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Warning indicators are required for the real-timemonitoring of the service conditions of dams to ensure safe andnormal operations.
Warnings are traditionally targeted at some “single point deformation” by deformation measuring points of concrete dam, and
scientific warning theory on “overall deformation” measured is nonexistent. Furthermore, the influences of random factors are
not considered. In this paper, the overall deformation of the dam was seen as a deformation system of single interactional
observation points with different contribution degrees. The spatial deformation entropy, which describes the overall deformation,
was established and the fuzziness indicator that measures the influence of complex random factors onmonitoring values according
to cloud theory was constructed. On this basis, multistage warning indicators of “spatial deformation” that consider fuzziness and
randomness were determined. Analysis showed that the change law of information entropy of the dam’ overall deformation is
identical to the real change law of the dam; thus, it reflects the real deformation state of the dam. Moreover, the identified warning
indicators improved the warning ability of concrete dams.

1. Introduction

Deformation is one of the major monitored items in dam
safety. Concrete dams are exposed to influences of various
nondeterministic settings such as the load effect of water
level, uplift pressure, and wind waves caused by hydrologic
and hydraulic uncertainties, as well as geological andmaterial
uncertainties such as shearing and compressive strength.
Thus, a concrete dam is a complicated system of nonde-
terministic settings that are affected by various complex
random factors [1, 2]. Considering a dam’s long-term service,
conducting timely and effective warning against emergencies
through real-time monitoring is key to its safe operation [3].

The monitoring of dam safety is an important research
subject in advanced mechanics and mathematics theories. In
1950, Tonini categorized the factors influencing the displace-
ment of dam into water pressure, temperature, and effective-
ness for a given period [4]. These factors were expressed in
the polynomials of specific functions before a statistic model

with regression analysis was established.Then, the determin-
istic model andmixedmodel were consulted for deformation
of concrete dam and introduced finite element to monitor
and evaluate the safety of dams [5]. Furthermore, many
scholars brought new achievements in diagnosing dam safety
from many aspects. In 2009, Gu and Wang established the
catastrophe model of time-dependent component on the
basis of catastrophe theory and proposed the method to
determine the threshold value of the structure displacement
of the dam [6]. On the basis of the POT model in extreme
value theory, in 2012, Su et al. estimated the warning
indicators by setting the threshold value and combining
the probability of dam deformation with transfinite data
sequence as the subject of modeling analysis [7]. Warning
indicators are sure to have some fuzziness and randomness
because of the influences of various complex random factors.
On the basis of the fuzzy finite element, Chen (2006) realized
the nondeterministic optimal control on roller compacted
concrete dam [8]. Although the above-mentioned theories
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and methods complement and improve traditional methods
in solving difficult problems in dam safety, such approaches
only address the warning of “point” deformation and not the
scientific “spatial and overall” deformation. Further studies
on the deformation of concrete dams must consider the
influences of complex random factors. Thus, the expression
of a dam’s overall deformation should be constructed and
scientific and accurate warning indicators that consider
randomness and fuzziness should be determined.

This paper began with an analysis of an indicator of
fuzziness that affects the value of monitoring the dam by
studying the influences of fuzziness and randomness from
long-term service of the dam based on cloud theory [9–
11]. Thereafter, the relationship between a dam’s overall
deformation and deformation of single observation points
was analyzed through information entropy and synergetics.
In the analysis, overall deformation refers to a systemwherein
single observation points with different contribution degrees
(weights) influence one another. A criterion indicator mea-
suring the overall deformation conditions was constructed.
On this basis, multistage warning indicators for the overall
deformation of concrete dam considering fuzziness and
randomness were determined. Therefore, nondeterministic
optimal control was achieved [12]. This paper concludes with
a project case that verified the feasibility of the proposed
theory.

2. Nondeterministic Optimal Control

Hydraulic engineering considers that some fuzziness and
randomness in dams are inevitable because of the influences
of various random factors such as the nondeterminacy of
mechanical parameters, imposed load, and boundary condi-
tions. Statistically, the smaller probability of dam displace-
ment indicates that the dam is in a more dangerous state.
𝜇 + 3𝜎 and 𝜇 − 3𝜎 can be used as a warning indicator in one
confidence coefficient of the dam if the displacement obeys
the normal distribution of mean value and variance and is in
the range of 𝜇±3𝜎 in deterministic optimal control. In reality,
given that dams are affected by random factors, warning
indicators will have a range of variations. For example, in
Figure 1, the warning value of upstream displacement has a
maximum control value and minimum control value.

As the foundation of cloud theory, the cloud model is
precisely both controlled and uncontrolled in microscope
scale.𝑈 is the time series ofmonitoring the damdeformation,
and 𝐶 is the qualitative judgment on dam safety. If the
quantitative value 𝑥 ∈ 𝑈, 𝑢(𝑥) fall in [0, 1] and follow the
probability distribution law:

𝜇 : 𝑈 󳨀→ [0, 1] , ∀𝑥 ∈ 𝑈, 𝑥 󳨀→ 𝜇 (𝑥) . (1)

The distribution of 𝑥 in 𝑈 is called cloud and (𝑥, 𝑢) is the
cloud droplet.

In Figure 2, for observation point 𝑖, if the range wherein
the cloud droplet falls is given, the upper bound and lower

bound of the cloud droplet in the cloud model 𝑦𝑢
𝑖
and 𝑦𝑙

𝑖
can

be expressed as follows:

𝑦
𝑢

𝑖
(𝑥
𝑖
, 𝐸𝑥
𝑖
, 𝐸𝑛
𝑖
, 𝐻𝑒
𝑖
) = 𝑒
−(𝑥𝑖−𝐸𝑥𝑖)

2
/2(𝐸𝑛𝑖+3𝐻𝑒𝑖)

2

,

𝑦
𝑙

𝑖
(𝑥
𝑖
, 𝐸𝑥
𝑖
, 𝐸𝑛
𝑖
, 𝐻𝑒
𝑖
) = 𝑒
−(𝑥𝑖−𝐸𝑥𝑖)

2
/2(𝐸𝑛𝑖−3𝐻𝑒𝑖)

2

.

(2)

𝑥
𝑖𝑗
is the value 𝑗 of observation point 𝑖, and the fuzziness

Δ
𝑖𝑗
can be calculated by

Δ
𝑖𝑗
= 𝑦
𝑢

𝑖𝑗
− 𝑦
𝑙

𝑖𝑗
. (3)

In this equation, 𝑦𝑢
𝑖𝑗
is the upper limit value of 𝑥

𝑖𝑗
in the

range and 𝑦𝑙
𝑖𝑗
is the lower limit value of 𝑥

𝑖𝑗
in the range.

Given the influence of random factors, when 𝑥
𝑖𝑗
≥ 0,

𝑥
𝑖𝑗
changes in the range of [𝑥

𝑖𝑗
− 𝑥
𝑖𝑗
Δ
𝑖𝑗
, 𝑥
𝑖𝑗
+ 𝑥
𝑖𝑗
Δ
𝑖𝑗
]; when

𝑥
𝑖𝑗
< 0, it is in the range of [𝑥

𝑖𝑗
+ 𝑥
𝑖𝑗
Δ
𝑖𝑗
, 𝑥
𝑖𝑗
− 𝑥
𝑖𝑗
Δ
𝑖𝑗
].

When drawing up the warning indicator for downstream
deformation, the maximum and minimum control values of
the indicator can be determined when the significance level is
𝛼; thus, indicating that the nondeterministic optimal control
has been achieved.

3. Methods of Characterizing Contributions of
Single Observation Point

The overall deformation condition of the concrete dam is
usually exposed to the influences of water pressure and tem-
perature and is related to many factors including the physical
and mechanical properties of dam materials, body structure,
geology, and hydrology and it could be referred to in Figure 3.
The principles of synergetics posit that a concrete dam is
a synthesis of feature points with different contributions
(weights) that influence one another. The contribution of a
single observation point needs to be studied to construct a
reasonable expression of overall deformation.

3.1. Construction of the Indicator Set of a Single Observation
Point Weight. Entropy [13–15], a basic concept in thermody-
namics, refers to a state function in a system. The concept
of information entropy is a measurement of the system’s
disorder and nondeterminacy [15]. The measured value 𝑗 on
observation point 𝑖 is 𝑥

𝑖𝑗
and its corresponding entropy is 𝑆

𝑖𝑗
.

According to entropy theory, when an observation point is in
a more dangerous state, the system is in greater disorder and
its entropy value is smaller. Thus, the following is obtained:

𝑆
𝑖𝑗
= − [𝜇

𝑖𝑗
ln 𝜇
𝑖𝑗
+ (1 − 𝜇

𝑖𝑗
) ln (1 − 𝜇

𝑖𝑗
)] , (4)

𝜇
𝑖𝑗
=

{{{{{

{{{{{

{

∫

𝑥𝑖𝑗

−∞

𝑓 (𝜍) 𝑑𝜍, 𝑥
𝑖𝑗
≥ 0

∫

+∞

𝑥𝑖𝑗

𝑓 (𝜍) 𝑑𝜍, 𝑥
𝑖𝑗
< 0.

(5)

Formula (4) defines the information entropy of the
measurement value. No matter what distribution {𝑥

𝑖𝑗
} obeys,

if the probability density function of the measured value is
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Figure 1: Diagram of deterministic optimal control and nondeterministic optimal control.

Degree of certainty

Upper limit of cloud droplets
Lower limit of cloud droplets

Cloud droplets
Ex

Figure 2: Diagram of the range where the cloud droplet falls.

known, the corresponding information entropy sequence can
be calculated. Deformation of dam can be divided into three
parts: water pressure component, temperature component,
and aging component. Aging component comprehensively
reflects the creep and plastic deformation of dam concrete
and rock foundation and compression deformation of geo-
logical structure of rock foundation. At the same time, it
also includes the irreversible displacement caused by the dam
crack and the autogenous volume deformation. It changes
dramatically in the early stage and gradually tends to be stable
in the later stage. The project selected in this paper is a dam
which has worked for many years, and its aging components
tend to be stable, and the deformation value is stable in annual
period rule, which obeys normal distribution.

The indicator measuring how much information is con-
tained in 𝑥

𝑖𝑗
is the inverse entropy 𝐷

𝑖𝑗
: 𝐷
𝑖𝑗
= 1 − 𝑆

𝑖𝑗
.

When one measured value reflects more information, the
entropy value 𝑆

𝑖𝑗
will be smaller and its inverse entropy 𝐷

𝑖𝑗

will be greater. Thus, 𝐷
𝑖𝑗
can be used to measure how much

information is reflected by a single measured value.

Suppose the weight distribution of all observation points
is {𝜔
𝑖
| 𝑖 = 1, 2, . . . 𝑛}, where 𝑛 is the number of points

observed and 𝜔
𝑖
will meet the following requirement: 𝜔

𝑖
≥ 0

and ∑𝜔
𝑖
= 1. The entropy 𝑆

𝑖𝑗
of the object matrix of the

deformation measured value {𝑥
𝑖𝑗
| 𝑖 = 1 ∼ 𝑛, 𝑗 = 1 ∼ 𝑚}

can be computed through (4) and (5). The inverse entropy
matrix is expressed as follows:

𝐷
𝑖𝑗
=

[
[
[
[
[
[

[

𝐷
11
𝐷
12
⋅ ⋅ ⋅ 𝐷

1𝑚

𝐷
21
𝐷
22
⋅ ⋅ ⋅ 𝐷

2𝑚

.

.

.
.
.
.

.

.

.
.
.
.

𝐷
𝑛1
𝐷
𝑛2
⋅ ⋅ ⋅ 𝐷

𝑛𝑚

]
]
]
]
]
]

]

. (6)

In this matrix, 𝐷
𝑖𝑗
is the inverse entropy of 𝑥

𝑖𝑗
. The weight

of the feature points was traced by the projection pursuit
method.

3.2. Process of Calculating the Weight of a Single Obser-
vation Point. By using the projection pursuit method [16,
17], the high-dimensional data can be projected to low
dimension space, and projection that reflects the structure
or features of high-dimensional data is pursued to analyze
high-dimensional data.Thismethod is advantageous because
it is highly objective, robust, resistant to interference, and
accurate. The steps are as follows.

Step 1. The extreme value of the inverse entropy matrix was
normalized through the following equation:

𝐷
∗

𝑖𝑗
=

𝐷
𝑖𝑗
− [𝐷
𝑗
]min

[𝐷
𝑗
]max − [𝐷𝑗]min

, (7)

where [𝐷
𝑗
]max and [𝐷𝑗]min are the maximum and minimum

values of line 𝑗 in the matrix, respectively.
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Figure 3: Diagram of overall deformation system of concrete dam.

Step 2. The normalized value 𝐷∗
𝑖𝑗

was projected to unit
direction𝑃: 𝑃 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑗
) and𝑝2

1
+𝑝
2

2
+⋅ ⋅ ⋅+𝑝

2

𝑗
= 1.The

indicator function of the projection 𝐺(𝑖) was constructed:

𝐺 (𝑖) =

𝑚

∑

𝑗=1

𝑝
𝑗
𝐷
∗

𝑖𝑗
, (𝑖 = 1, 2, . . . , 𝑛) . (8)

Step 3. The objective function of the projection was con-
structed. The best direction for the projection was estimated
by solving the maximization problem of the objective func-
tion in the constraint condition:

Objective function: Max : 𝐻 (𝑝) = 𝑆
𝐺
⋅ 𝑄
𝐺
,

Constraint condition:
𝑚

∑

𝑗=1

𝑝
2

𝑗
= 1.

(9)

In this equation, 𝑆
𝐺
is the divergent degree of the projection.

𝑄
𝐺
is the local density of 1D data points along 𝑃 and is

expressed as follows:

𝑆
𝐺
= [
∑
𝑛

𝑖=1
(𝐺 (𝑖) − 𝑔 (𝑖))

2

𝑛 − 1
]

0.5

𝑄
𝐺
=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(𝑅 − 𝑟
𝑖𝑗
) ⋅ 𝑓 (𝑅 − 𝑟

𝑖𝑗
) ,

(10)

where𝑔(𝑖) is themean value of this sequence,𝑅 is the window
radius of the local density and 𝑅 = 0.1𝑆

𝐺
in this paper, 𝑟

𝑖𝑗
is

the distance between two projection values, and 𝑓(𝑡) is the
unit step function. 𝑓(𝑡) is equal to 1 as 𝑡 is greater than 0.
Otherwise, 𝑓(𝑡) is equal to 0.

Step 4. The projection value of one sample point was com-
puted by substituting the best direction 𝑃∗ into (8); 𝜔

𝑖
can be

calculated by normalizing the projection value:

𝜔
𝑖
=

𝐺
∗

(𝑖)

∑
𝑛

𝑗=1
𝐺∗ (𝑗)

, 𝑖 = 1, 2, . . . , 𝑛. (11)

4. Study on Equivalent Model of
Dam’s Overall Deformation

The overall deformation of a dam can be considered a defor-
mation system of feature points with different contributions
that influence one another, as well as observation points of
the deformation as feature points.The deformation condition
was analyzed systemically, and the overall deformation was
expressed by the evolution of equation of all feature points.
The deformation condition was described qualitatively by
the tectonic type of information entropy. The absolute value
of the information entropy measures the danger level of
the deformation value. Smaller absolute value means higher
danger level. The positive and negative values indicate the
direction of the deformation. A positive value corresponds
to downstream deformation, whereas a negative value corre-
sponds to upstream deformation. The influences of random
factors were considered and the fuzzy information entropy
was constructed.

4.1. Constructing Fuzzy Information Entropy of Single
Measured Value. The downstream deformation is positive,
whereas the upstream deformation is negative.

When the observation point moves downstream, make
𝜇
𝑖𝑗
= ∫
𝑥𝑖𝑗

−∞

𝑓(𝜍)𝑑𝜍 and according to the definition of infor-
mation entropy, the information entropy of 𝑥

𝑖𝑗
is expressed

as (4).
Considering the influence of Δ

𝑖𝑗
, 𝜇
𝑖𝑗
will float in [𝜇0

𝑖𝑗
, 𝜇
1

𝑖𝑗
];

the following is then obtained:

𝜇
0

𝑖𝑗
= ∫

𝑥𝑖𝑗−𝑥𝑖𝑗Δ 𝑖𝑗

−∞

𝑓 (𝜍) 𝑑𝜍,

𝜇
1

𝑖𝑗
= ∫

𝑥𝑖𝑗+𝑥𝑖𝑗Δ 𝑖𝑗

−∞

𝑓 (𝜍) 𝑑𝜍.

(12)

When the observation point moves upstream, make 𝜇
𝑖𝑗
=

∫
+∞

𝑥𝑖𝑗

𝑓(𝜍)𝑑𝜍; the information entropy of 𝑥
𝑖𝑗
is defined as

follows:
𝑆
𝑖𝑗
= 𝜇
𝑖𝑗
ln 𝜇
𝑖𝑗
+ (1 − 𝜇

𝑖𝑗
) ln (1 − 𝜇

𝑖𝑗
) . (13)
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𝑖𝑗
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if 𝐸
𝑥
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Considering the influence ofΔ
𝑖𝑗
, 𝜇
𝑖𝑗
floats in [𝜇0

𝑖𝑗
, 𝜇
1

𝑖𝑗
].The

following is then obtained:

𝜇
0

𝑖𝑗
= ∫

+∞

𝑥𝑖𝑗−𝑥𝑖𝑗Δ 𝑖𝑗

𝑓 (𝜍) 𝑑𝜍

𝜇
1

𝑖𝑗
= ∫

+∞

𝑥𝑖𝑗+𝑥𝑖𝑗Δ 𝑖𝑗

𝑓 (𝜍) 𝑑𝜍.

(14)

Considering the influences of random factors, the infor-
mation entropy of 𝑥

𝑖𝑗
−𝑆
𝑖𝑗
floats in [𝑆0

𝑖𝑗
, 𝑆
1

𝑖𝑗
], whichwas defined

as the fuzzy information entropy of 𝑥
𝑖𝑗
.

Take the downstream as an example. Influenced by deter-
mined and random factors, the fuzzy entropy of 𝑆

𝑖𝑗
changes

into the range of 𝑆
𝑖𝑗
in the range of [𝜇0

𝑖𝑗
, 𝜇
1

𝑖𝑗
].

4.2. Methods for Determining the Range of the Information
Entropy of Single Measured Value. For Figure 4, the expecta-
tion of one deformation monitoring sequence sample at one
observation point (𝐸

𝑥
≥ 0, 𝑆

𝑖𝑗
) changes with the change of

𝜇
𝑖𝑗
, as shown in Figure 4, where 𝜇

0
= ∫
0

−∞

𝑓(𝜍)𝑑𝜍.
When the dam deforms downstream, the change law of

𝑆
𝑖𝑗
is as follows: 𝑆

𝑖𝑗
will increase with increasing 𝜇

𝑖𝑗
when 𝜇

𝑖𝑗

is in the range of (𝜇
0
, 0.5); 𝑆

𝑖𝑗
will decrease with decreasing

𝜇
𝑖𝑗
when 𝜇

𝑖𝑗
is in the range of (0.5, 1); when 𝜇

𝑖𝑗
= 0.5, 𝑆

𝑖𝑗
will

reach themaximumvalue. If 0.5 is in the range of [𝜇0
𝑖𝑗
, 𝜇
1

𝑖𝑗
], the

maximum of 𝑆
𝑖𝑗
is 𝑆1
𝑖𝑗
when 𝜇

𝑖𝑗
= 0.5 and its minimum value

is 𝑆0
𝑖𝑗
at the endpoint. If 0.5 is not in the range of [𝜇0

𝑖𝑗
, 𝜇
1

𝑖𝑗
],

𝑆
𝑖𝑗
will have its maximum value 𝑆1

𝑖𝑗
and minimum value 𝑆0

𝑖𝑗

at endpoints. When the dam deforms upstream, 𝑆
𝑖𝑗
will rise

with the rise of 𝜇
𝑖𝑗
and it will have its maximum value 𝑆1

𝑖𝑗
and

minimum value 𝑆0
𝑖𝑗
at endpoints.

The expectation of one deformationmonitoring sequence
sample at one observation point (𝐸

𝑥
< 0, 𝑆

𝑖𝑗
) changes with
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𝑖𝑗
if 𝐸
𝑥
< 0.

the change of 𝜇
𝑖𝑗
as shown in Figure 5, where 𝜇

0
= ∫
0

−∞

𝑓(𝜍)𝑑𝜍

and Figure 5 is presented for 𝑆
𝑖𝑗
changes with the change of

𝜇
𝑖𝑗
.
When the damdeforms downstream, the change law of 𝑆

𝑖𝑗

is as follows: 𝑆
𝑖𝑗
will increase with decreasing 𝜇

𝑖𝑗
and will have

its maximum value 𝑆1
𝑖𝑗
and minimum value 𝑆0

𝑖𝑗
at endpoints.

When the damdeforms upstream, the figure shows that when
𝜇
𝑖𝑗
is in the range of (1−𝜇

0
, 0.5), 𝑆

𝑖𝑗
will increase with the drop

of 𝜇
𝑖𝑗
; when 𝜇

𝑖𝑗
is in the range of (0.5, 1), 𝑆

𝑖𝑗
will decrease with

the increase of 𝜇
𝑖𝑗
; when 𝜇

𝑖𝑗
= 0.5, 𝑆

𝑖𝑗
will reach theminimum

value. If 0.5 is contained in the range of [𝜇0
𝑖𝑗
, 𝜇
1

𝑖𝑗
], 𝑆
𝑖𝑗
will have

its minimum value 𝑆0
𝑖𝑗
at 𝜇
𝑖𝑗
= 0.5 and have its maximum

value 𝑆1
𝑖𝑗
at endpoint; if 0.5 is not contained in the range, 𝑆

𝑖𝑗

will have its maximum value 𝑆1
𝑖𝑗
and minimum value 𝑆0

𝑖𝑗
at

endpoints.

4.3. Construction of the Fuzzy Information Entropy of Overall
Deformation. On the basis of the above results, the expres-
sion of information entropy of overall deformation can be
deduced.The contribution of the order degree of observation
point 𝑖 is 𝜔

𝑖
𝜇
𝑖𝑗
; make 𝜇1

𝑖𝑗
= 𝜇
𝑖𝑗
and 𝜇2

𝑖𝑗
= 1 − 𝜇

𝑖𝑗
. According to

the broad definition of information entropy, when the dam
move deforms downstream, the expression of information
entropy of overall deformation is expressed as follows:

𝑆
𝑗
= −

𝑚

∑

𝑖=1

2

∑

𝑘=1

𝜔
𝑖
𝜇
𝑘

𝑖𝑗
ln (𝜔
𝑖
𝜇
𝑘

𝑖𝑗
)

= −

𝑛

∑

𝑖=1

2

∑

𝑘=1

𝜔
𝑖
𝜇
𝑘

𝑖𝑗
(ln𝜔
𝑖
+ ln 𝜇𝑘

𝑖𝑗
)

= −

𝑛

∑

𝑖=1

2

∑

𝑘=1

𝜔
𝑖
𝜇
𝑘

𝑖𝑗
ln𝜔
𝑖
−

𝑛

∑

𝑖=1

2

∑

𝑘=1

𝜔
𝑖
𝜇
𝑘

𝑖𝑗
ln 𝜇𝑘
𝑖𝑗
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Figure 6: Computational process of fuzzy information entropy of overall deformation.

= −

𝑛

∑

𝑖=1

𝜔
𝑖
ln𝜔
𝑖

2

∑

𝑘=1

𝜇
𝑘

𝑖𝑗
−

𝑛

∑

𝑖=1

𝜔
𝑖

2

∑

𝑘=1

𝜇
𝑘

𝑖𝑗
ln 𝜇𝑘
𝑖𝑗

= −

𝑛

∑

𝑖=1

𝜔
𝑖
ln𝜔
𝑖
+

𝑛

∑

𝑖=1

𝜔
𝑖
𝑆
𝑖𝑗
.

(15)

When the dam move deforms upstream, the expression
of the information entropy of overall deformation is

𝑆
𝑗
=

𝑚

∑

𝑖=1

2

∑

𝑘=1

𝜔
𝑖
𝜇
𝑘

𝑖𝑗
ln (𝜔
𝑖
𝜇
𝑘

𝑖𝑗
) =

𝑛

∑

𝑖=1

𝜔
𝑖
ln𝜔
𝑖
+

𝑛

∑

𝑖=1

𝜔
𝑖
𝑆
𝑖𝑗
. (16)

Therefore, the expression of information entropy of over-
all deformation is defined as follows:

𝑆
𝑗
=

{{{{

{{{{

{

−

𝑛

∑

𝑖=1

𝜔
𝑖
ln𝜔
𝑖
+

𝑛

∑

𝑖=1

𝜔
𝑖
𝑆
𝑖𝑗
, 𝑆
𝑖𝑗
≥ 0

𝑛

∑

𝑖=1

𝜔
𝑖
ln𝜔
𝑖
+

𝑛

∑

𝑖=1

𝜔
𝑖
𝑆
𝑖𝑗
, 𝑆

𝑖𝑗
< 0.

(17)

The absolute value of the information entropy of the over-
all deformationmeasures the danger level of the deformation;
that is, a smaller absolute value means a higher danger level;
positive and negative values stand for the direction of the
deformation: a positive value means downstream deforma-
tion, whereas a negative value means upstream deformation.

Considering the influences of random factors, the fuzzy
information entropy of 𝑥

𝑖𝑗
is [𝑆0
𝑖𝑗
, 𝑆
1

𝑖𝑗
]; the fuzzy information

entropy of overall deformation can be illustrated through
(17). Computational process of fuzzy information entropy of
overall deformation is shown in Figure 6.

5. Proposed Multistage Fuzzy
Information Entropy of Overall
Deformation Warning Indicators

Horizontal displacement of dam crest changes in an annual
cycle: “upstream and downstream switch.” Therefore, this
displacement should be in a certain scale and be controlled
under somemonitoring indicators for the safe damoperation.

In the case of downstream displacement, the primary
fuzzy warning indicator 𝛿󸀠

1
is defined as 𝛿󸀠

1
= (𝛿
0

1
, 𝛿
1

1
). 𝛿0
1
is

the lower limit of this indicator, and 𝛿1
1
is the upper limit;

the secondary indicator 𝛿󸀠
2
is 𝛿󸀠
2
= (𝛿
0

2
, 𝛿
1

2
), where 𝛿0

2
is

the lower limit of this indicator and 𝛿1
2
is the upper limit.

When 𝛿1
1
> 𝛿
0

2
, a cross phenomenon appears in the primary

indicator and secondary indicator, when both of them should
be categorized according to the membership of displacement
measured. 𝛿∗ was introduced because the membership of
displacement at this point is the same. Figure 7 shows
diagram of multistage fuzzy information entropy warning
indicators.

The primary fuzzy warning indicator is 𝛿󸀠
1
= (𝛿
0

1
, 𝛿
∗

), and
the secondary is 𝛿󸀠

2
= (𝛿
∗

, 𝛿
1

2
).

If the deformation value is in (𝛿0
1
, 𝛿
1

1
) or (𝛿0

1
, 𝛿
∗

), the dam
is in the state of primary warning; if the value is in (𝛿0

2
, 𝛿
1

2
) or

(𝛿
0

2
, 𝛿
∗

), the dam is in the state of secondary warning.
The time sequence of deformation at each observation

point was analyzed by using the above theoretical method.
The lower and upper limits of the fuzzy information entropy
of overall deformation affected by Δ

𝑖𝑗
will be {𝑆0

𝑗
} and {𝑆1

𝑗
}.

Considering the dam’s long-term service, when the dam
moves downstream, the lower limit {𝑆0

𝑚𝑗
} and upper limit
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Figure 7:Diagramofmultistage fuzzy information entropywarning
indicators.

{𝑆
1

𝑚𝑗
} were selected and when the dam moves upstream,

the lower limit {𝑅0
𝑚𝑗
} and upper limit {𝑅1

𝑚𝑗
} were selected.

{𝑆
0

𝑚𝑗
}, {𝑆1
𝑚𝑗
}, {𝑅0
𝑚𝑗
}, and {𝑅1

𝑚𝑗
} are random variables, and four

subsample spaces with the sample size of 𝑁 can be obtained
by the following:

𝑆
0

= {𝑆
0

𝑚1
, 𝑆
0

𝑚2
, . . . , 𝑆

0

𝑚𝑚
}

𝑆
1

= {𝑆
1

𝑚1
, 𝑆
1

𝑚2
, . . . , 𝑆

1

𝑚𝑚
}

𝑅
0

= {𝑅
0

𝑚1
, 𝑅
0

𝑚2
, . . . , 𝑅

0

𝑚𝑚
}

𝑅
1

= {𝑅
1

𝑚1
, 𝑅
1

𝑚2
, . . . , 𝑅

1

𝑚𝑚
} .

(18)

Shapiro-Wilk test andKolmogorov-Smirnov test can both
test whether the samples obey normal distribution or not. But
the Kolmogorov-Smirnov test is applicable to fewer samples.
It can not only test if the samples are subject to normal
distribution, but also test if samples are subject to other
distributions. The basic idea of the K-S test is to compare
the cumulative frequency of the observed value (𝐹

𝑛
(𝑥)) with

the assumed theoretical probability distribution (𝐹
𝑥
(𝑥)) to

construct statistics.
According to the method of empirical distribution func-

tion, segmented cumulative frequency is obtained by using
the following formula:

𝐹
𝑛
(𝑥) =

{{{{

{{{{

{

0, 𝑥 < 𝑥
𝑖

𝑖

𝑛
, 𝑥
𝑖
≤ 𝑥 < 𝑥

𝑖+1

1, 𝑥 ≥ 𝑥.

(19)

In the formula, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
is sample data after arrange-

ment. The sample size is 𝑛.

In the full range of random variable 𝑋, the maximum
difference between 𝐹

𝑛
(𝑥) and 𝐹

𝑥
(𝑥) is

𝐷
𝑛
= max 󵄨󵄨󵄨󵄨𝐹𝑥 (𝑥) − 𝐹𝑛 (𝑥)

󵄨󵄨󵄨󵄨 < 𝐷
𝛽

𝑛
. (20)

In the formula, 𝐷
𝑛
is a random variable whose distribu-

tion depends on 𝑛.𝐷𝛽
𝑛
is critical value for a significant level 𝛽.

It is considered that the distribution to be used at a significant
level 𝛽 cannot be resisted; otherwise, it should be rejected.

The distribution formwas tested through the K-Smethod
to determine the probability density function. Fuzzy warning
indicator was then determinedwith different significant level.
In dam safety evaluation, significant level 𝛼 is the probability
of the dam failure. Supposing 𝑆

𝑚
is the extreme of the

information entropy of the upstream overall deformation, if
𝑆 > 𝑆

𝑚
, the probability of the dam failure is 𝑃(𝑆 > 𝑆

𝑚
) =

𝛼 = ∫
∞

𝑆𝑚

𝑓(𝑥)𝑑𝑥 and the reliability index of dam failure is
1 − 𝛼. According to the dam importance, different failure
probability is set and the multistage warning indicators were
identified.

6. Example Analysis

6.1. Project Profile. One flat-slab deck dam built with rein-
forced concrete is an important part of one river basin cascade
exploitation. The elevation of this dam crest is 137.70m, and
the height of biggest part is about 43m; the crest runs 225.0m
in length and is made of 27 flat-slab buttresses with a span of
7.5m. The space between the left side of 2# buttress and the
right side of 9# buttress is the joint part; the overflow buttress
is located from the 9# buttress to the 20# buttress; the rest is
the water-retaining buttress.Theworkshop buttress is located
from the 5# buttress to the 8# buttress. In this dam, the level
of deadwater is 122.0m, the normal highwater level is 131.0m
(in practice, it is 129.0m), the design flood level is 136.7m, and
the check flood level is 137.5m. To monitor the displacement
of this dam, a direct plumb line and an inverted plumb line
were arranged in four buttresses: 4#, 9#, 21#, and 24#.There is
a crushed zone under the dam foundation where occurrence
is N20∘∼25∘W, SW∠70∘∼80∘, the maximum width is about
3m, and the narrowest place is about 1m.There is an elevation
clip joint mud at level 91m.

The deformation field characterized by the observation
point at 21# should be typical and is a key point because it is
in the riverbed.Thus, the observation point G21 at the height
of 134m along the direct plumb line at 21# was analyzed, as
well as point 27 at the height of 118m along this line and
point 28 at the height of 107m.All these valuesmeasuredwere
transformed into absolute displacement. The arrangement of
each point is shown in Figure 8. The daily monitoring data
series is from January 1, 2003, to December 31, 2013.

In this paper, two-stage warning indicators were set
according to the practical running of this project and danger:
𝛼 = 5% is the primary warning that is mainly used to discri-
minate and handle early dangerous case and the reliability
index of dam failure is 95%, whereas 𝛼 = 1% is the secondary
warning that is mainly used to determine grave danger and
prevent urgent danger and the reliability index of dam failure
is 99%.



8 Mathematical Problems in Engineering

G21 G9 G4G24

25

30

26
31

28

27

3233

Figure 8: The arrangement of observation point.
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Figure 9: The process line of upstream water level.
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Figure 10: The process line of temperature.

6.2. Calculating the Contribution of Deformation at the
Observation Point to the Overall Deformation. Figures 9-
10 show the upstream stage hydrograph and temperature
stage hydrograph, respectively. The water stage remained
unchanged, whereas the temperature changed in the annual
cycle. Figure 11 shows the relationship between information
entropy of overall deformation and temperature in 2007. A
negative correlation exists between the overall deformation
of 21# buttress and temperature; that is, an increase in tem-
perature corresponds to the decrease in upstream or down-
stream displacement and a decrease in temperature means
an increase in the upstream or downstream displacement.
Figure 12 shows the correlation between the displacement
at observation point G21 and the temperature. The overall
deformation law is roughly identical with that at observation
point G21.

Figure 12 reveals that the temperature obviously influ-
enced overall deformation; that is, the temperature can
change the contribution of single observation point to the
overall deformation. Temperature change was divided into
the stage of temperature rise and stage of temperature drop.
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Figure 11: The relationship between information entropy of overall
deformation and temperature in 2011.
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Figure 12: The relationship between horizontal displacement and
temperature of observation point G21 in 2011.

The weight of deformation at observation point in two stages
was calculated. The results are shown in the Table 1.

6.3. Results of Information Entropy of Overall Deformation.
Range of cloud fall of the displacement at G21, 27, and
28 is shown in Figure 13. The boundary values of most
dangerous information entropy from 2003 to 2013 are shown
in Tables 2–5.The absolute value means the degree of danger;
downstream is set as negative value. In the significance level
𝛼 = 0.05, 7 kinds of common distribution (lognormal distri-
bution, normal distribution, uniform distribution, triangular
distribution, exponential distribution, 𝛾 distribution, and 𝛽
distribution) were used to carry on hypothesis test for {𝑆0

𝑚𝑗
},

{𝑆
1

𝑚𝑗
}, {𝑅0
𝑚𝑗
}, and {𝑅1

𝑚𝑗
} with K-S method. The maximum 𝐷

𝑛

of each sequencewas obtained and comparedwith the critical
value 𝐷0.05

𝑛
of the significant level 0.05 to determine the type
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Table 1: The weight table of observation point.

Observation point Altitude The period of temperature rise The period of temperature drop
G21 134m 0.357 0.392
27 118m 0.331 0.316
28 107m 0.312 0.292

Table 2: The lower limit of the most dangerous information entropy of downstream overall deformation.

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Information entropy 0.4784 0.4837 0.4767 0.4784 0.4969 0.4887 0.4969 0.5102 0.5082 0.4799 0.4739

Table 3: The upper limit of the most dangerous information entropy of downstream overall deformation.

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Information entropy 0.4791 0.4845 0.4770 0.4786 0.4971 0.4899 0.4974 0.5186 0.5161 0.4817 0.4769

Table 4: The lower limit of the most dangerous information entropy of upstream overall deformation.

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Information entropy −0.5433 −0.5491 −0.4773 −0.5083 −0.5067 −0.4784 −0.5080 −0.4839 −0.4836 −0.4825 −0.5020

Table 5: The lower limit of the most dangerous information entropy of upstream overall deformation.

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Information entropy −0.5339 −0.5440 −0.4770 −0.5079 −0.5055 −0.4770 −0.5040 −0.4822 −0.4806 −0.4754 −0.4766
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Figure 13: Range of cloud fall of the displacement at G21, 27, and 28.

of the best distribution. K-S test results are shown in Table 6.
Multistage fuzzy warning values are presented in Table 7.

K-S test shows that {𝑆0
𝑚𝑗
}, {𝑆1
𝑚𝑗
}, {𝑅0
𝑚𝑗
}, and {𝑅1

𝑚𝑗
} satisfy

normal distribution.
The probability density function of the sequence is

𝑓 (𝑥) =
1

√2𝜋𝜎2
exp(−

(𝑥 − 𝜇)
2

𝜎
) . (21)

Parameter values of (21) are presented in Table 7.
In downstream deformation, if 𝛼 = 5%, the primary

warning indicator is (0.4763, 0.4775); if 𝛼 = 1%, the
secondary warning indicator is (0.4757, 0.4763). 𝛿∗ is used as

the boundary value when two indicators overlap. In the case
of upstream deformation, if 𝛼 = 5%, the primary warning
indicator is (−0.4779, −0.4768); if 𝛼 = 1%, the secondary
warning indicator is (−0.4768, −0.4763) (Table 8).

6.4. The Structure Calculation of Monitoring Index of Dam
Horizontal Displacement. According to the actual situation,
three-dimensional finite element model of the dam is estab-
lished. According to the structure and basic geological
conditions of 21# dam section, the scope of finite element
calculation model can be got as follows: taking 1.5 times as
high dam in the upstream direction, taking 1.5 times as high
dam in the upstream direction, and taking 1 time as high
dam below the dam foundation. The model is constituted
of 11445 nodes and 8571 units. The unit type is 6 sides 8
nodes isoparametric element. The deformation observation
data analysis shows the dam under the condition of low
temperature and highwater level: there is larger displacement
in the downstream when in high temperature, and in low
water level, there is larger displacement in the upstream
(Table 9, Figure 14). In view of the actual situation of the
dam observation and data analysis results, the load condition
selection is as follows (Table 10, Figures 15 and 16):

Working condition 1: normal water level 129.0m and
maximum temperature drop.
Working condition 2: dead water level 122.0m and
maximum temperature rise.
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Table 6: K-S test results.

Probability distribution 𝑆
0

𝑚𝑗
𝑆
1

𝑚𝑗
𝑅
0

𝑚𝑗
𝑅
1

𝑚𝑗

Lognormal distribution 0.26 0.11 0.23 0.28
Normal distribution 0.11 0.08 0.26 0.22
Uniform distribution 0.74 1.55 0.88 0.68
Triangular distribution 0.53 0.54 0.59 0.61
Exponential distribution 0.41 0.42 0.55 0.35
𝛾 distribution 0.37 0.36 0.31 0.33
𝛽 distribution 0.68 0.73 0.86 0.63
𝐷
0.05

𝑛
0.34 0.34 0.29 0.29

The most reasonable probability distribution Normal distribution Normal distribution Normal distribution Normal distribution

Table 7: Parameter values of the probability density function.

Data series Parameter values
𝜇 𝜎

2

{𝑆
0

𝑚𝑗
} 0.488355 0.0129

{𝑆
1

𝑚𝑗
} 0.490627 0.0151

{𝑅
0

𝑚𝑗
} −0.50210 0.0249

{𝑅
1

𝑚𝑗
} −0.49674 0.0245

Figure 14: Finite element model of the dam.

The primary warning indicators of concrete dam were
obtained by calculation methods for structures. If the infor-
mation entropy of the overall deformation reached 0.4770,
the dammoveddownstreamand in the state of primarywarn-
ing. If the information entropy of the overall deformation
reached −0.4773, the dam moved upstream and in the state
of primary warning (Table 11). They all fell into intervals
calculated by fuzzy methodology.The analysis shows that the
method brought up in this paper is reasonable and scientific.
Also, the analysis shows the physical meaning of the fuzzy
warning index.Under the action of the unfavorable load com-
bination and the influence of the complex random factors,
the maximum entropy andminimum information entropy of
the overall deformation lie in this interval. Considering the
influences of random factors,multistage fuzzywarning values
were receptive and safe.

In this paper, the overall deformation of 21# buttress
was analyzed through the theoretical method proposed.
Influences of random factors on the warning value were
considered and multistage fuzzy warning values were deter-
mined. If the information entropy of overall deformation
is in (0.4763, 0.4775), the dam moved downstream and in

−2.399e − 003
−1.296e − 003
−1.940e − 004
9.084e − 004
2.011e − 003
3.113e − 003
4.216e − 003
5.318e − 003
6.421e − 003
7.523e − 003
8.625e − 003

X
Y

Z

Figure 15:The results of finite element calculation ofworking condi-
tion 1.

X
Y

Z −6.007e − 004
−5.014e − 004
−4.021e − 004
−3.028e − 004
−2.035e − 004
−1.042e − 004
−4.872e − 006
9.443e − 005
1.937e − 004
2.930e − 004
3.923e − 004

Figure 16: The results of finite element calculation of working
condition 2.

the state of primary warning. If the information entropy of
overall deformation is in (0.4757, 0.4763), the dam moved
downstream and in the state of secondary warning. If the
information entropy of overall deformation is in (−0.4779,
−0.4768), the dam moved upstream and in the state of
primary warning. If the information entropy of the over-
all deformation is in (−0.4768, −0.4763), the dam moved
upstream and in the state of secondary warning.

7. Conclusion

This paper presented multistage warning indicators of con-
crete dam space and considered the influences of complex
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Table 8: Multistage fuzzy warning values of concrete dam.

The direction of deformation Confidence level
The primary warning indicator The secondary warning indicator

Downstream (0.4763, 0.4775) (0.4757, 0.4763)
Upstream (−0.4779, −0.4768) (−0.4768, −0.4763)

Table 9: Material parameter of the dam.

Structure Density (kg/m) Poisson’s ratio Elastic modulus (GPa)
Concrete face slab 2400 0.167 24
Buttress 2400 0.167 24
Partition wall 2400 0.167 24
Reinforced concrete block 2400 0.160 22
Foundation rock mass 2700 0.175 12
Diorite-dyke 2000 0.3 1.15
Crushed zone 2000 0.3 0.29
Horizontal joints 2000 0.3 0.7

Table 10: The results of finite element calculation of displacement
of observation point (mm).

Observation point Working condition 1 Working condition 2
G21 0.785 −0.599
27 0.654 −0.386
28 0.356 0.114

Table 11: The primary warning indicators of concrete dam.

The direction of deformation The primary warning indicator
Downstream 0.4770
Upstream −0.4773

random factors. The results of the specific studies are as
follows:

(1) Influences of fuzziness and randomness of random
factors on the long-term service of dam were dis-
cussed; a fuzziness indicator that measures the influ-
ence of random factors on monitoring value was
constructed through cloud model.

(2) Equivalent model of overall deformation was pro-
posed. In the model, the overall deformation of
dam was regarded as a deformation system where
each observation point had different contributions
(weights) and affected one another. Based on entropy
theory, a space information entropy that can measure
the overall deformation condition was established.

(3) Multistage warning indicators against overall defor-
mation of concrete dam under the influences of fuzzi-
ness and randomness were determined and nondeter-
ministic optimal control of the indicator was achieved
to improve the competence of warning against the
deformation of concrete dam.
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