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An RBF-based meshless method is presented for the analysis of thin plates undergoing large deflection. The method is based
on collocation with the multiquadric radial basis function (MQ-RBF). In the proposed method, the resulting coupled nonlinear
equations are solved using an incremental-iterative procedure. The accuracy and efficiency of the method are verified through
several numerical examples. The inclusion of the free edge boundary condition proves that this method is accurate and efficient in
handling such complex boundary value problems.

1. Introduction

The nonlinear deflection problems arise when using the light
weight structures. In several practical light weight structures
applications such as fluid tank, aircraft, and hydrospace,
flexible plates are commonly used and undergo large deflec-
tion. Consequently, the analysis of the plates becomes more
difficult.The governing equations become coupled andhighly
nonlinear [1]. The available analytical methods are based
on simplified assumptions and are limited to simple load-
ing and boundary conditions [1–5]. For such complicated
problems, numerical methods offer convenient and reliable
solutions. The ideal numerical method for the solution of
nonlinear partial differential equations (PDEs) such as the
one considered here should be high-order accurate, flexible
with respect to the geometry, computationally efficient, and
easy to implement.The conventional numerical methods that
are commonly used usually fulfill one or two of the above
criteria, but not all. Finite difference methods (FDM), finite
element methods (FEM), and boundary element methods
(BEM) have been the dominating methods for the numerical
solution of PDEs [6–13]. Referring to the most dominant
approach, that is, FEM, it is highly flexible, but it is hard

to achieve high-order accuracy and both coding and mesh
generation become increasingly difficult as the problem
dimension increases. The use of a mesh implies that specific
procedures have to be devised just to define the mesh. Also,
and to keep the order of the local approximation within
reasonable limits, the element size has to be reduced, when-
ever better approximations are pursued. The extraordinary
amount of work, which has been put into FEM research
since its early years, has, one way or another, circumvented
these and other problems associated with the existence of
a mesh and made FEM the dominant approach for most
problems in computational mechanics. Accordingly, many
sophisticated powerful codes (e.g., ANSYS, ABACUS, and
COMSOL) have been established and have proven to be
reliable in solving almost any computational mechanics
problem. FDM can be made high-order accurate in resolving
PDEs but require a structured grid (or a collection of
structured grids), which makes it difficult to model features
of irregular domain. Furthermore, solutions of PDEs using
FDM can be derived from the assumptions of the local
interpolation schemes and require a mesh to support the
localized approximations; however, the construction of a
mesh in two or more dimensions is a nontrivial problem. In
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recent years, BEM has become a powerful alternative to FEM
and FDM, especially for problems involving high gradients
and stress concentrations. It has been successfully applied to
solve the problems of large deflection of thin elastic plates.
However, this was possible by devising some techniques to
overcome the inherent deficiency of BEM as a self-standing
numerical method in handling nonlinearities.

Nevertheless, the possibility of obtaining numerical solu-
tions for PDFs without resorting to element frame has been
the goal of many researchers throughout the computational
mechanics community for the past three decades or so.One of
the earliestmeshlessmethods is the smoothed particle hydro-
dynamics (SPH) which was developed in 1977 by Lucy et al.
[13, 14]. Since then, many versions and types of the meshless
methods have been proposed. Examples are the radial basis
function-based collocation method (RBF) by Kansa [15, 16],
the diffuse element method (DEM) by Nayroles et al. [17],
the element-free Galerkin (EFG) method by Belytschko el
al. [18], the reproduced kernel particle method (RKPM) by
Liu et al. [19], the finite point method by Onate et al. [20],
themeshless local Petrov-Galerkinmethod (MLPG) byAtluri
and Zhu [21], and themesh-free weak-strong form (MWS) by
Liu and Gu [22].

RBF method, as one of the efficient meshless methods,
has attracted attention in recent years especially in the area of
computational mechanics. In general, RBF method expands
the solution of a problem in terms of RBFs and chooses
expansion coefficients such that the governing equations
and boundary conditions are satisfied at some selected
domain and boundary points. This method does not require
mesh generation which makes it advantageous for nonlinear
problems that require frequent remeshing such as the one
considered in this study.The roots of RBF go back to the early
1970s when it was first used for fitting scattered data [23].
In the early 1980s, it was coupled with BEM in a technique
called dual reciprocity-boundary element method where the
RBF was employed to transform the domain integrals into
boundary integrals [24]. Thereafter, many researchers have
used RBF in conjunctionwith BEM to solve various problems
in computational mechanics. The method, however, has
not been applied directly to partial differential equations
until 1990 by Kansa [15, 16]. Since then, many researchers
have suggested several variations to the original method
[25–31].

Most of previous applications of meshless methods to
large deflection of plates are limited to simple and clamped
boundary conditions. The inclusion of free edge boundary
condition poses a challenge for both analytical and numerical
methods. The difficulty of the free edge boundary condition
is due to the enforcement of zero shear on the free boundary
of the plate which, for large deflection, involves lengthy
and highly nonlinear differential operators as explained in
Section 2. In this paper, a multiquadric radial basis function-
(MQ-RBF-) based meshless model is developed for the solu-
tion of large deflection of thin plates with different boundary
conditions including free edges. The proposed method has
the advantages of simplicity and ease of code implementation.
The accuracy of the model is validated through several
numerical examples.

2. Governing Equations

The governing equilibrium equations of a plate undergoing
large deflection can be expressed in terms of the transverse
displacement 𝑤 and a stress function 𝐹 or in terms of 𝑤 and
the in-plane displacements 𝑢 and 𝜐. The summary of both
formulations and their corresponding boundary conditions
are given below.

2.1. 𝑤-𝐹 Formulation. In this formulation, the governing
equations for large elastic deflection of thin plates are rep-
resented by two coupled nonlinear differential equations,
known as Von Kárámn equations, which are expressed in
terms of the displacement 𝑤 and a stress function 𝐹 [1]:

∇
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where 𝑞 is the distributed load, 𝑡 is the plate thickness, and
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The details for deriving (1) and (2) are given in the classical
book by Timoshenko and Woinowsky-Kreiger [1]. The first
equation describes the transverse or bending action whereas
the second equation represents the in-plane action of the
plate. In general, there are two types of in-plane boundary
conditions, namely, movable and immovable. The 𝑤-𝐹 for-
mulation can be utilized directly in the former type where
the movable boundary condition is represented by 𝐹 =

𝜕𝐹/𝜕𝑛 = 0. However, the immovable boundary condition



Mathematical Problems in Engineering 3

(𝑢 = 𝜐 = 0) cannot be accurately expressed in terms of
the stress function 𝐹. To overcome this difficulty, (2) can be
replaced by two partial differential equations in terms of the
in-plane displacements, 𝑢 and 𝜐, as described in the following
section.

2.2. 𝑢-𝜐-𝑤 Formulation. Excluding the body forces, the equi-
librium equations along 𝑥 and 𝑦 are given by
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the membrane strains are related to the membrane through
the following equations:
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The membrane strains are also related to the displacements
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To complete the 𝑢-𝜐-𝑤 formulation, (1) is rewritten after
replacing the stress function 𝐹 by the proper terms involving
the displacements 𝑢, 𝜐, and 𝑤. Equation (1) becomes
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Equations (8) and (9) can be expressed in compact forms as
follows:
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In the above equations, subscript variables denote partial
differentiation with respect to the variables.
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2.3. Boundary Conditions. The general boundary conditions
for large deflection of plates can be classified into two types.

(1) The first is transverse boundary conditions which are
encountered in both small and large deflection formulations.
For this type, we will assume that, at each boundary point,
there are two prescribed boundary conditions:
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The above nonlinear formula for the nonlinear part of the
shear force is suitable for the𝑤-𝐹 formulation.The nonlinear
part of the shear corresponding to the 𝑢-𝜐-𝑤 formulation can

be obtained by replacing the stress function𝐹with the proper
derivatives of 𝑢, 𝜐, and 𝑤. The result is
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where 𝑛
𝑥
and 𝑛
𝑦
are the𝑥 and𝑦 components of the unit vector

normal to the boundary, respectively.
(2) The second is in-plane boundary conditions which

have to be addressed in the case of large deflection formu-
lation. This type of boundary condition is further classified
into two types of edge conditions:

(a) Movable edge (free to move in the in-plane direc-
tions) which is represented by the following equation:

𝐹 =

𝜕𝐹

𝜕𝑛

= 0. (20)

(b) Immovable edge which is represented by

𝑢 = 𝜐 = 0. (21)

In summary, the plate problem with movable edges can be
handled by the𝑤-𝐹 formulation represented by the governing
equations (1) and (2), the lateral boundary conditions (14) and
(15), and the in-plane boundary conditions (20), while the
plate problem with immovable edges can be handled by the
𝑢-𝜐-𝑤 formulation represented by the governing equations
(8) and (9), the lateral boundary conditions (14) and (15), and
the in-plane boundary conditions (21).

3. RBF Formulation

Consider the 2D computational domain (Figure 1) that repre-
sents the plate geometry. For collocation, we use node points
distributed both along the boundary (𝑥𝑗

𝐵
, 𝑗 = 1, . . . , 𝑁

𝐵
) and

over the interior (𝑥𝑗
𝐷
, 𝑗 = 1, . . . , 𝑁

𝐷
). Let 𝑥

𝑝
= {𝑥
𝐵
, 𝑥
𝐷
}, so

that the total number of points called poles is𝑁
𝑃
= 𝑁
𝐵
+𝑁
𝐷
.
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Figure 1: Domain and boundary nodes.

The transverse deflections 𝑤, the stress function 𝐹, and
the in-plane deflections 𝑢 and 𝜐 are interpolated linearly by
suitable radial basis functions, respectively:

𝑤 (𝑥) =
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where

𝑤
∗
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𝑗

𝐶






)
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𝑗
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2
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𝑗
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8𝜋

) ,

(23)

𝑝
𝑗
is the magnitude of the concentrated load acting at the 𝑗th

point (𝑥𝑗
𝐶
, 𝑦
𝑗

𝐶
)

0 (






𝑥 − 𝑥
𝑗



) = √(𝑥 − 𝑥

𝑗
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑐
2
, (24)

with a multiquadratic radial basis function (MQ-RBF), 𝑐
is the shape factor, and 𝑎

𝑗

𝑤
, 𝑎𝑗
𝐹
, 𝑎𝑗
𝑢
, and 𝑎

𝑗

𝜐
are unknown

coefficients to be determined by applying the governing
equations at the domain points and satisfying the boundary
conditions at the boundary points.

For the 𝑤-𝐹 formulation, the collocation of (1) and (2)
yields the following coupled nonlinear algebraic equations:
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Table 1: Deflections and stresses for SSSF plate under a uniform load.

𝑞

𝑤(𝑎/2, 𝑎/2) 𝑤(𝑎, 𝑎/2) 𝜎
𝑦
(𝑎/2, 𝑎/2) 𝜎

𝑦
(𝑎, 𝑎/2)

FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.%
1.5 0.130 0.129 0.880 0.211 0.210 0.487 0.720 0.700 2.784 1.008 0.971 3.746
3.0 0.260 0.258 0.855 0.422 0.420 0.507 1.440 1.400 2.732 2.017 1.941 3.745
4.5 0.390 0.387 0.852 0.633 0.630 0.558 2.156 2.099 2.672 3.026 2.914 3.703
6.0 0.519 0.515 0.878 0.844 0.839 0.641 2.869 2.794 2.631 4.037 3.890 3.638
7.5 0.648 0.642 0.933 1.055 1.047 0.755 3.578 3.485 2.587 5.048 4.869 3.542
9.0 0.777 0.769 1.016 1.267 1.255 0.896 4.281 4.170 2.611 6.060 5.850 3.462
10.5 0.904 0.894 1.118 1.477 1.462 1.057 4.979 4.844 2.719 7.073 6.830 3.430
12.0 1.032 1.019 1.253 1.688 1.667 1.255 5.671 5.505 2.928 8.086 7.805 3.475

Table 2: Deflections and stresses for SSSF plate under a central concentrated load.

𝑝

𝑤(𝑎/2, 𝑎/2) 𝑤(𝑎, 𝑎/2) 𝜎
𝑦
(𝑎/2, 𝑎/2) 𝜎

𝑦
(𝑎, 𝑎/2)

FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.%
1 0.182 0.18 1.099 0.182 0.179 1.648 3.207 3.089 3.668 0.926 0.921 0.509
2 0.361 0.357 1.108 0.366 0.361 1.366 6.382 6.167 3.381 1.859 1.843 0.838
3 0.536 0.537 0.187 0.551 0.534 3.085 9.502 9.188 3.304 2.805 2.761 1.582
4 0.705 0.718 1.844 0.74 0.729 1.486 12.551 12.010 4.310 3.770 3.664 2.812
5 0.869 0.902 3.797 0.932 0.941 0.966 15.526 14.829 4.493 4.759 4.578 3.797
6 1.027 1.063 3.505 1.128 1.173 3.989 18.430 17.581 4.611 5.775 5.501 4.748
7 1.18 1.219 3.305 1.328 1.384 4.217 21.269 20.280 4.650 6.821 6.523 4.356
8 1.330 1.383 3.954 1.532 1.605 4.731 24.050 22.983 4.436 7.895 7.504 4.949

Table 3: Central and free edge deflections for CCCF plate subjected
to a uniform load 𝑞.

𝑞

𝑤(𝑎/2, 𝑎/2) 𝑤(𝑎/𝑎/2)

FEM RBF Diff.% FEM RBF Diff.%
5 0.103 0.102 1.266 0.161 0.159 1.469
10 0.207 0.204 1.225 0.323 0.318 1.508
15 0.310 0.306 1.201 0.485 0.477 1.549
20 0.412 0.407 1.204 0.647 0.637 1.584
25 0.514 0.508 1.234 0.810 0.797 1.606
30 0.616 0.608 1.292 0.973 0.958 1.610
35 0.717 0.707 1.372 1.137 1.119 1.590
40 0.817 0.805 1.471 1.302 1.282 1.543

Similarly, the collocation of (10), (11), and (12), for the 𝑢-𝜐-𝑤
formulation, yields the following coupled nonlinear algebraic
equations:
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(26)
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(27)

where the collocations of (10) and (11) have been combined to
get (26). For the solution of (25), (26), and (27), the loads are
applied incrementally and then solved by iterations until the
convergence is satisfied for each incremental load. The non-
linear terms (NL(𝑤, 𝐹), 𝑉NL

𝑛
and −(𝐸/2)NL(𝑤, 𝑤)) in (25)

and NL
1
(𝑤), NL

2
(𝑤), and NL

3
(𝑢, 𝜐, 𝑤), in (26) and (27), are

put equal to zero in the first iteration of the first incremental
load and then (25), (26), and (27) are solved accordingly to
get 𝑤, 𝐹, 𝑢, and 𝜐 functions after the nonlinear terms are
evaluated to be used in the next iteration. This procedure
is iterated until convergence is satisfied; otherwise, the load
increment is reduced. The iterative procedure is repeated by
adding load increments and performing iterations until the
total load is applied.
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Table 4: Central, clamped, and free edge stresses for CCCF plate subjected to a uniform load 𝑞.

𝑞

𝜎
𝑦
(𝑎/2, 𝑎/2) 𝜎

𝑥
(0, 𝑎/2) 𝜎

𝑦
(𝑎/2, 0) 𝜎

𝑦
(𝑎, 𝑎/2)

FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.%
5 0.943 0.941 0.258 1.727 1.641 4.979 2.014 1.940 3.657 1.317 1.272 3.386
10 1.884 1.880 0.178 3.452 3.281 4.967 4.026 3.880 3.631 2.635 2.545 3.429
15 2.820 2.816 0.114 5.177 4.920 4.959 6.034 5.817 3.611 3.957 3.819 3.465
20 3.749 3.747 0.068 6.900 6.558 4.955 8.038 7.749 3.598 5.283 5.098 3.491
25 4.671 4.669 0.041 8.620 8.193 4.956 10.037 9.676 3.592 6.614 6.383 3.500
30 5.583 5.581 0.034 10.338 9.825 4.962 12.028 11.596 3.593 7.951 7.674 3.486
35 6.486 6.483 0.043 12.053 11.454 4.973 14.013 13.509 3.599 9.294 8.974 3.443
40 7.378 7.373 0.064 13.767 13.080 4.986 15.991 15.414 3.609 10.642 10.283 3.368

Table 5: Central and free edge deflections for CCCF plate subjected
to a central concentrated load 𝑝.

𝑝

𝑤(𝑎/2, 𝑎/2) 𝑤(𝑎/𝑎/2)

FEM RBF Diff.% FEM RBF Diff.%
2 0.145 0.144 0.759 0.059 0.059 0.421
4 0.288 0.286 0.694 0.119 0.119 0.268
6 0.425 0.429 0.941 0.181 0.179 1.137
8 0.557 0.570 2.334 0.246 0.241 2.101
10 0.683 0.701 2.635 0.314 0.304 3.070
12 0.802 0.831 3.616 0.385 0.369 3.989
14 0.915 0.946 3.331 0.459 0.439 4.372
16 1.023 1.057 3.357 0.538 0.515 4.201

4. Numerical Examples

In order to examine the effectiveness of the proposed RBF
method, the following three examples are considered. In
all examples, the loads are assumed to be either uniformly
distributed= 𝑞or concentrated=𝑝, Poisson ratio ] is assumed
0.3, and the analysis was performed for several combinations
of boundary conditions and shapes. For generality of the
solutions, all results are made dimensionless, so that the
coordinates, the load, the deflection, and the stress are
represented by 𝑥 = 𝑥/𝑎, 𝑦 = 𝑦/𝑎, 𝑞 = 𝑞𝑎

4
/𝐸𝑡
4, 𝑝 = 𝑝𝑎

2
/𝐸𝑡
4;

𝑤 = 𝑤/𝑡, 𝜎 = 𝜎𝑎
2
/𝐸𝑡
2, respectively.The shape factor, 𝑐, of the

RBF is changed according to the boundary conditions and the
type of load. Its optimum value ranged between 0.3 and 0.8.

Example 1. Consider a square plate with three simply sup-
ported edges and the fourth edge free (denoted by SSSF).
All edges are allowed to move in the in-plane directions and
hence, the 𝑤-𝐹 formulation is used. The plate is analyzed
for two different load types: a uniformly distributed load
𝑞 ranging from 1.5 to 12 and a central concentrated load
𝑝 ranging from 1 to 8. The plate is discretized using a
uniform node distribution consisting of 36 boundary nodes
and 81 domain nodes as shown in Figure 2. The results of
the deflections as obtained by RBF and FEM at the center
and at the mid-point of the free edge are given in Tables
1 and 2 for the uniform and central concentrated load,
respectively. The maximum differences in the deflection at

y

S

S

S

F

a

a

x

Figure 2: Boundary and domain node distribution for the SSSF
plate (𝑁

𝐵
= 36;𝑁

𝐷
= 81).

the center of the plate are 1.25% and 3.95% for the uniform
and concentrated load, respectively, whereas the differences
at the free edge of the plate are 1.26% and 4.73% for the
uniform and concentrated loads, respectively. The maximum
differences in the bending stresses at the center of the plate
are 2.93% and 4.49% for the uniform load and concentrated
load, respectively. For the stresses at the mid-point of the free
edge, the maximum differences are 3.75% and 4.95% for the
uniform and concentrated load, respectively.

Example 2. Consider the plate of Example 1 with its simply
supported edges replaced by clamped edges and let us denote
it by CCCF. The uniform load 𝑞 is incrementally increased
from 5 to 40 while the central concentrated load is incremen-
tally increased from 2 to 16. The plate is discretized using a
uniform node distribution similar to the one employed in
Example 1. The results of the analysis of this example are
given in Tables 3 and 4 for the uniform load and Tables 5
and 6 for the central concentrated load. The results show
a good agreement between RBF and FEM solutions for the
uniform load with a maximum difference of 1.61% in the
deflection results and a maximum difference of 4.99% in the
stress results. For the concentrated load, the results show
a reasonable agreement between the two solutions with a
maximum difference of 4.37% in the deflection results and
a maximum difference of 4.88% in the stress results.
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Table 6: Central, clamped, and free edge stresses for CCCF plate subjected to a central concentrated load 𝑝.

𝑝

𝜎
𝑦
(𝑎/2, 𝑎/2) 𝜎

𝑥
(0, 𝑎/2) 𝜎

𝑦
(𝑎/2, 0) 𝜎

𝑦
(𝑎, 𝑎/2)

FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.%
2 5.587 5.434 2.741 1.648 1.656 0.530 1.829 1.793 1.924 0.607 0.591 2.680
4 11.117 10.696 3.794 3.275 3.313 1.158 3.631 3.569 1.709 1.221 1.183 3.128
6 16.544 15.895 3.928 4.866 4.970 2.145 5.386 5.256 2.405 1.849 1.780 3.699
8 21.840 21.151 3.153 6.411 6.629 3.412 7.080 7.249 2.394 2.496 2.397 3.955
10 26.992 26.107 3.276 7.905 8.231 4.125 8.708 8.975 3.064 3.167 3.037 4.112
12 31.999 31.009 3.093 9.350 9.758 4.357 10.271 10.599 3.189 3.867 3.694 4.481
14 36.870 35.710 3.145 10.749 11.230 4.481 11.772 12.324 4.686 4.600 4.377 4.837
16 41.614 40.216 3.361 12.105 12.682 4.764 13.217 13.834 4.672 5.368 5.106 4.881

Table 7: Central and free edge deflections for CCCF-IM plate under a uniform load.

𝑞

𝑤(𝑎/2, 𝑎/2) 𝑤(𝑎/𝑎/2)

FEM RBF Diff.% FEM RBF Diff.%
15 0.292 0.284 2.730 0.426 0.412 3.318
30 0.518 0.500 3.411 0.699 0.667 4.530
45 0.694 0.670 3.475 0.887 0.846 4.658
60 0.836 0.799 4.488 1.032 0.985 4.506
75 0.957 0.913 4.601 1.150 1.100 4.415

Table 8: Central, clamped, and free edge stresses for CCCF-IM plate under a uniform load.

𝑞

𝜎
𝑦
(𝑎/2, 𝑎/2) 𝜎

𝑥
(0, 𝑎/2) 𝜎

𝑦
(𝑎/2, 0) 𝜎

𝑦
(𝑎, 𝑎/2)

FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.%
15 2.625 2.561 2.411 5.029 4.903 2.517 5.804 5.653 2.595 3.452 3.349 2.997
30 4.579 4.424 3.394 9.517 9.160 3.756 10.815 10.425 3.604 5.637 5.440 3.498
45 6.004 5.772 3.858 13.505 12.959 4.048 15.165 14.500 4.388 7.121 6.860 3.654
60 7.088 6.815 3.849 17.122 16.378 4.347 19.058 18.164 4.691 8.247 7.943 3.692
75 7.949 7.610 4.260 20.460 19.557 4.414 22.622 21.509 4.921 9.168 8.816 3.837

Example 3. Consider the plate of Example 2 but with immov-
able edges (CCCF-IM). The solution is obtained using 𝑢-𝜐-𝑤
formulation. The plate is analyzed under two different load
types: uniformly distributed load 𝑞 ranging from 15 to 75
and a central and concentrated load 𝑝 ranging from 4 to 20.
The results (Tables 7–10), once again, show a good agreement
between RBF and FEM solutions. For the uniform load, the
maximum difference is 4.66% in the deflection results and
4.92% in the stress results while, for the concentrated load,
the maximum difference is 4.25% in the deflection and 4.69%
in the stress results.

5. Conclusions

An RBF-based meshless method has been presented for
the solution of large deflection of thin plates with different
boundary conditions including free edges. The method is
based on collocation with MQ-RBF. The load types con-
sidered in the study are uniform and concentrated. The
boundary conditions covered are clamped, simply supported,
free, movable, and immovable conditions. The FEM-based
software COMSOL has been used to verify the RBF results.

Table 9: Central and free edge deflections for CCCF-IMplate under
a central concentrated load.

𝑝

𝑤(𝑎/2, 𝑎/2) 𝑤(𝑎/𝑎/2)

FEM RBF Diff.% FEM RBF Diff.%
4 0.281 0.282 0.204 0.114 0.114 0.369
8 0.521 0.534 2.550 0.214 0.218 1.884
12 0.717 0.739 3.062 0.297 0.304 2.334
16 0.880 0.912 3.627 0.367 0.376 2.412
20 1.020 1.064 4.251 0.429 0.446 4.048

The proposed RBF meshless method has the advantage
of being simple, easy to implement in a computer code,
and reasonably accurate and therefore can qualify as an
alternative numerical technique for the solution of highly
nonlinear boundary value problems.
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Table 10: Central, clamped, and free edge stresses for CCCF-IM plate under a central concentrated load.

𝑝

𝜎
𝑦
(𝑎/2, 𝑎/2) 𝜎

𝑥
(0, 𝑎/2) 𝜎

𝑦
(𝑎/2, 0) 𝜎

𝑦
(𝑎, 𝑎/2)

FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.% FEM RBF Diff.%
4 11.034 10.873 1.460 3.210 3.160 1.559 3.560 3.467 2.602 1.165 1.149 1.454
8 21.373 21.053 1.498 6.023 5.898 2.074 6.665 6.461 3.061 2.135 2.103 1.487
12 30.946 30.469 1.542 8.408 8.143 3.150 9.289 8.988 3.246 2.899 2.960 2.085
16 39.913 39.171 1.860 10.470 10.121 3.334 11.556 11.165 3.386 3.516 3.599 2.364
20 48.420 47.213 2.492 12.296 11.719 4.692 13.569 14.075 3.727 4.029 4.210 4.505
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