑛−2

∑

𝑘=0

𝑠
𝑘
(
RL
𝐷
𝛽−𝑘−1

𝑓) (0; 𝑟)

= 𝑠
𝛽
ℓ [𝑓 (𝑥; 𝑟)] − 𝑠

𝑛−1
(
RL
𝐷
𝛽−𝑛

𝑓) (0; 𝑟)

−

𝑛−2

∑

𝑘=0

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) .

(56)

The above equation can be written as:

ℓ [(
RL
𝐷
𝛽
𝑓) (𝑥; 𝑟)]

= 𝑠
𝛽
ℓ [𝑓 (𝑥; 𝑟)] − 𝑠

𝑛−1
(
RL
𝐷
𝛽−𝑛

𝑓) (0; 𝑟)

−

𝑘
1
−2

∑

𝑘=0

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟)

−

𝑘
2
−2

∑

𝑘=𝑘
1
−1

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) − ⋅ ⋅ ⋅

−

𝑘
𝑚
−2

∑

𝑘=𝑘
𝑚−1
−1

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟)

−

𝑛−2

∑

𝑘=𝑘
𝑚
−1

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) .

(57)

In a similar manner, we can get:

ℓ [(
RL
𝐷
𝛽
𝑓) (𝑥; 𝑟)]

= 𝑠
𝛽
ℓ [𝑓 (𝑥; 𝑟)] − 𝑠

𝑛−1
(
RL
𝐷
𝛽−𝑛

𝑓) (0; 𝑟)

−

𝑘
1
−2

∑

𝑘=0

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟)

−

𝑘
2
−2

∑

𝑘=𝑘
1
−1

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) − ⋅ ⋅ ⋅
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−

𝑘
𝑚
−2

∑

𝑘=𝑘
𝑚−1
−1

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟)

−

𝑛−2

∑

𝑘=𝑘
𝑚
−1

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) .

(58)

Since 𝑖
𝑘
1

= 𝑖
𝑘
2

= ⋅ ⋅ ⋅ = 𝑖
𝑘
𝑚

= 2 and 𝑚 is an odd number, then
we have the following equations:

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) = (
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) ,

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) = (
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) ,

for 0 ≤ 𝑘 ≤ 𝑘
1
− 2,

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) = (
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) ,

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) = (
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) ,

for 𝑘
1
− 1 ≤ 𝑘 ≤ 𝑘

2
− 2,

.

.

.

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) = (
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) ,

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) = (
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) ,

for 𝑘
𝑚−1

− 1 ≤ 𝑘 ≤ 𝑘
𝑚
− 2,

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) = (
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) ,

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) = (
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0; 𝑟) ,

for 𝑘
𝑚
− 1 ≤ 𝑘 ≤ 𝑛 − 2.

(59)

The last one of the above equations yields from Theorem 7
because𝑚 is an odd number. Using (57), (58), and the above
equations, (55) becomes:

𝐿 [(
RL
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)]

= −𝑠
𝑛−1

(
RL
𝐷
𝛽−𝑛

𝑓) (0) ⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

⊗

𝑛−2

∑

𝑘=0

𝑠
𝑛−2−𝑘

(
RL
𝐷
𝛽−𝑛+𝑘+1

𝑓) (0)

= −𝑠
𝑛−1

(
RL
𝐷
𝛽−𝑛

𝑓) (0) ⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

⊗

𝑛−2

∑

𝑘=0

𝑠
𝑘
(
RL
𝐷
𝛽−𝑘−1

𝑓) (0) ,

(60)

where ⊗ is defined as in (52).
If𝑚 is an even number, the proof is similar.

We note that if we take 𝑛 = 1 (0 < 𝛽 < 1) in Theorem 9,
we get Theorem 4.4 [2] which is found by Salahshour et al.

Corollary 10. Suppose that𝑓(𝑥) ∈ 𝐶𝐹[0,∞)∩𝐿
𝐹
[0,∞). One

supposes that 2 < 𝛽 < 3. Then, one finds the following.
If (𝑅𝐿𝐷𝛽

1,1
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝑅𝐿
𝐷
𝛽

1,1,1
𝑓) (𝑥)] = 𝑠

𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

2
(
𝑅𝐿
𝐷
𝛽−3

𝑓) (0)

⊖ (
𝑅𝐿
𝐷
𝛽−1

𝑓) (0)

⊖ 𝑠 (
𝑅𝐿
𝐷
𝛽−2

𝑓) (0) .

(61)

If (𝑅𝐿𝐷𝛽
1,1
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝑅𝐿
𝐷
𝛽

1,1,2
) (𝑥)] = −𝑠

2
(
𝑅𝐿
𝐷
𝛽−3

𝑓) (0)

⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

− (
𝑅𝐿
𝐷
𝛽−1

𝑓) (0)

− 𝑠 (
𝑅𝐿
𝐷
𝛽−2

𝑓) (0) .

(62)

If (𝑅𝐿𝐷𝛽
1,2
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝑅𝐿
𝐷
𝛽

1,2,1
𝑓) (𝑥)] = −𝑠

2
(
𝑅𝐿
𝐷
𝛽−3

𝑓) (0)

⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

⊖ (
𝑅𝐿
𝐷
𝛽−1

𝑓) (0)

− 𝑠 (
𝑅𝐿
𝐷
𝛽−2

𝑓) (0) .

(63)

If (𝑅𝐿𝐷𝛽
1,2
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝑅𝐿
𝐷
𝛽

1,2,2
𝑓) (𝑥)] = 𝑠

𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

2
(
𝑅𝐿
𝐷
𝛽−3

𝑓) (0)

− (
𝑅𝐿
𝐷
𝛽−1

𝑓) (0)

⊖ 𝑠 (
𝑅𝐿
𝐷
𝛽−2

𝑓) (0) .

(64)

If (𝑅𝐿𝐷𝛽
2,1
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝑅𝐿
𝐷
𝛽

2,1,1
𝑓) (𝑥)] = −𝑠

2
(
𝑅𝐿
𝐷
𝛽−3

𝑓) (0)

⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

⊖ (
𝑅𝐿
𝐷
𝛽−1

𝑓) (0)

⊖ 𝑠 (
𝑅𝐿
𝐷
𝛽−2

𝑓) (0) .

(65)
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If (𝑅𝐿𝐷𝛽
2,1
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝑅𝐿
𝐷
𝛽

2,1,2
𝑓) (𝑥)] = 𝑠

𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

2
(
𝑅𝐿
𝐷
𝛽−3

𝑓) (0)

− (
𝑅𝐿
𝐷
𝛽−1

𝑓) (0)

− 𝑠 (
𝑅𝐿
𝐷
𝛽−2

𝑓) (0) .

(66)

If (𝑅𝐿𝐷𝛽
2,2
𝑓)(𝑥) is 𝑅𝐿[(𝑖) − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝑅𝐿
𝐷
𝛽

2,2,1
𝑓) (𝑥)] = 𝑠

𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

2
(
𝑅𝐿
𝐷
𝛽−3

𝑓) (0)

⊖ (
𝑅𝐿
𝐷
𝛽−1

𝑓) (0)

− 𝑠 (
𝑅𝐿
𝐷
𝛽−2

𝑓) (0) .

(67)

If (𝑅𝐿𝐷𝛽
2,2
𝑓)(𝑥) is 𝑅𝐿[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝑅𝐿
𝐷
𝛽

2,2,2
𝑓) (𝑥)] = −𝑠

2
(
𝑅𝐿
𝐷
𝛽−3

𝑓) (0)

⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

− (
𝑅𝐿
𝐷
𝛽−1

𝑓) (0)

⊖ 𝑠 (
𝑅𝐿
𝐷
𝛽−2

𝑓) (0) .

(68)

Example 11. Consider the following FFIVP:

(
RL
𝐷
𝛽
𝑦) (𝑥) = 𝜎;

𝜎 = (2𝑟 − 2, 2 − 2𝑟) , 1 < 𝛽 < 2,

(69)

(
RL
𝐷
𝛽−1

𝑦) (0) = (
RL
𝐷
𝛽−2

𝑦) (0) =
RL
𝑦
(𝛽−1)

0
∈ 𝐸. (70)

We note that

(
RL
𝐷
𝛽−1

𝑦) (0; 𝑟) = (
RL
𝐷
𝛽−2

𝑦) (0; 𝑟) =
RL
𝑦
(𝛽−1)

0
(𝑟) ,

(
RL
𝐷
𝛽−1

𝑦) (0; 𝑟) = (
RL
𝐷
𝛽−2

𝑦) (0; 𝑟) =
RL
𝑦
(𝛽−1)

0
(𝑟) .

(71)

By taking fuzzy Laplace transform for both sides of (69), we
get

𝐿 [(
RL
𝐷
𝛽
𝑦) (𝑥)] = 𝐿 [𝜎] . (72)

Now, by usingTheorem 9 when 𝑛 = 2we have 22 = 4 cases as
follows.

Case 1. Let (RL𝐷𝛽
1
𝑦)(𝑥) be RL

[𝑖 − 𝛽]-differentiable. By using
Theorem 9, when𝑚 = 0 (even), (72) becomes

𝑠
𝛽
𝐿 [𝑦 (𝑥)] ⊖ 𝑠 (

RL
𝐷
𝛽−2

𝑦) (0) ⊖ (
RL
𝐷
𝛽−1

𝑦) (0)

= 𝐿 [𝜎] .

(73)

Then, we get

𝑠
𝛽
ℓ [𝑦 (𝑥; 𝑟)] − 𝑠 (

RL
𝐷
𝛽−2

𝑦) (0; 𝑟) − (
RL
𝐷
𝛽−1

𝑦) (0; 𝑟)

=

2𝑟 − 2

𝑠

,

𝑠
𝛽
ℓ [𝑦 (𝑥; 𝑟)] − 𝑠 (

RL
𝐷
𝛽−2

𝑦) (0; 𝑟) − (
RL
𝐷
𝛽−1

𝑦) (0; 𝑟)

=

2 − 2𝑟

𝑠

.

(74)

The solution of FFIVP (69) is as follows:

𝑦 (𝑥; 𝑟) = (2𝑟 − 2)

𝑥
𝛽

Γ (𝛽 + 1)

+
RL
𝑦
(𝛽−1)

0
(𝑟) (

𝑥
𝛽−1

Γ (𝛽)

+

𝑥
𝛽−2

Γ (𝛽 − 1)

) ,

𝑦 (𝑥; 𝑟) = (2 − 2𝑟)

𝑥
𝛽

Γ (𝛽 + 1)

+
RL
𝑦
(𝛽−1)

0
(𝑟) (

𝑥
𝛽−1

Γ (𝛽)

+

𝑥
𝛽−2

Γ (𝛽 − 1)

) .

(75)

Case 2. Let (RL𝐷𝛽
1
𝑦)(𝑥) be RL

[𝑖𝑖 − 𝛽]-differentiable. By using
Theorem 9, when𝑚 = 1 (odd), (72) becomes

− 𝑠 (
RL
𝐷
𝛽−2

𝑦) (0) ⊖ (−𝑠
𝛽
) 𝐿 [𝑦 (𝑥)] − (

RL
𝐷
𝛽−1

𝑦) (0)

= 𝐿 [𝜎] .

(76)

Then, we get:

− 𝑠 (
RL
𝐷
𝛽−2

𝑦) (0; 𝑟) + 𝑠
𝛽
ℓ [𝑦 (𝑥; 𝑟)]

− (
RL
𝐷
𝛽−1

𝑦) (0; 𝑟) =

2 − 2𝑟

𝑠

,

− 𝑠 (
RL
𝐷
𝛽−2

𝑦) (0; 𝑟) + 𝑠
𝛽
ℓ [𝑦 (𝑥; 𝑟)]

− (
RL
𝐷
𝛽−1

𝑦) (0; 𝑟) =

2𝑟 − 2

𝑠

.

(77)

The solution of FFIVP (69) is as follows:

𝑦 (𝑥; 𝑟) = (2 − 2𝑟)

𝑥
𝛽

Γ (𝛽 + 1)

+
RL
𝑦
(𝛽−1)

0
(𝑟) (

𝑥
𝛽−1

Γ (𝛽)

+

𝑥
𝛽−2

Γ (𝛽 − 1)

) ,

𝑦 (𝑥; 𝑟) = (2𝑟 − 2)

𝑥
𝛽

Γ (𝛽 + 1)

+
RL
𝑦
(𝛽−1)

0
(𝑟) (

𝑥
𝛽−1

Γ (𝛽)

+

𝑥
𝛽−2

Γ (𝛽 − 1)

) .

(78)
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Case 3. Let (RL𝐷𝛽
2
𝑦)(𝑥) be RL

[𝑖 − 𝛽]-differentiable. By using
Theorem 9, when𝑚 = 1 (odd), (72) becomes:

− 𝑠 (
RL
𝐷
𝛽−2

𝑦) (0) ⊖ (−𝑠
𝛽
) 𝐿 [𝑦 (𝑥)] ⊖ (

RL
𝐷
𝛽−1

𝑦) (0)

= 𝐿 [𝜎] .

(79)

Then, we get:

− 𝑠 (
RL
𝐷
𝛽−2

𝑦) (0; 𝑟) + 𝑠
𝛽
ℓ [𝑦 (𝑥; 𝑟)]

− (
RL
𝐷
𝛽−1

𝑦) (0; 𝑟) =

2 − 2𝑟

𝑠

,

− 𝑠 (
RL
𝐷
𝛽−2

𝑦) (0; 𝑟) + 𝑠
𝛽
ℓ [𝑦 (𝑥; 𝑟)]

− (
RL
𝐷
𝛽−1

𝑦) (0; 𝑟) =

2𝑟 − 2

𝑠

.

(80)

The solution of FFIVP (69) is as follows:

𝑦 (𝑥; 𝑟) = (2 − 2𝑟)

𝑥
𝛽

Γ (𝛽 + 1)

+
RL
𝑦
(𝛽−1)

0
(𝑟)

𝑥
𝛽−1

Γ (𝛽)

+
RL
𝑦
(𝛽−1)

0
(𝑟)

𝑥
𝛽−2

Γ (𝛽 − 1)

,

𝑦 (𝑥; 𝑟) = (2𝑟 − 2)

𝑥
𝛽

Γ (𝛽 + 1)

+
RL
𝑦
(𝛽−1)

0
(𝑟)

𝑥
𝛽−1

Γ (𝛽)

+
RL
𝑦
(𝛽−1)

0
(𝑟)

𝑥
𝛽−2

Γ (𝛽 − 1)

.

(81)

Case 4. Let (RL𝐷𝛽
2
𝑦)(𝑥) be RL

[𝑖𝑖 − 𝛽]-differentiable. By using
Theorem 9, when𝑚 = 2 (even), (72) becomes:

𝑠
𝛽
𝐿 [𝑦 (𝑥)] ⊖ 𝑠 (

RL
𝐷
𝛽−2

𝑦) (0) − (
RL
𝐷
𝛽−1

𝑦) (0)

= 𝐿 [𝜎] .

(82)

Then, we get:

𝑠
𝛽
ℓ [𝑦 (𝑥; 𝑟)] − 𝑠 (

RL
𝐷
𝛽−2

𝑦) (0; 𝑟) − (
RL
𝐷
𝛽−1

𝑦) (0; 𝑟)

=

2𝑟 − 2

𝑠

,

𝑠
𝛽
ℓ [𝑦 (𝑥; 𝑟)] − 𝑠 (

RL
𝐷
𝛽−2

𝑦) (0; 𝑟) − (
RL
𝐷
𝛽−1

𝑦) (0; 𝑟)

=

2 − 2𝑟

𝑠

.

(83)

The solution of FFIVP (69) is as follows:

𝑦 (𝑥; 𝑟) = (2𝑟 − 2)

𝑥
𝛽

Γ (𝛽 + 1)

+
RL
𝑦
(𝛽−1)

0
(𝑟)

𝑥
𝛽−1

Γ (𝛽)

+
RL
𝑦
(𝛽−1)

0
(𝑟)

𝑥
𝛽−2

Γ (𝛽 − 1)

,

𝑦 (𝑥; 𝑟) = (2 − 2𝑟)

𝑥
𝛽

Γ (𝛽 + 1)

+
RL
𝑦
(𝛽−1)

0
(𝑟)

𝑥
𝛽−1

Γ (𝛽)

+
RL
𝑦
(𝛽−1)

0
(𝑟)

𝑥
𝛽−2

Γ (𝛽 − 1)

.

(84)

4. Generalization of Fuzzy Laplace
Transforms of the Fuzzy Caputo Fractional
Derivatives of Order 𝑛 − 1 < 𝛽 < 𝑛

In this section, we define Caputo fractional derivatives of the
general fractional order 0 < 𝛽 < 𝑛 and we find fuzzy Laplace
transforms for Caputo fractional derivatives of the general
fractional order 𝑛 − 1 < 𝛽 < 𝑛 for fuzzy-valued function
𝑓 under H-differentiability.

Remark 12. To get Caputo type fuzzy fractional derivatives of
order 0 < 𝛽 < 𝑛 for 𝑓(𝑥) ∈ 𝐶𝐹[0, 𝑏] ∩ 𝐿𝐹[0, 𝑏], we take

𝐺 (𝑥) =

1

Γ (⌈𝛽⌉ − 𝛽)

∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

⊖

⌊𝛽⌋

∑

𝑘=0

𝐷
𝑘
𝑓 (0) 𝑥

⌈𝛽⌉−𝛽+𝑘

Γ (1 + ⌈𝛽⌉ − 𝛽 + 𝑘)

(85)

instead of 𝜙(𝑥) = (1/Γ(⌈𝛽⌉ − 𝛽)) ∫

𝑥

0
(𝑓(𝑡)𝑑𝑡/(𝑥 − 𝑡)

1−⌈𝛽⌉+𝛽
) in

Definition 6.

We note that if we take 𝑛 = 2 (0 < 𝛽 < 2) in Remark 12,
we get Definition 3.1 [1] which is introduced byMazandarani
and Kamyad.

Theorem 13. Let 𝑓(𝑥) ∈ 𝐶𝐹[0, 𝑏] ∩ 𝐿𝐹[0, 𝑏] be a fuzzy-valued
function such that 𝑓(𝑥) = [𝑓(𝑥; 𝑟), 𝑓(𝑥; 𝑟)] for 𝑟 ∈ [0, 1], 𝑥

0
∈

(0, 𝑏), and 𝐺(𝑥) is defined as in (85).
Suppose that 0 < 𝛽 < 𝑛 and𝑚 is the number of repetitions

of number 2 among 𝑖
1
, 𝑖
2
, . . . , 𝑖

⌈𝛽⌉
for 𝑘 − 1 < 𝛽 < 𝑘, 𝑘 =

1, 2, . . . , 𝑛, say, 𝑖
𝑘
1

, 𝑖
𝑘
2

, . . . , 𝑖
𝑘
𝑚

, such that 𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑚
;

that is, 𝑖
𝑘
1

= 𝑖
𝑘
2

= ⋅ ⋅ ⋅ = 𝑖
𝑘
𝑚

= 2 and 0 ≤ 𝑚 ≤ ⌈𝛽⌉. Then, one
can find the following:

If𝑚 is an even number, then

(
𝐶
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
⌈𝛽⌉

𝑓) (𝑥
0
)

= [(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝐶
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(86)
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If𝑚 is an odd number, then

(
𝐶
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
⌈𝛽⌉

𝑓) (𝑥
0
)

= [(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) , (
𝐶
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] ,

(87)

where

(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)

=
[

[

1

Γ (⌈𝛽⌉ − 𝛽)

∫

𝑥

0

𝐷
⌈𝛽⌉
𝑓 (𝑡; 𝑟)

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

𝑑𝑡
]

]𝑥=𝑥
0

,

(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)

= [

1

Γ (⌈𝛽⌉ − 𝛽)

∫

𝑥

0

𝐷
⌈𝛽⌉
𝑓 (𝑡; 𝑟)

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

𝑑𝑡]

𝑥=𝑥
0

,

𝐷
𝑘
𝑓 (𝑡) =

𝑑
𝑘
𝑓 (𝑡)

𝑑𝑡
𝑘

.

(88)

Proof. Let 𝑚 be an even number. If we make the same steps
in the proof of Theorem 7 when𝑚 is an even number, we get

(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
) = [𝐷

⌈𝛽⌉
𝐺 (𝑥
0
; 𝑟) , 𝐷

⌈𝛽⌉
𝐺 (𝑥
0
; 𝑟)] , (89)

where𝐷 = 𝑑/𝑑𝑥.
Thus,

(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
)

=
[

[

𝐷
⌈𝛽⌉

(

1

Γ (⌈𝛽⌉ − 𝛽)

∫

𝑥

0

𝑓 (𝑡; 𝑟) 𝑑𝑡

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

−

⌊𝛽⌋

∑

𝑘=0

𝐷
𝑘
𝑓 (0; 𝑟) 𝑥

⌈𝛽⌉−𝛽+𝑘

Γ (1 + ⌈𝛽⌉ − 𝛽 + 𝑘)

)











𝑥=𝑥
0

,

𝐷
⌈𝛽⌉

(

1

Γ (⌈𝛽⌉ − 𝛽)

∫

𝑥

0

𝑓 (𝑡; 𝑟) 𝑑𝑡

(𝑥 − 𝑡)
1−⌈𝛽⌉+𝛽

−

⌊𝛽⌋

∑

𝑘=0

𝐷
𝑘
𝑓 (0; 𝑟) 𝑥

⌈𝛽⌉−𝛽+𝑘

Γ (1 + ⌈𝛽⌉ − 𝛽 + 𝑘)

)











𝑥=𝑥
0

]

]

.

(90)

By using Definition 5, we have:

(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
) =

[

[

𝐷
⌈𝛽⌉

(𝐷
−(⌈𝛽⌉−𝛽)

𝑓) (𝑥
0
; 𝑟)

− (

⌊𝛽⌋

∑

𝑘=0

𝐷
𝑘
𝑓 (0; 𝑟)𝐷

⌈𝛽⌉
𝑥
⌈𝛽⌉−𝛽+𝑘

Γ (1 + ⌈𝛽⌉ − 𝛽 + 𝑘)

)











𝑥=𝑥
0

,

𝐷
⌈𝛽⌉

(𝐷
−(⌈𝛽⌉−𝛽)

𝑓) (𝑥
0
; 𝑟)

− (

⌊𝛽⌋

∑

𝑘=0

𝐷
𝑘
𝑓 (0; 𝑟)𝐷

⌈𝛽⌉
𝑥
⌈𝛽⌉−𝛽+𝑘

Γ (1 + ⌈𝛽⌉ − 𝛽 + 𝑘)

)











𝑥=𝑥
0

]

]

,

(91)

where (𝐷
−(⌈𝛽⌉−𝛽)

𝑓)(𝑥
0
; 𝑟) and (𝐷

−(⌈𝛽⌉−𝛽)
𝑓)(𝑥
0
; 𝑟) are the

Riemann-Liouville fractional integrals of the functions
𝑓(𝑥; 𝑟) and 𝑓(𝑥; 𝑟) at 𝑥 = 𝑥

0
, respectively. By using (b) of

Theorem 1 with 𝑛 = ⌈𝛽⌉, ] = ⌈𝛽⌉ − 𝛽, and the equation
𝐷
𝑛
𝑥
𝑚
= (Γ(𝑚 + 1)/Γ(𝑚 + 1 − 𝑛))𝑥

𝑚−𝑛, we get:

(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
) =

[

[

𝐷
−(⌈𝛽⌉−𝛽)

(𝐷
⌈𝛽⌉
𝑓 (𝑥
0
; 𝑟))

+ 𝑄
⌈𝛽⌉

(𝑥
0
, −𝛽) −

⌊𝛽⌋

∑

𝑘=0

𝐷
𝑘
𝑓 (0; 𝑟) 𝑥

𝑘−𝛽

Γ (1 − 𝛽 + 𝑘)











𝑥=𝑥
0

,

𝐷
−(⌈𝛽⌉−𝛽)

(𝐷
⌈𝛽⌉
𝑓 (𝑥
0
; 𝑟)) + 𝑄

⌈𝛽⌉
(𝑥
0
, −𝛽)

−

⌊𝛽⌋

∑

𝑘=0

𝐷
𝑘
𝑓 (0; 𝑟) 𝑥

𝑘−𝛽

Γ (1 − 𝛽 + 𝑘)











𝑥=𝑥
0

]

]

.

(92)

Thus,

(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
) = [𝐷

−(⌈𝛽⌉−𝛽)
(𝐷
⌈𝛽⌉
𝑓 (𝑥
0
; 𝑟)) ,

𝐷
−(⌈𝛽⌉−𝛽)

(𝐷
⌈𝛽⌉
𝑓 (𝑥
0
; 𝑟))] = [(

𝐶
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟) ,

(
𝐶
𝐷
𝛽
𝑓) (𝑥
0
; 𝑟)] .

(93)

If𝑚 is an odd number, the proof is similar.

We note that if we take 𝑛 = 2 (0 < 𝛽 < 2) in Theorem 13
we get Theorem 3.1 [1] which is found by Mazandarani and
Kamyad.

Theorem 14. Suppose that 𝑓(𝑥) ∈ 𝐶
𝐹
[0,∞) ∩ 𝐿

𝐹
[0,∞) is

fuzzy-valued function 𝑓(𝑥) = [𝑓(𝑥; 𝑟), 𝑓(𝑥; 𝑟)] for 𝑟 ∈ [0, 1].
One supposes that 𝑛 − 1 < 𝛽 < 𝑛 and 𝑚 is the number of
repetitions of 2 among 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑛
, say, 𝑖

𝑘
1

, 𝑖
𝑘
2

, . . . , 𝑖
𝑘
𝑚

, such
that 𝑘

1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑚
; that is, 𝑖

𝑘
1

= 𝑖
𝑘
2

= ⋅ ⋅ ⋅ = 𝑖
𝑘
𝑚

= 2

and 0 ≤ 𝑚 ≤ 𝑛. Then, one has the following.
If𝑚 is an even number, we have:

𝐿 [(
𝐶
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)] = 𝑠
𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

𝛽−1
𝑓 (0)

⊗

𝑛−1

∑

𝑘=1

𝑠
𝛽−(𝑘+1)

𝑓
(𝑘)
(0) ,

(94)
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such that

⊗ =

{

{

{

⊖, 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 2 𝑎𝑚𝑜𝑛𝑔 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
𝑖𝑠 𝑎𝑛 𝑒V𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟,

−, 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 2 𝑎𝑚𝑜𝑛𝑔 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟.

(95)

If𝑚 is an odd number, we have:

𝐿 [(
𝐶
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)] = −𝑠
𝛽−1

𝑓 (0) ⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

⊗

𝑛−1

∑

𝑘=1

𝑠
𝛽−(𝑘+1)

𝑓
(𝑘)
(0) ,

(96)

such that

⊗ =

{

{

{

⊖, 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 2 𝑎𝑚𝑜𝑛𝑔 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟,

−, 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 2 𝑎𝑚𝑜𝑛𝑔 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
𝑖𝑠 𝑎𝑛 𝑒V𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟.

(97)

Proof. By (
𝐶
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓)(𝑥) we mean
(
𝐶
𝐷
𝛽

𝑖
1
,...,𝑖
𝑘1
,...,𝑖
𝑘2
,...,𝑖
𝑘𝑚
,...,𝑖
𝑛

𝑓)(𝑥). Suppose that 𝑚 is an odd
number, and then fromTheorem 13, when 𝑛 − 1 < 𝛽 < 𝑛, we
get:

(
𝐶
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥) = [(
𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟) , (

𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟)] . (98)

Therefore, we get:

(
𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟) = (

𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟) ,

(
𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟) = (

𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟) .

(99)

Then, from (99), we get:

𝐿 [(
𝐶
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)]

= 𝐿 [(
𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟) , (

𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟)]

= [ℓ [(
𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟)] , ℓ [(

𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟)]] .

(100)

We know from Laplace transform of the Caputo fractional
derivative of order 𝛽 > 0 that

ℓ [(
𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟)] = 𝑠

𝛽
ℓ [𝑓 (𝑥; 𝑟)]

−

𝑛−1

∑

𝑘=0

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0; 𝑟)

= 𝑠
𝛽
ℓ [𝑓 (𝑥; 𝑟)] − 𝑠

𝛽−1
𝑓 (0; 𝑟)

−

𝑛−1

∑

𝑘=1

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0; 𝑟) .

(101)

The above equation can be written as:

ℓ [(
𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟)] = 𝑠

𝛽
ℓ [𝑓 (𝑥; 𝑟)] − 𝑠

𝛽−1
𝑓 (0; 𝑟)

−

𝑘
1
−1

∑

𝑘=1

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0; 𝑟)

−

𝑘
2
−1

∑

𝑘=𝑘
1

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0; 𝑟) − ⋅ ⋅ ⋅

−

𝑘
𝑚
−1

∑

𝑘=𝑘
𝑚−1

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0; 𝑟)

−

𝑛−1

∑

𝑘=𝑘
𝑚

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0; 𝑟) .

(102)

In a similar manner, we can get:

ℓ [(
𝐶
𝐷
𝛽
𝑓) (𝑥; 𝑟)] = 𝑠

𝛽
ℓ [𝑓 (𝑥; 𝑟)] − 𝑠

𝛽−1
𝑓 (0; 𝑟)

−

𝑘
1
−1

∑

𝑘=1

𝑠
𝛽−𝑘−1

𝑓

(𝑘)

(0; 𝑟)

−

𝑘
2
−1

∑

𝑘=𝑘
1

𝑠
𝛽−𝑘−1

𝑓

(𝑘)

(0; 𝑟) − ⋅ ⋅ ⋅

−

𝑘
𝑚
−1

∑

𝑘=𝑘
𝑚−1

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0; 𝑟)

−

𝑛−1

∑

𝑘=𝑘
𝑚

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0; 𝑟) .

(103)
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Since 𝑖
𝑘
1

= 𝑖
𝑘
2

= ⋅ ⋅ ⋅ = 𝑖
𝑘
𝑚

= 2 and 𝑚 is an odd number, we
have the following equations:

𝑓
(𝑘)
(0; 𝑟) = 𝑓

(𝑘)
(0; 𝑟) ,

𝑓

(𝑘)

(0; 𝑟) = 𝑓
(𝑘)
(0; 𝑟) ;

1 ≤ 𝑘 ≤ 𝑘
1
− 1,

𝑓
(𝑘)
(0; 𝑟) = 𝑓

(𝑘)
(0; 𝑟) ,

𝑓

(𝑘)

(0; 𝑟) = 𝑓
(𝑘)
(0; 𝑟) ;

𝑘
1
≤ 𝑘 ≤ 𝑘

2
− 1,

.

.

.

𝑓
(𝑘)
(0; 𝑟) = 𝑓

(𝑘)
(0; 𝑟) ,

𝑓

(𝑘)

(0; 𝑟) = 𝑓
(𝑘)
(0; 𝑟) ;

𝑘
𝑚−1

≤ 𝑘 ≤ 𝑘
𝑚
− 1,

𝑓
(𝑘)
(0; 𝑟) = 𝑓

(𝑘)
(0; 𝑟) ,

𝑓

(𝑘)

(0; 𝑟) = 𝑓
(𝑘)
(0; 𝑟) ;

𝑘
𝑚
≤ 𝑘 ≤ 𝑛 − 1.

(104)

The last one of the equations in (104) yields because 𝑚 is
an odd number. Using (102), (103), and (104); then (100)
becomes:

𝐿 [(
𝐶
𝐷
𝛽

𝑖
1
,𝑖
2
,...,𝑖
𝑛

𝑓) (𝑥)]

= −𝑠
𝛽−1

𝑓 (0) ⊖ (−𝑠
𝛽
) 𝐿 [𝑓 (𝑥)]

⊗

𝑛−1

∑

𝑘=1

𝑠
𝛽−𝑘−1

𝑓
(𝑘)
(0) ,

(105)

where ⊗ is defined as (97).
If𝑚 is an even number, the proof is similar.

Corollary 15. Suppose that𝑓(𝑥) ∈ 𝐶𝐹[0,∞)∩𝐿
𝐹
[0,∞). One

supposes that 2 < 𝛽 < 3. Then:

If (𝐶𝐷𝛽
1,1
𝑓)(𝑥) is 𝐶[𝑖 − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝐶
𝐷
𝛽

1,1,1
𝑓) (𝑥)] = 𝑠

𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

𝛽−1
𝑓 (0)

⊖ 𝑠
𝛽−2

𝑓

(0) ⊖ 𝑠

𝛽−3
𝑓

(0) .

(106)

If (𝐶𝐷𝛽
1,1
𝑓)(𝑥) is 𝐶[𝑖𝑖 − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝐶
𝐷
𝛽

1,1,2
𝑓) (𝑥)] = −𝑠

𝛽−1
𝑓 (0) ⊖ (−𝑠

𝛽
) 𝐿 [𝑓 (𝑥)]

− 𝑠
𝛽−2

𝑓

(0) − 𝑠

𝛽−3
𝑓

(0) .

(107)

If (𝐶𝐷𝛽
1,2
𝑓)(𝑥) is 𝐶[𝑖 − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝐶
𝐷
𝛽

1,2,1
𝑓) (𝑥)] = −𝑠

𝛽−1
𝑓 (0) ⊖ (−𝑠

𝛽
) 𝐿 [𝑓 (𝑥)]

− 𝑠
𝛽−2

𝑓

(0) ⊖ 𝑠

𝛽−3
𝑓

(0) .

(108)

If (𝐶𝐷𝛽
1,2
𝑓)(𝑥) is 𝐶[𝑖𝑖 − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝐶
𝐷
𝛽

1,2,2
𝑓) (𝑥)] = 𝑠

𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

𝛽−1
𝑓 (0)

⊖ 𝑠
𝛽−2

𝑓

(0) − 𝑠

𝛽−3
𝑓

(0) .

(109)

If (𝐶𝐷𝛽
2,1
𝑓)(𝑥) is 𝐶[𝑖 − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝐶
𝐷
𝛽

2,1,1
𝑓) (𝑥)] = −𝑠

𝛽−1
𝑓 (0) ⊖ (−𝑠

𝛽
) 𝐿 [𝑓 (𝑥)]

⊖ 𝑠
𝛽−2

𝑓

(0) ⊖ 𝑠

𝛽−3
𝑓

(0) .

(110)

If (𝐶𝐷𝛽
2,1
𝑓)(𝑥) is 𝐶[𝑖𝑖 − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝐶
𝐷
𝛽

2,1,2
𝑓) (𝑥)] = 𝑠

𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

𝛽−1
𝑓 (0)

− 𝑠
𝛽−2

𝑓

(0) − 𝑠

𝛽−3
𝑓

(0) .

(111)

If (𝐶𝐷𝛽
2,2
𝑓)(𝑥) is 𝐶[𝑖 − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝐶
𝐷
𝛽

2,2,1
𝑓) (𝑥)] = 𝑠

𝛽
𝐿 [𝑓 (𝑥)] ⊖ 𝑠

𝛽−1
𝑓 (0)

− 𝑠
𝛽−2

𝑓

(0) ⊖ 𝑠

𝛽−3
𝑓

(0) .

(112)

If (𝐶𝐷𝛽
2,2
𝑓)(𝑥) is 𝐶[𝑖𝑖 − 𝛽]-differentiable fuzzy-valued

function, then

𝐿 [(
𝐶
𝐷
𝛽

2,2,2
𝑓) (𝑥)] = −𝑠

𝛽−1
𝑓 (0) ⊖ (−𝑠

𝛽
) 𝐿 [𝑓 (𝑥)]

⊖ 𝑠
𝛽−2

𝑓

(0) − 𝑠

𝛽−3
𝑓

(0) .

(113)

Example 16. Consider the following FFIVP:

(
𝐶
𝐷
3/4
𝑦) (𝑥) = −𝑦 (𝑥) , 0 < 𝛽 < 1, (114)

𝑦 (0) = (𝑟, 2 − 𝑟) . (115)

We note that:
𝑦 (0; 𝑟) = 𝑟,

𝑦 (0; 𝑟) = 2 − 𝑟.

(116)

By taking fuzzy Laplace transform for both sides of (114), we
get:

𝐿 [(
𝐶
𝐷
3/4
𝑦) (𝑥)] = −𝐿 [𝑦 (𝑥)] . (117)

Now, by using Theorem 14 when 𝑛 = 1 we have 21 = 2 cases
as follows.
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Case 1. Let 𝑦(𝑥) be 𝐶[(𝑖) − 𝛽]-differentiable fuzzy-valued
function. By using Theorem 14, when 𝑚 = 0 (even), (117)
becomes:

𝑠
3/4
𝐿 [𝑦 (𝑥)] ⊖ 𝑠

−1/4
𝑦 (0) = −𝐿 [𝑦 (𝑥)] . (118)

Then, we get:

𝑠
3/4
ℓ [𝑦 (𝑥; 𝑟)] − 𝑠

−1/4
𝑦 (0; 𝑟) = −ℓ [𝑦 (𝑥; 𝑟)] ,

𝑠
3/4
ℓ [𝑦 (𝑥; 𝑟)] − 𝑠

−1/4
𝑦 (0; 𝑟) = −ℓ [𝑦 (𝑥; 𝑟)] .

(119)

The solution of the above system is

ℓ [𝑦 (𝑥; 𝑟)] =

𝑟𝑠
1/2

− (2 − 𝑟) 𝑠
−1/4

𝑠
3/2

− 1

,

ℓ [𝑦 (𝑥; 𝑟)] =

(2 − 𝑟) 𝑠
1/2

− 𝑟𝑠
−1/4

𝑠
3/2

− 1

.

(120)

The solution of FFIVP (114) is as follows:

𝑦 (𝑥; 𝑟) = 𝑟𝐸
3/2,1

(𝑥
3/2
) − (2 − 𝑟) 𝑥

3/4
𝐸
3/2,7/4

(𝑥
3/2
) ,

𝑦 (𝑥; 𝑟) = (2 − 𝑟) 𝐸
3/2,1

(𝑥
3/2
) − 𝑟𝑥

3/4
𝐸
3/2,7/4

(𝑥
3/2
) ,

(121)

where 𝐸
𝛼,𝛽
(𝑧) denotes the Mittag-Leffler function.

Case 2. Let 𝑦(𝑥) be 𝐶[(𝑖𝑖) − 𝛽]-differentiable fuzzy-valued
function. By using Theorem 14, when 𝑚 = 1 (odd), (117)
becomes:

−𝑠
−1/4

𝑦 (0) ⊖ (−𝑠
3/4
) 𝐿 [𝑦 (𝑥)] = −𝐿 [𝑦 (𝑥)] . (122)

Then, we get:

−𝑠
−1/4

𝑦 (0; 𝑟) + 𝑠
3/4
ℓ [𝑦 (𝑥; 𝑟)] = −ℓ [𝑦 (𝑥; 𝑟)] ,

−𝑠
−1/4

𝑦 (0; 𝑟) + 𝑠
3/4
ℓ [𝑦 (𝑥; 𝑟)] = −ℓ [𝑦 (𝑥; 𝑟)] .

(123)

The solution of FFIVP (114) is as follows:

𝑦 (𝑥; 𝑟) = 𝑟𝐸
3/4,1

(−𝑥
3/4
) ,

𝑦 (𝑥; 𝑟) = (2 − 𝑟) 𝐸
3/4,1

(−𝑥
3/4
) .

(124)

5. Conclusions

The general formulas for fuzzy Riemann-Liouville and
Caputo fractional derivatives about the general order 0 <

𝛽 < 𝑛 for fuzzy-valued function 𝑓 are found by using all
the possible arrangements of objects such that 𝑟

1
of them

equal 1 and 𝑟
2
(the others) of them equal 2. Also, the general

formulas for fuzzy Laplace transforms of Riemann-Liouville
and Caputo fractional derivatives about the general order
𝑛−1 < 𝛽 < 𝑛 are found underHukuhara difference (H-differ-
ence).
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