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We consider the split feasibility problem (SFP) in Hilbert spaces, inspired by extragradient method presented by Ceng, Ansari for
split feasibility problem, subgradient extragradient method proposed by Censor, and variant extragradient-type method presented
by Yao for variational inequalities; we suggest an extragradient-type algorithm for the SFP. We prove the strong convergence under
some suitable conditions in infinite-dimensional Hilbert spaces.

1. Introduction

The convex feasibility problem (CFP) is to find a common
point in the intersection of finitely many convex sets. A
popular approach to the CFP is a projection algorithm which
employs orthogonal projections onto a set; see [1]. When
there are only two sets and constraints are imposed on the
solutions in the domain of a linear operator as well as in this
operator’s ranges, the problem is said to be a split feasibility
problem (SFP) [2]. In other words, the SFP is to find a point
𝑥 such that

𝑥 ∈ 𝐶,

𝐴𝑥 ∈ 𝑄,

(1)

where 𝐶 and 𝑄 are nonempty closed convex subsets of real
Hilbert spaces 𝐻1 and 𝐻2, respectively, and 𝐴 : 𝐻

1
→ 𝐻
2

is a bounded linear operator. The SFP serves as a model for
many inverse problems where constraints are imposed on
the solutions in the domain of a linear operator as well as
in this operator’s range. There are a number of significant
applications of the SFP in intensity-modulated radiation
therapy, signal processing, image reconstruction, and others
[2–4].

Various algorithms have been invented to solve the SFP;
see [5–14] and references therein. In particular, Byrne [5]

introduced a so-called CQ algorithm, taking an initial point
𝑥
0 arbitrarily and defining the iterative step as

𝑥
𝑘+1

= 𝑃
𝐶
[(𝐼 − 𝛾𝐴

𝑇
(𝐼 − 𝑃

𝑄
) 𝐴) (𝑥

𝑘
)] , (2)

where 0 < 𝛾 < 2/𝜌(𝐴
𝑇
𝐴), 𝜌(𝐴𝑇𝐴) is the spectral radius of

𝐴
𝑇
𝐴, and𝑃

𝑆
denotes the projection onto set 𝑆; that is,𝑃

𝑆
(𝑥) =

argmin
𝑦∈𝑆

‖𝑥 − 𝑦‖.
Extragradient algorithm was first introduced by Korpele-

vich [15] for computing a solution of a variational inequality
and shows the quick convergence. Subsequently, Nadezhkina
and Takahashi in [16] applied the method for finding a
common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of variational inequality.
Ceng et al. in [17] proposed an extragradient method, and
Yao et al. in [18] presented subgradient extragradient method
to solve the split feasibility problem, but all these algorithms
have only weak convergence in the infinite-dimensional
Hilbert spaces. Hence, to obtain strong convergence, Censor
et al. in [19] presented a variant extragradient-type method
and Censor et al. in [20] proposed subgradient extragradient
method which possesses strong convergence for solving the
variational inequality. Motivated by the works given above,
in this paper, we construct an extragradient-type method
to solve the split feasibility problem. Strong convergence of
the algorithm is proved under some suitable conditions in the
infinite-dimensional Hilbert spaces.
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The paper is organized as follows. Section 2 reviews some
preliminaries. Section 3 gives a variant extragradient-type
algorithm and shows its convergence. Section 4 gives some
conclusions.

2. Preliminaries

Throughout the paper, 𝐼 denotes the identity operator, and
Fix(𝑇) denotes the fixed points of an operator 𝑇; that is,
Fix(𝑇) := {𝑥 | 𝑥 = 𝑇(𝑥)}.

In this section, we review some concepts and basic results
that will be used later.

Definition 1. Let 𝑇 be a mapping from a set 𝐶 ⊂ 𝐻
1 into𝐻1.

Then consider the following:

(a) 𝑇 is said to be nonexpansive, if





𝑇 (𝑥) − 𝑇 (𝑦)





≤




𝑥 − 𝑦





, ∀𝑥, 𝑦 ∈ 𝐶; (3)

(b) 𝑇 is said to be firmly nonexpansive, if





𝑇 (𝑥) − 𝑇 (𝑦)






2

≤ ⟨𝑥 − 𝑦, 𝑇 (𝑥) − 𝑇 (𝑦)⟩ ,

∀𝑥, 𝑦 ∈ 𝐶;

(4)

(c) 𝑇 is said to be contractive on𝑋, if there exists 0 < 𝛼 <
1 such that





𝑇 (𝑥) − 𝑇 (𝑦)





≤ 𝛼





𝑥 − 𝑦





, ∀𝑥, 𝑦 ∈ 𝐶; (5)

(d) 𝑇 is said to be monotone, if

⟨𝑇 (𝑥) − 𝑇 (𝑦) , 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (6)

(e) 𝑇 is said to be 𝛽-inverse strongly monotone (𝛽-ism),
if there exists a real number 𝛽 > 0 such that

⟨𝑇 (𝑥) − 𝑇 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝛽




𝑇 (𝑥) − 𝑇 (𝑦)






2

,

∀𝑥, 𝑦 ∈ 𝐶.

(7)

The lemma below is the basic properties of the projection
operator 𝑃

𝐶
[21].

Lemma2. Let𝐶 ⊂ 𝐻
1 be nonempty, closed, and convex.Then,

for all 𝑥, 𝑦 ∈ 𝐻1 and 𝑐 ∈ 𝐶,

(1) ⟨𝑥 − 𝑃
𝐶
(𝑥), 𝑐 − 𝑃

𝐶
(𝑥)⟩ ≤ 0;

(2) ‖𝑃
𝐶
(𝑥) − 𝑃

𝐶
(𝑦)‖
2
≤ ⟨𝑃
𝐶
(𝑥) − 𝑃

𝐶
(𝑦), 𝑥 − 𝑦⟩;

(3) ‖𝑃
𝐶
(𝑥) − 𝑐‖

2
≤ ‖𝑥 − 𝑐‖

2
− ‖𝑃
𝐶
(𝑥) − 𝑥‖

2.

From (2) of Lemma 2, we know that the projection
operator 𝑃

𝐶
is monotone and nonexpansive, and 2𝑃

𝐶
− 𝐼 is

nonexpansive.
The lemmas below are necessary for the convergence

analysis in the next section.

Lemma3 (see [22]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻 and let 𝑇 : 𝐶 → 𝐻 be a 𝛼-inverse
strongly monotone and let 𝑟 > 0 be a constant. Then, one has




(𝐼 − 𝑟𝑇) (𝑥) − (𝐼 − 𝑟𝑇) (𝑦)






2

≤




𝑥 − 𝑦






2

+ 𝑟 (𝑟 − 2𝛼)




𝑇 (𝑥) − 𝑇 (𝑦)






2

,

∀𝑥, 𝑦 ∈ 𝐶.

(8)

In particular, if 0 < 𝑟 < 2𝛼, then 𝐼 − 𝑟𝑇 is nonexpansive.

Lemma 4 (see [9]). Let {𝑥𝑘} and {𝑦𝑘} be bounded sequences
in a Banach space 𝐸 and let {𝛽

𝑘
} be a sequence in [0, 1]

which satisfies the following condition: 0 < lim inf
𝑘→∞

𝛽
𝑘
≤

lim sup
𝑘→∞

𝛽
𝑘
< 1. Suppose that 𝑥𝑘+1 = (1 −𝛽

𝑘
)𝑦
𝑘
+𝛽
𝑘
𝑥
𝑘 for

all 𝑘 ≥ 0 and lim sup
𝑘→∞

(‖𝑦
𝑘+1

−𝑦
𝑘
‖−‖𝑥
𝑘+1

−𝑥
𝑘
‖) ≤ 0; then

lim
𝑘→∞

‖𝑦
𝑘
− 𝑥
𝑘
‖ = 0.

Lemma 5 (see [23, Lemma 2.1]). Let {𝑎
𝑘
} be a sequence of

nonnegative real numbers satisfying the condition

𝑎
𝑘+1

≤ (1 − 𝑚
𝑘
) 𝑎
𝑘
+ 𝑚
𝑘
𝛿
𝑘
, ∀𝑘 ≥ 0, (9)

where {𝑚
𝑘
}, {𝛿
𝑘
} are sequences of real numbers such that

(i) {𝑚
𝑘
} ⊂ [0, 1] and ∑∞

𝑘=0
𝑚
𝑘
= ∞, or, equivalently,

∞

∏

𝑘=0

(1 − 𝑚
𝑘
) fl lim
𝑘→∞

𝑘

∏

𝑗=0

(1 − 𝑚
𝑖
) = 0, (10)

(ii) lim sup
𝑘→∞

𝛿
𝑘
≤ 0, or

(ii) ∑∞
𝑘=0

𝛿
𝑘
𝑚
𝑘
is convergent.

Then, lim
𝑘→∞

𝑎
𝑘
= 0.

3. Algorithm and Its Convergence Analysis

In this section, we present the formal statement of our
proposal for the algorithm. Denote the solution set of the SFP
by

Γ = {𝑥 ∈ 𝐶 : 𝐴𝑥 ∈ 𝑄} . (11)

3.1. Variant Extragradient-Type Method. Now, we give the
extragradient-type algorithm.

Algorithm 6. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space 𝐻. Consider the sequences {𝛼

𝑘
} ⊂

[0, 1], {𝜆
𝑘
} ⊂ [0, 2/𝜌(𝐴

𝑇
𝐴)], {𝜇

𝑘
} ⊂ [0, 2/𝜌(𝐴

𝑇
𝐴)], and

{𝛾
𝑘
} ⊂ [0, 1]. For an arbitrary initial point 𝑥0, 𝑥𝑘 is the current

point. Define a mapping 𝐹 : 𝐻1 → 𝐻
1 as

𝐹 (𝑥) = 𝐴
𝑇
(𝐼 − 𝑃

𝑄
) 𝐴𝑥. (12a)

For 𝑘 = 0, 1, 2, . . ., compute

𝑦
𝑘
= 𝑃
𝐶
[(1 − 𝛼

𝑘
) 𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
)] , (12b)

𝑥
𝑘+1

= 𝑃
𝐶
[𝑥
𝑘
− 𝜇
𝑘
𝐹 (𝑦
𝑘
) + 𝛾
𝑘
(𝑦
𝑘
− 𝑥
𝑘
)] , 𝑘 ≥ 0. (12c)
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3.2. Convergence Analysis. In the section, we consider the
convergence analysis of Algorithm 6.

Theorem 7. Suppose that Γ ̸= 0. Assume that the algorithm
parameters {𝛼

𝑘
}, {𝜆
𝑘
}, {𝜇
𝑘
}, and {𝛾

𝑘
} satisfy the following

conditions:

(C1) lim
𝑘→∞

𝛼
𝑘
= 0 and ∑∞

𝑘=1
𝛼
𝑘
= ∞;

(C2) 𝜆
𝑘
∈ [𝑎, 𝑏] ⊂ (0, 2/𝜌(𝐴

𝑇
𝐴)) and lim

𝑘→∞
(𝜆
𝑘+1

−𝜆
𝑘
) =

0;

(C3) 𝛾
𝑘
∈ (0, 1), 𝜇

𝑘
≤ (2/𝜌(𝐴

𝑇
𝐴))𝛾
𝑘
, and lim

𝑘→∞
(𝛾
𝑘+1

−

𝛾
𝑘
) = lim

𝑘→∞
(𝜇
𝑘+1

− 𝜇
𝑘
) = 0;

(C4) ∑+∞
𝑘=1

(𝛾
𝑘
/𝜆
𝑘
) < ∞.

Then, the sequences {𝑥𝑘} generated by Algorithm 6 converge
strongly to a point in Γ.

Proof. Picking 𝑧 ∈ Γ, we divide the proof into several steps.
(1) First, we prove that {𝑥𝑘}, {𝑦𝑘}, {𝐹(𝑥𝑘)}, and {𝐹(𝑦𝑘)} are

all bounded.
By conditions (𝐶1) and (𝐶2), since 𝛼

𝑘
→ 0 and 𝜆

𝑘
∈

(0, 2/𝜌(𝐴
𝑇
𝐴)), we have 𝛼

𝑘
< 1 − 𝜆

𝑘
𝜌(𝐴
𝑇
𝐴)/2, as 𝑘 → ∞.

Hence, we may assume that, for all 𝑘, 𝛼
𝑘
< 1 − 𝜆

𝑘
𝜌(𝐴
𝑇
𝐴)/2;

then, 𝜆
𝑘
/(1 − 𝛼

𝑘
) ∈ (0, 2/𝜌(𝐴

𝑇
𝐴)). By the property of the

projection, we know 𝑧 = 𝑃
𝐶
[𝑧 − 𝑡𝐹(𝑧)] for any 𝑡 > 0.

Hence,

𝑧 = 𝑃
𝐶
[𝑧 −

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑧)] = 𝑃
𝐶
[𝑧 − 𝜆

𝑘
𝐹 (𝑧)]

= 𝑃
𝐶
[𝛼
𝑘
𝑧 + (1 − 𝛼

𝑘
) (𝑧 −

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑧))] ,

∀𝑘 ≥ 0;

(13)

that is,

𝑧 = 𝑃
𝐶
[𝛼
𝑘
𝑧 + (1 − 𝛼

𝑘
) (𝑧 −

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑧))] ,

∀𝑘 ≥ 0.

(14)

Thus, by (12b) and (14), we have






𝑦
𝑘
− 𝑧






=






𝑃
𝐶
[(1 − 𝛼

𝑘
) 𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
)] − 𝑧







=










𝑃
𝐶
[(1 − 𝛼

𝑘
) (𝑥
𝑘
−

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑥
𝑘
))]

− 𝑃
𝐶
[𝛼
𝑘
𝑧 + (1 − 𝛼

𝑘
) (𝑧 −

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑧))]










≤










−𝛼
𝑘
𝑧 + (1 − 𝛼

𝑘
)

⋅ [𝑥
𝑘
−

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑥
𝑘
) − 𝑧 +

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑧)]










.

(15)

Since 𝜆
𝑘
/(1 − 𝛼

𝑘
) ∈ (0, 2/𝜌(𝐴

𝑇
𝐴)), from Lemma 3, we know

that 𝐼 − (𝜆
𝑘
/(1 − 𝛼

𝑘
))𝐹 is nonexpansive. From the above

inequality, we have






𝑦
𝑘
− 𝑧






≤ 𝛼
𝑘 ‖
−𝑧‖ + (1 − 𝛼𝑘

)






𝑥
𝑘
− 𝑧






. (16)

By (C3), we obtain 𝜇
𝑘
/𝛾
𝑘
≤ 2/𝜌(𝐴

𝑇
𝐴). So, 𝐼 − (𝜆

𝑘
/(1 − 𝛼

𝑘
))𝐹

is nonexpansive. Therefore,






𝑥
𝑘+1

− 𝑧






=






𝑃
𝐶
[𝑥
𝑘
− 𝜇
𝑘
𝐹 (𝑦
𝑘
) + 𝛾
𝑘
(𝑦
𝑘
− 𝑥
𝑘
)] − 𝑧







=










𝑃
𝐶
[(1 − 𝛾

𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))]

− 𝑃
𝐶
[(1 − 𝛾

𝑘
) 𝑧 + 𝛾

𝑘
(𝑧 −

𝜇
𝑘

𝛾
𝑘

𝐹 (𝐴𝑧))]










≤ (1

− 𝛾
𝑘
)






𝑥
𝑘
− 𝑧






+ 𝛾
𝑘










𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
)

− (𝑧 −

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑧))










≤ (1 − 𝛾
𝑘
)






𝑥
𝑘
− 𝑧






+ 𝛾
𝑘






𝑦
𝑘

− 𝑧






≤ (1 − 𝛾

𝑘
)






𝑥
𝑘
− 𝑧






+ 𝛾
𝑘
𝛼
𝑘 ‖
−𝑧‖ + 𝛾𝑘

(1 − 𝛼
𝑘
)

⋅






𝑥
𝑘
− 𝑧






= (1 − 𝛾

𝑘
𝛼
𝑘
)






𝑥
𝑘
− 𝑧






+ 𝛾
𝑘
𝛼
𝑘 ‖
−𝑧‖

≤ max {

𝑥
𝑘
− 𝑧






, ‖−𝑧‖} .

(17)

By induction, we get






𝑥
𝑘+1

− 𝑧






≤ max {


𝑥
0
− 𝑧






, ‖−𝑧‖} . (18)

Then {𝑥𝑘} is bounded, and so are {𝑦𝑘}, {𝐹(𝑥𝑘)}, and {𝐹(𝑦𝑘)}.
(2) We claim that lim

𝑘→∞
‖𝑥
𝑘+1

− 𝑥
𝑘
‖ = 0 and

lim
𝑘→∞

‖𝑥
𝑘
− 𝑦
𝑘
‖ = 0.

Let 𝑆 = 2𝑃
𝐶
− 𝐼. From the property of the projection, we

know that 𝑆 is nonexpansive. Therefore, we can rewrite 𝑥𝑘+1
in (12c) as

𝑥
𝑘+1

=

𝐼 + 𝑆

2

[(1 − 𝛾
𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))]

=

1 − 𝛾
𝑘

2

𝑥
𝑘
+

𝛾
𝑘

2

(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))

+

1

2

𝑆 [(1 − 𝛾
𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))] ;

(19)

then

𝑥
𝑘+1

=

1 − 𝛾
𝑘

2

𝑥
𝑘
+

1 + 𝛾
𝑘

2

𝑧
𝑘
, (20)

where
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𝑧
𝑘
=

(𝛾
𝑘
/2) (𝑦

𝑘
− (𝜇
𝑘
/𝛾
𝑘
) 𝐹 (𝑦

𝑘
)) + (1/2) 𝑆 [(1 − 𝛾

𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
− (𝜇
𝑘
/𝛾
𝑘
) 𝐹 (𝑦

𝑘
))]

(1 + 𝛾
𝑘
) /2

=

𝛾
𝑘
(𝑦
𝑘
− (𝜇
𝑘
/𝛾
𝑘
) 𝐹 (𝑦

𝑘
)) + 𝑆 [(1 − 𝛾

𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
− (𝜇
𝑘
/𝛾
𝑘
) 𝐹 (𝑦

𝑘
))]

1 + 𝛾
𝑘

.

(21)

It follows that

𝑧
𝑘+1

− 𝑧
𝑘
=

𝛾
𝑘+1

(𝑦
𝑘+1

− (𝜇
𝑘+1

/𝛾
𝑘+1

) 𝐹 (𝑦
𝑘+1

)) + 𝑆 [(1 − 𝛾
𝑘+1

) 𝑥
𝑘+1

+ 𝛾
𝑘+1

(𝑦
𝑘+1

− (𝜇
𝑘+1

/𝛾
𝑘+1

) 𝐹 (𝑦
𝑘+1

))]

1 + 𝛾
𝑘+1

−

𝛾
𝑘
(𝑦
𝑘
− (𝜇
𝑘
/𝛾
𝑘
) 𝐴
𝑇
(𝐼 − 𝑃

𝑄
) 𝐴𝑦
𝑘
) + 𝑆 [(1 − 𝛾

𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
− (𝜇
𝑘
/𝛾
𝑘
) 𝐹 (𝑦

𝑘
))]

1 + 𝛾
𝑘

.

(22)

Hence,






𝑧
𝑘+1

− 𝑧
𝑘



≤

𝛾
𝑘+1

1 + 𝛾
𝑘+1










(𝑦
𝑘+1

−

𝜇
𝑘+1

𝛾
𝑘+1

𝐹 (𝑦
𝑘+1

))

− (𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))










+










𝛾
𝑘+1

1 + 𝛾
𝑘+1

−

𝛾
𝑘

1 + 𝛾
𝑘



















𝑦
𝑘

−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
)










+

1

1 + 𝛾
𝑘+1

𝑆 [(1 − 𝛾
𝑘+1

) 𝑥
𝑘+1

+ 𝛾
𝑘+1

(𝑦
𝑘+1

−

𝜇
𝑘+1

𝛾
𝑘+1

𝐹 (𝑦
𝑘+1

))] − 𝑆 [(1 − 𝛾
𝑘
) 𝑥
𝑘

+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))] +










1

1 + 𝛾
𝑘+1

−

1

1 + 𝛾
𝑘










⋅










𝑆 [(1 − 𝛾
𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))]










≤

𝛾
𝑘+1

1 + 𝛾
𝑘+1










(𝐼 −

𝜇
𝑘+1

𝛾
𝑘+1

𝐹)𝑦
𝑘+1

− (𝐼 −

𝜇
𝑘

𝛾
𝑘

𝐹)𝑦
𝑘










+

𝛾
𝑘+1

1 + 𝛾
𝑘+1










𝜇
𝑘+1

𝛾
𝑘+1

−

𝜇
𝑘

𝛾
𝑘















𝐹 (𝑦
𝑘
)






+










𝛾
𝑘+1

1 + 𝛾
𝑘+1

−

𝛾
𝑘+1

1 + 𝛾
𝑘+1



















𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
)










+

1

1 + 𝛾
𝑘+1










𝑆 [(1 − 𝛾
𝑘+1

) 𝑥
𝑘+1

+ 𝛾
𝑘+1

(𝑦
𝑘+1

−

𝜇
𝑘+1

𝛾
𝑘+1

𝐹 (𝑦
𝑘+1

))] − 𝑆 (1 − 𝛾
𝑘
) 𝑥
𝑘

+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))










+










1

1 + 𝛾
𝑘+1

−

1

1 + 𝛾
𝑘










⋅










𝑆 [(1 − 𝛾
𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))]










.

(23)

Again, by using the nonexpansivity of 𝐼 − (𝜇
𝑘
/𝛾
𝑘
)𝐹 and 𝑆, we

have






𝑧
𝑘+1

− 𝑧
𝑘



≤

𝛾
𝑘+1

1 + 𝛾
𝑘+1






𝑦
𝑘+1

− 𝑦
𝑘



+










𝛾
𝑘+1

1 + 𝛾
𝑘+1

−

𝛾
𝑘

1 + 𝛾
𝑘



















𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
)










+

𝛾
𝑘+1

1 + 𝛾
𝑘+1










𝜇
𝑘+1

𝛾
𝑘+1

−

𝜇
𝑘

𝛾
𝑘










⋅






𝐹 (𝑦
𝑘
)






+

1

1 + 𝛾
𝑘+1










(1 − 𝛾
𝑘+1

) (𝑥
𝑘+1

− 𝑥
𝑘
)

+ 𝛾
𝑘+1

[(𝐼 −

𝜇
𝑘+1

𝛾
𝑘+1

𝐹)𝑦
𝑘+1

− (𝐼 −

𝜇
𝑘+1

𝛾
𝑘+1

𝐹)𝑦
𝑘
]

+ (𝛾
𝑘+1

− 𝛾
𝑘
) (𝑦
𝑘
− 𝑥
𝑘
) + (𝜇

𝑘
− 𝜇
𝑘+1

) 𝐹 (𝑦
𝑘
)










+










1

1 + 𝛾
𝑘+1

−

1

1 + 𝛾
𝑘










⋅










𝑆 [(1 − 𝛾
𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))]










≤

𝛾
𝑘+1

1 + 𝛾
𝑘+1






𝑦
𝑘+1

− 𝑦
𝑘



+










𝛾
𝑘+1

1 + 𝛾
𝑘+1

−

𝛾
𝑘

1 + 𝛾
𝑘



















𝑦
𝑘

−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
)










+

𝛾
𝑘+1

1 + 𝛾
𝑘+1












𝜇
𝑘+1

𝛾
𝛾𝑘+1

−

𝜇
𝑘

𝛾
𝛾𝑘

















𝐹 (𝑦
𝑘
)







+

1 − 𝛾
𝑘+1

1 + 𝛾
𝑘+1






𝑥
𝑘+1

− 𝑥
𝑘



+

𝛾
𝑘+1

1 + 𝛾
𝑘+1






𝑦
𝑘+1

− 𝑦
𝑘




+





𝛾
𝑘+1

− 𝛾
𝑘






1 + 𝛾
𝑘+1

(






𝑥
𝑘



+






𝑦
𝑘



)

+





𝜇
𝑘+1

− 𝜇
𝑘






1 + 𝛾
𝑘+1






𝐹 (𝑦
𝑘
)






+










1

1 + 𝛾
𝑘+1

−

1

1 + 𝛾
𝑘










⋅










𝑆 [(1 − 𝛾
𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))]










.

(24)
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By (12a), (12b), and (12c), we have






𝑦
𝑘+1

− 𝑦
𝑘



=






𝑃
𝐶
[𝑥
𝑘+1

− 𝜆
𝑘+1

𝐹 (𝑥
𝑘+1

) − 𝛼
𝑘+1

𝑥
𝑘+1

]

− 𝑃
𝐶
[𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
) − 𝛼
𝑘
𝑥
𝑘
]







≤






[𝑥
𝑘+1

− 𝜆
𝑘+1

𝐹 (𝑥
𝑘+1

)] − [𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
)]







+ 𝛼
𝑘+1






−𝑥
𝑘+1




+ 𝛼
𝑘






−𝑥
𝑘



=






𝐼 − 𝜆
𝑘+1

𝐹 (𝑥
𝑘+1

)

− (𝐼 − 𝜆
𝑘+1

𝐹) 𝑥
𝑘
+ (𝜆
𝑘
− 𝜆
𝑘+1

) 𝐹 (𝑥
𝑘
)







+ 𝛼
𝑘+1






−𝑥
𝑘+1




+ 𝛼
𝑘






−𝑥
𝑘



≤






𝑥
𝑘+1

− 𝑥
𝑘



+




𝜆
𝑘+1

− 𝜆
𝑘











𝑥
𝑘



+ 𝛼
𝑘+1






−𝑥
𝑘+1




+ 𝛼
𝑘






−𝑥
𝑘



.

(25)

Therefore,






𝑧
𝑘+1

− 𝑧
𝑘



≤










𝛾
𝑘+1

1 + 𝛾
𝑘+1

−

𝛾
𝑘

1 + 𝛾
𝑘



















𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
)










+

𝛾
𝑘+1

1 + 𝛾
𝑘+1










𝜇
𝑘+1

𝛾
𝑘+1

−

𝜇
𝑘

𝛾
𝑘















𝐹 (𝑦
𝑘
)







+





𝛾
𝑘+1

− 𝛾
𝑘






1 + 𝛾
𝑘+1

(






𝑥
𝑘



+






𝑦
𝑘



)

+





𝜇
𝑘+1

− 𝜇
𝑘






1 + 𝛾
𝑘+1






𝐹 (𝑦
𝑘
)






+






𝑥
𝑘+1

− 𝑥
𝑘




+










1

1 + 𝛾
𝑘+1

−

1

1 + 𝛾
𝑘










⋅










𝑆 [(1 − 𝛾
𝑘
) 𝑥
𝑘
+ 𝛾
𝑘
(𝑦
𝑘
−

𝜇
𝑘

𝛾
𝑘

𝐹 (𝑦
𝑘
))]










+




𝜆
𝑘+1

− 𝜆
𝑘











𝑥
𝑘



+ 𝛼
𝑘+1






−𝑥
𝑘+1




+ 𝛼
𝑘






−𝑥
𝑘



.

(26)

Since lim
𝑘→∞

(𝛾
𝑘+1

− 𝛾
𝑘
) = 0 and lim

𝑘→∞
(𝜇
𝑘+1

− 𝜇
𝑘
) = 0, we

derive that

lim
𝑘→∞










𝛾
𝑘+1

1 + 𝛾
𝑘+1

−

𝛾
𝑘

1 + 𝛾
𝑘










= 0,

lim
𝑘→∞










𝜇
𝑘+1

𝛾
𝑘+1

−

𝜇
𝑘

𝛾
𝑘










= 0.

(27)

Note that {𝑥𝑘}, {𝑦𝑘}, and {𝐹(𝑦𝑘)} are bounded. Therefore,

lim sup
𝑘→∞

(






𝑧
𝑘+1

− 𝑧
𝑘



−






𝑥
𝑘+1

− 𝑥
𝑘



) ≤ 0. (28)

From (20) and (28), by Lemma 4, we obtain

lim
𝑘→∞






𝑧
𝑘
− 𝑥
𝑘



= 0. (29)

Hence,

lim
𝑘→∞






𝑥
𝑘+1

− 𝑥
𝑘



= lim
𝑘→∞

1 + 𝛾
𝑘

2






𝑧
𝑘
− 𝑥
𝑘



= 0. (30)

From (12b), (12c), Lemma 3, and the convexity of the norm,
we deduce






𝑥
𝑘+1

− 𝑧







2

≤ (1 − 𝛾
𝑘
)






𝑥
𝑘
− 𝑧







2

+ 𝛾
𝑘






𝑦
𝑘
− 𝑧







2

≤ 𝛾
𝑘










−𝛼
𝑘
𝑧 + (1 − 𝛼

𝑘
)

⋅ [(𝑥
𝑘
−

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑥
𝑘
)) − (𝑧 −

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑧))]










2

+ (1 − 𝛾
𝑘
)






𝑥
𝑘
− 𝑧







2

≤ (1 − 𝛼
𝑘
) 𝛾
𝑘
[






𝑥
𝑘
− 𝑧







2

+

𝜆
𝑘

1 − 𝛼
𝑘

(

𝜆
𝑘

1 − 𝛼
𝑘

−

2

𝜌 (𝐴
𝑇
𝐴)

)






𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)







2

]

+ (1 − 𝛾
𝑘
)






𝑥
𝑘
− 𝑧







2

+ 𝛼
𝑘
𝛾
𝑘 ‖
−𝑧‖
2
≤ 𝛼
𝑘
𝛾
𝑘 ‖
−𝑧‖
2

+






𝑥
𝑘
− 𝑧







2

+ 𝛾
𝑘
𝑎(

𝑏

1 − 𝛼
𝑘

−

2

𝜌 (𝐴
𝑇
𝐴)

)






𝐹 (𝑥
𝑘
)

− 𝐹 (𝑧)







2

.

(31)

Therefore, we have

𝛾
𝑘
𝑎(

2

𝜌 (𝐴
𝑇
𝐴)

−

𝑏

1 − 𝛼
𝑘

)






𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)







2

≤ 𝛼
𝑘
𝛾
𝑘 ‖
−𝑧‖
2
+






𝑥
𝑘
− 𝑧







2

−






𝑥
𝑘+1

− 𝑧







2

≤ 𝛼
𝑘
𝛾
𝑘 ‖
−𝑧‖
2

+ (






𝑥
𝑘
− 𝑧






+






𝑥
𝑘+1

− 𝑧






)






𝑥
𝑘
− 𝑥
𝑘+1




.

(32)

Since lim
𝑘→∞

𝛼
𝑘

= 0, lim
𝑘→∞

‖𝑥
𝑘
− 𝑥
𝑘+1

‖ = 0, and
lim inf

𝑘→∞
𝛾
𝑘
𝑎(2/𝜌(𝐴

𝑇
𝐴) − 𝑏/(1 − 𝛼

𝑘
)) > 0, we deduce

lim
𝑘→∞






𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)






= 0. (33)

By the property (ii) of the metric projection 𝑃
𝐶
, we have






𝑦
𝑘
− 𝑧







2

=






𝑃
𝐶
[(1 − 𝛼

𝑘
) 𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
)] − 𝑃

𝐶
[𝑧

− 𝜆
𝑘
𝐹 (𝑧)]






≤ ⟨(1 − 𝛼

𝑘
) 𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
) − (𝑧

− 𝜆
𝑘
𝐹 (𝑧)) , 𝑦

𝑘
− 𝑧⟩ =

1

2

{






𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
)

− (𝑧 − 𝜆
𝑘
𝐹 (𝑧)) − 𝛼

𝑘
𝑥
𝑘




2

+






𝑦
𝑘
− 𝑧







2

−






(1 − 𝛼

𝑘
) 𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
) − 𝑧 − 𝜆

𝑘
𝐹 (𝑧)
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− (𝑦
𝑘
− 𝑧)







2

} ≤

1

2

{






𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
)

− (𝑧 − 𝜆
𝑘
𝐹 (𝑧))







2

} + 2𝛼
𝑘





−𝛼
𝑘











𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
)

− (𝑧 − 𝜆
𝑘
𝐹 (𝑧)) − 𝛼

𝑘
𝑥
𝑘



+






𝑦
𝑘
− 𝑧







2

−






(𝑥
𝑘
− 𝑦
𝑘
)

− 𝜆
𝑘
(𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)) − 𝛼

𝑘
𝑥
𝑘




2

≤

1

2

{






(𝑥
𝑘
− 𝜆
𝑘
(𝐼 − 𝑃

𝑄
) 𝐴𝑥
𝑘
)

− (𝑧 − 𝜆
𝑘
(𝐼 − 𝑃

𝑄
) 𝐴𝑧)







2

+ 𝛼
𝑘
𝑀+






𝑦
𝑘
− 𝑧







2

−






(𝑥
𝑘
− 𝑦
𝑘
) − 𝜆
𝑘
(𝐹 (𝑧)) − 𝛼

𝑘
𝑥
𝑘



}

1

2

{






𝑥
𝑘
− 𝑧







2

+ 𝛼
𝑘
𝑀+






𝑦
𝑘
− 𝑧







2

−






𝑥
𝑘
− 𝑦
𝑘




2

+ 2𝜆
𝑘
⟨𝑥
𝑘

− 𝑦
𝑘
, 𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)⟩} − 2𝛼

𝑘
⟨−𝑥
𝑘
, 𝑥
𝑘
− 𝑦
𝑘
⟩

−






𝜆
𝑘
𝐹 (𝑥
𝑘
) − 𝜆
𝑘
(𝐹) 𝑧 + 𝛼

𝑘
𝑥
𝑘




2

;

(34)

hence,






𝑦
𝑘
− 𝑧







2

≤

1

2

{






𝑥
𝑘
− 𝑧







2

+ 𝛼
𝑘
𝑀+






𝑦
𝑘
− 𝑧







2

−






𝑥
𝑘
− 𝑦
𝑘




2

}

+ 2𝜆
𝑘






𝑥
𝑘
− 𝑦
𝑘









𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)







+ 2𝛼
𝑘






−𝑥
𝑘









𝑥
𝑘
− 𝑦
𝑘



,

(35)

where𝑀 > 0 is some constant satisfying

sup
𝑘

{2






−𝑥
𝑘









𝑥
𝑘
− 𝜆
𝑘
𝐹 (𝑥
𝑘
) − (𝑧 − 𝜆

𝑘
F(z)) − 𝛼

𝑘
𝑥






}

≤ 𝑀.

(36)

It follows that





𝑦
𝑘
− 𝑧







2

≤






𝑥
𝑘
− 𝑧







2

+ 𝛼
𝑘
𝑀−






𝑥
𝑘
− 𝑦
𝑘




2

+ 2𝜆
𝑘






𝑥
𝑘
− 𝑦
𝑘









𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)







+ 2𝛼
𝑘






−𝑥
𝑘









𝑥
𝑘
− 𝑦
𝑘



;

(37)

therefore





𝑥
𝑘+1

− 𝑧







2

≤ (1 − 𝛾
𝑘
)






𝑥
𝑘
− 𝑧







2

+ 𝛾
𝑘






𝑦
𝑘
− 𝑧







2

≤






𝑥
𝑘
− 𝑧







2

+ 𝛼
𝑘
𝑀− 𝛾

𝑘






𝑥
𝑘
− 𝑦
𝑘




2

+ 2𝜆
𝑘






𝑥
𝑘
− 𝑦
𝑘









𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)







+ 2𝛼
𝑘






−𝑥
𝑘









𝑥
𝑘
− 𝑦
𝑘



,

(38)

which implies that

𝛾
𝑘






𝑥
𝑘
− 𝑦
𝑘




2

≤ (






𝑥
𝑘
− 𝑧






+






𝑥
𝑘+1

− 𝑧






)






𝑥
𝑘+1

− 𝑥
𝑘




+ 𝛾
𝑘






𝑦
𝑘
− 𝑧







2

+ 𝛼
𝑘
𝑀

+ 2𝜆
𝑘






𝑥
𝑘
− 𝑦
𝑘









𝐹 (𝑥
𝑘
) − 𝐹 (𝑧)







+ 2𝛼
𝑘






−𝑥
𝑘









𝑥
𝑘
− 𝑦
𝑘



.

(39)

Since lim
𝑘→∞

𝛼
𝑘

= 0, lim
𝑘→∞

‖𝑥
𝑘
− 𝑥
𝑘+1

‖ = 0, and
lim
𝑘→∞

‖𝐹(𝑥
𝑘
) − 𝐹(𝑧)‖ = 0, we derive

lim
𝑘→∞






𝑥
𝑘
− 𝑦
𝑘



= 0. (40)

(3) We show that 𝑥𝑘 → 𝑧.
By the property of the projection 𝑃

𝐶
, we have






𝑦
𝑘
− 𝑧







2

=










𝑃
𝐶
[(1 − 𝛼

𝑘
) (𝑥
𝑘
−

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑥
𝑘
))]

− 𝑃
𝐶
[𝛼
𝑘
𝑧 + (1 − 𝛼

𝑘
) (𝑧 −

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑧))]










2

≤ ⟨−𝛼
𝑘
𝑧 + (1 − 𝛼

𝑘
)

⋅ [(𝑥
𝑘
−

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑥
𝑘
)) − (𝑧 −

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑥
𝑘
))] ,

𝑦
𝑘
− 𝑧⟩ ≤ 𝛼

𝑘
⟨𝑧, 𝑧 − 𝑦

𝑘
⟩ + (1 − 𝛼

𝑘
)

⋅










(𝑥
𝑘
−

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑥
𝑘
)) − (𝑧 −

𝜆
𝑘

1 − 𝛼
𝑘

𝐹 (𝑧))















𝑦
𝑘

− 𝑧






≤ 𝛼
𝑘
⟨𝑧, 𝑧 − 𝑦

𝑘
⟩ + (1 − 𝛼

𝑘
)






𝑥
𝑘
− 𝑧












𝑦
𝑘
− 𝑧






;

(41)

then






𝑦
𝑘
− 𝑧







2

≤ 𝛼
𝑘
⟨𝑧, 𝑧 − 𝑦

𝑘
⟩

+

1 − 𝛼
𝑘

2

[






𝑥
𝑘
− 𝑧







2

+






𝑦
𝑘
− 𝑧







2

] .

(42)

Hence






𝑦
𝑘
− 𝑧







2

≤

2𝛼
𝑘

1 − 𝛼
𝑘

⟨𝑧, 𝑧 − 𝑦
𝑘
⟩ +

1 − 𝛼
𝑘

1 + 𝛼
𝑘






𝑥
𝑘
− 𝑧







2

. (43)

Therefore,






𝑥
𝑘+1

− 𝑧







2

≤ (1 − 𝛾
𝑘
)






𝑥
𝑘
− 𝑧







2

+ 𝛾
𝑘






𝑦
𝑘
− 𝑧







2

≤ (1 −

2𝛼
𝑘
𝛾
𝑘

1 + 𝛼
𝑘

)






𝑥
𝑘
− 𝑧







2

+

2𝛼
𝑘
𝛾
𝑘

1 + 𝛼
𝑘

1 + 𝛼
𝑘

1 − 𝛼
𝑘

⟨𝑧, 𝑧 − 𝑦
𝑘
⟩ .

(44)
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Since 0 ≤ 𝜆
𝑘
/(1 − 𝛼

𝑘
) ≤ 2/𝜌(𝐴

𝑇
𝐴), we have

0 < 𝛼
𝑘
≤ 1 −

𝜆
𝑘
𝜌 (𝐴
𝑇
𝐴)

2

.
(45)

Furthermore

0 <

2𝛼
𝑘
𝛾
𝑘

1 − 𝛼
𝑘

<

2𝛾
𝑘

𝜌 (𝐴
𝑇
𝐴) 𝜆
𝑘

, (46)

which implies

2𝛼
𝑘
𝛾
𝑘

1 + 𝛼
𝑘

1 + 𝛼
𝑘

1 − 𝛼
𝑘

⟨𝑧, 𝑧 − 𝑦
𝑘
⟩

≤

2𝛾
𝑘

𝜌 (𝐴
𝑇
𝐴) 𝜆
𝑘

⟨𝑧, 𝑧 − 𝑦
𝑘
⟩ .

(47)

By condition (C4) and∑(𝛾
𝑘
/𝜆
𝑘
) < +∞ and ⟨𝑧, 𝑧 − 𝑦𝑘⟩ being

bounded, we have ∑∞
𝑘=1

(2𝛾
𝑘
/𝜌(𝐴
𝑇
𝐴)𝜆
𝑘
)⟨𝑧, 𝑧 − 𝑦

𝑘
⟩ < ∞;

hence,∑∞
𝑘=1

(2𝛼
𝑘
𝛾
𝑘
/(1+𝛼

𝑘
))((1+𝛼

𝑘
)/(1−𝛼

𝑘
))⟨𝑧, 𝑧−𝑦

𝑘
⟩ < ∞.

We apply Lemma 5 to inequality (44) to deduce that 𝑥𝑘 → 𝑧.
The following example of the SFP will show that our

algorithm is feasible.

Example. Let 𝐶 = {(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) | 𝑥
1
+ 𝑥
2
− 2𝑥
4
≤ 0}, 𝑄 =

{(𝑦
1
, 𝑦
2
) | 𝑦
1
− 𝑦
2
≤ 0}, and 𝐴 = [

1 0 0 0

0 1 0 0
].

Select 𝑥0 = (4, 1, 1, 0)
𝑇 as a starting point for the

algorithm. We take 𝛼
𝑘
= 1/𝑘, 𝜆

𝑘
= 2/𝜌(𝐴

𝑇
𝐴)𝑘
2, 𝛾
𝑘
= 1/𝑘

4,
and 𝜇

𝑘
= 2/𝜌(𝐴

𝑇
𝐴)(𝑘
4
+ 1). Then, for the method,

𝑥
1
= (1.3103, 0.8214, 0, 0.4275)

𝑇
,

𝑥
2
= (0.4882, 0.2135, 0, 0.1325)

𝑇
,

𝑥
3
= (0.1213, 0.0623, 0, 0.0513)

𝑇
,

𝑥
4
= (0.0372, 0.0129, 0, 0.0015)

𝑇
,

𝑥
5
= (0.0012, 0.0049, 0, 0.0020)

𝑇
,

𝑥
6
= (0.0007, 0.0015, 0, 0.0001)

𝑇
,

𝑥
7
= (0.0000, 0.0000, 0, 0.0000)

𝑇
.

(48)

That is, the method obtains the approximate point
(0.0000, 0.0000, 0, 0.0000) in seven steps.

4. Conclusion

In this paper, we presented a strongly convergent method for
solving the split feasibility problem in Hilbert spaces inspired
by the methods for solving the variational inequalities. Our
results improve and develop previous split feasibility problem
and related algorithms. Extension of this method for solving
the multiple-set split feasibility problem is underway.
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