
Research Article
A Protection Mechanism against Malicious HTML and
JavaScript Code in Vulnerable Web Applications

Shukai Liu, Xuexiong Yan, Qingxian Wang, Xu Zhao, Chuansen Chai, and Yajing Sun

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China

Correspondence should be addressed to Shukai Liu; wasd268@126.com

Received 7 November 2015; Revised 28 February 2016; Accepted 15 March 2016

Academic Editor: Ricardo Aguilar-López

Copyright © 2016 Shukai Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Thehigh-profile attacks ofmaliciousHTMLand JavaScript code have seen a dramatic increase in both awareness and exploitation in
recent years. Unfortunately, exiting security mechanisms provide no enough protection. We propose a new protection mechanism
named PMHJ based on the support of both web applications and web browsers against malicious HTML and JavaScript code in
vulnerable web applications. PMHJ prevents the injection attack of HTML elements with a random attribute value and the node-
split attack by an attribute with the hash value of the HTML element. PMHJ ensures the content security in web pages by verifying
HTML elements, confining the insecure HTML usages which can be exploited by attackers, and disabling the JavaScript APIs
which may incur injection vulnerabilities. PMHJ provides a flexible way to rein the high-risk JavaScript APIs with powerful ability
according to the principle of least authority. The PMHJ policy is easy to be deployed into real-world web applications. The test
results show that PMHJ has little influence on the run time and code size of web pages.

1. Introduction

Web applications are widely applied to all walks of life.
Users are relying on web applications for all kinds of daily
activities such as shopping, social activity, and banking.
Web applications have become an important part of liv-
ing and working. The new generation of web technologies
represented by HTML5 is developing rapidly and growing
popularity as well as the constantly updated web browsers
such as Chrome, Firefox, and Edge. It indicates that a new
era of web applications is coming.

Meanwhile, however, the new security risks of web appli-
cations have emerged [1]. It can be known from the published
security reports. For example, WhiteHat 2013 demonstrated
that 86% of the tested websites had 1 to 56 serious vulnerabil-
ities and only 61% of the vulnerabilities could be resolved, but
doing so required an average of 193 days from first customer
notification. The attacks of malicious HTML or JavaScript
code are one of the most significant and pervasive threats
to the web application security such as cross-site scripting
(XSS) attacks, embedding malicious third-party JavaScript
code, and vulnerable third-party browser extensions or plug-
ins.

XSS [2] summarizes a set of attacks on web applications
that allows an attacker to inject HTML, typically including
JavaScript code, into a vulnerable web page. It was ranked the
thirdweb application security risk by theOWASP (OpenWeb
Application Security Project) in 2013 and the first software
error by the SANS Institute in 2010. XSS attacks range in
severity, which empower the adversary to conduct a wide
range of potential attacks including redirection to phish-
ing sites, password logging, session hijacking, clickjacking,
stealing of sensitive data, self-propagating JavaScript worms,
malware distribution, browser automation, and the ability to
pivot onto an internal network to launch additional attacks.

Much of the power of modern web applications comes
from the ability of a web page to combine HTML and Java-
Script code from disparate servers. This is done to consume
third-party services such as web analytics, enhance the web
application with additional functionality such as integrating
external mapping services, or include advertisements for
monetary reasons.The survey of Nikiforakis et al. [3] showed
that 88.45% of the Alexa top 10000 websites included at
least one remote JavaScript. Unfortunately, these third-party
servers are usually uncontrolled and untrusted. If an attacker
is able to control the script’s content, which is provided by

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 7107042, 14 pages
http://dx.doi.org/10.1155/2016/7107042

2 Mathematical Problems in Engineering

the external provider, he/she is able to execute JavaScript in
the context of the targeted web application.

In addition, the web browser using third-party extensions
or plug-ins, which are phenomenally popular but usually
buggy and vulnerable [4], may incur injection attacks of
HTML and JavaScript code with the web browser’s full
privileges. That is to say, even if the web application has no
vulnerability, it may also be attacked bymalicious HTML and
JavaScript code. In a word, the web application is running
with a serious risk of malicious HTML and JavaScript code.

To combat these vulnerabilities, the industrial standard
first-line of defense is sanitization, the process of applying
encoding or filtering primitives called sanitizers to untrusted
data. Although the sanitization technology has a very wide
range of research [5], in practice it is still error-prone. Amain
reason is that the sanitization needs to know the details of
vulnerabilities. It is very difficult to find all vulnerabilities in
web applications even if we ignore unknown vulnerabilities.
In addition, building reliable and usable sanitization in
today’s web application is not an easy job. For example, due
to involving a variety of different coding contexts, it is very
difficult to design correct sanitizers [6] or use them in a right
way [7] for XSS.

Due to the fact that the quantitative occurrence of these
vulnerabilities remains high according to the recent studies
[8, 9] even after several years of increased attention, the
safeguards enforced byweb browsers as an important second-
line of defense have been proposed such as SOMA [10],
DCS [11], and CSP [12]. They are designed to mitigate
vulnerabilities caused by missing or incorrect sanitization,
which have aroused widespread attention. Different from
othermechanisms withmany problems such as great changes
of the existing web platform or low efficiency of implemen-
tation, CSP (Content-Security-Policy) stands out in security,
usability, and compatibility, which eventually became a W3C
recommendation.

CSP is developing rapidly. It has been supported and
promoted by almost all popular web browsers.The number of
web applications adopting CSP is increasing rapidly [13, 14].
W3Chas successively proposed three recommendations: CSP
1.0 in 2012, CSP 1.1 in 2014, and CSP 2 [15] in 2015. Now
CSP is one of several basic security mechanisms actually
employed by modern web browsers and has developed into
a comprehensive security framework for web applications
combining with many previous techniques.

CSP is a typical functionality-oriented access control [16]
onwebpages inweb browsers. It defineswhich functionalities
of the web page are allowed or forbidden by web browsers.
That is, it protects some crucial functionality of HTML and
JavaScript code in web applications so that they cannot be
exploited by attackers, instead of eliminating vulnerabilities
like sanitization. In particular it mainly provides a site’s
administrators control over the permissible sources such as
scripts and images on an origin level (i.e., protocol, host, and
port) with a rule set.

However, the approach of CSP which relies on function-
ality-level or origin-level granularity for simplicity has essen-
tially brought a lot of unsolved problems in protection against
malicious HTML and JavaScript code. In order to resolve

these problems, a new protection mechanism named PMHJ
for short is proposed in this paper.

To summarize, our paper makes the following contribu-
tions:

(i) We give the first systemic analysis of CSP’s problems
in defense against malicious attacks of HTML and
JavaScript code.

(ii) We give a method to provide enough protection
against the injection attack and node-split attack of
HTML elements only via HTML attributes.

(iii) We provide a fine-grained control over the insecure
HTML and JavaScript usages which may incur injec-
tion attacks.

(iv) We present the first solution to rein the high-risk
JavaScript APIs according to the least authority prin-
ciple.

This paper is organized as follows. We give an illustration
of problems in Section 2. PMHJ is overviewed in Section 3.
Section 4 describes the policy of PMHJ and Section 5 presents
the security properties. The implementation method is given
in Section 6. The security and usability are evaluated in
Section 7. Section 8 covers the relatedwork.We discuss future
work in Section 9. Section 10 concludes this paper.

2. Problem Definition

The security weaknesses of CSP in protection against mali-
cious HTML or JavaScript code are systemically defined
below.

2.1. Problem 1: Malicious Injection of HTML Elements. The
defense ability of CSP against malicious injection of HTML
elements is very limited. CSP can only identify the HTML
elements whose attribute values are not consistent with
the whitelist of CSP. For example, the origin of JavaScript
code is limited to load only from a.com so that the HTML
element <script src="b.com"> is invalid, but an attacker can
inject arbitrary code from the origin a.com such as <script
src="a.com/eval.js">.

A simple exploit is to undermine the application logic by
injecting further HTML elements pointing to the whitelist
origins of CSP. All scripts in a web page run in the same exe-
cution context. And JavaScript provides no native isolation
or scoping such as via library specific namespaces. Hence,
all side effects that a script causes on the global state directly
affect all scripts that are executed subsequently.

It is possible to combine with JSONP (JSON with
padding) to enablemore complex attacks. JSONP is a popular
method for building JavaScript APIs, such as integrating with
third-party services (e.g., to implement search or mapping
capabilities) and retrieving private first-party data (e.g., an
additional referer check or an XSRF token). The attacker
is able to invoke any functions of his choice, often with at
least partly controllable parameters, by specifying them as the
callback parameter on the JavaScript API call. For example,

Mathematical Problems in Engineering 3

a simple injected JSONP call is <script src='login.php?user=
a&callback=set share'>where set share is any function which
has been defined in the script context of the web page.

Due to the fact that in current web applications a lot
of content such as advertisements needs to be loaded from
untrusted third-party servers which must be whitelisted by
CSP, an attacker can embed malicious or vulnerable code
from these untrusted servers into the web page such as
malicious [17] or vulnerable [18] advertisements via HTML
element injection.

Evenwithout untrusted origins, since scripts fromorigins
in the whitelist of CSP can be combined freely, more complex
attacks can be realized by a combination of HTML element
injection attacks. That is, CSP allows the attacker to load
arbitrary scripts and other resources found anywhere on the
whitelisted origins in an unexpected context, an incorrect
order, or an unplanned number of times. An attacker is able
to control the URLs of included scripts and the order in
which they are loaded in. Given the growing quantity and
complexity of script code hosted by websites, a nontrivial
site might provide an attacker with a well-equipped toolbox.
Nikiforakis et al. [3] gave some subtle attacks which enabled
the same class of script inclusion attacks and showed their
practical applicability as alternatives to a full compromise of
the script provider.

Furthermore, only a small part of HTML elements and
their attribute values mainly about the network request
are protected by CSP. However, there are still many other
unprotected HTML elements and attributes with powerful
ability which can be exploited by attackers to result in serious
damage.

2.2. Problem 2: The Integrity Protection of HTML Elements.
The integrity protection of HTML elements is an open
problem. Most XSS attacks can be classified as a break of
document structure integrity according to the work by
Nadji et al. [19]. A straight forward scenario for such an
attack is the node-split attack [20]. The attacker destroys the
integrity of HTML elements by injecting a string to split
the enclosing HTML element and then inject a new HTML
element. A simple example is <div>elliptically legitimate
code</div><script>malicious script</script><div>elliptically
legitimate code</div> where the underlined part is arbitrary
JavaScript code injected by attackers.

Other attacks that break the structure integrity of HTML
elements include the attribute injection attack, the dynamic
code injection attack, and the dynamic active HTML update
attack. Some attack examples are seen in [19]. However, CSP
provides no integrity protection of HTML elements.

2.3. Problem 3: Unsafe HTML Usages. The unsafe usages of
HTML code in web applications are easy to result in security
weaknesses. An obvious case is the event handler attribute
of HTML elements and javascript:protocol URLs causing
an insecure mix of HTML and JavaScript code which are
disabled by CSP. However, there are a large number of other
unsafe usages which are actually supported by web browsers
for different purposes such as the fault-tolerant mechanism

or quirks mode. It may lead to serious damage if they are
exploited by attackers.

The most serious case may be that several DOM (Docu-
ment Object Model) elements with the same id attribute
value are allowed by web browsers, but only the first value
which may be controlled by the attacker will be returned
on getElementById lookups. What makes it worse is that, for
several special elements such as img, iframe, or embed, the
id attribute is additionally inserted into the document object
which has a higher priority than built-in and script-created
variables. It can be exploited for the namespace attack, which
makes the user unwittingly interact with UI controls, shadow
built-ins such as document.domain, in order to interfere
with certain security decisions, disrupt the operation of
methods such as document.createElement, or fabricate the
availability of the security JavaScript APIs such as postMes-
sage. These attacks are application-specific. A simple exam-
ple is < input id='set share' value='liu'><input id='set share'
value=' '> <script> share = document.getElementById('set
share').value; if (set share) mode = 'public';</script>where the
underlined part is injected by attackers and the variable values
of share andmode are 'liu' and 'public', respectively.

Many other insecure HTML usages are dangerous. The
injection of the base or meta element outside the standards-
mandated head element can be exploited to hijack relative
URLs using <base href = ' '/>, refresh or redirect the web
page using <meta http-equiv='Refresh'>, or even inject the
CSP policy possibly in Google Chrome using <meta http-
equiv='Content-Security-Policy'>.

Since the top-level occurrence of the <form> tags always
takes precedence over subsequent appearances, the nested
form elements are able to lead to the form parameter injec-
tion to reroute existing forms, intercept browser-managed
passwords, or infiltrate the application logic. A simple
example is < form action='http://evil.com'> elliptically legit-
imate code <form action='update.php'> <input value='liu'>
<input type='submit'/> </form>where the underlined part is
injected by attackers.

Another common risky HTML usage is caused by the
fault-tolerant mechanism for incorrect HTML elements
including the unclosed tags and the attribute values with non-
terminated quotation marks. They can be exploited for dif-
ferent malicious purposes such as altering the appearance of
the targeted website or content exfiltration. A typical example
is < img src='http://evil.com? elliptically legitimate code<input
name="xsrf token" value="123"> elliptically legitimate code '
elliptically legitimate code <div> where the underlined part is
injected by attackers and the request for the image will carry
the sensitive information.

2.4. Problem 4: Insecure JavaScript Usages. The XSS vulnera-
bility in JavaScript code is very common in web applications
such as the DOMbased XSS.These vulnerabilities are usually
introduced by some unsafe JavaScript usages. The functions
that can convert a string to JavaScript code dynamically such
as eval which are disabled by CSP are the most serious.

There is another class of JavaScript APIs converting
a string to HTML code unsafely (namely, interfacing the

4 Mathematical Problems in Engineering

HTML parser) such as document.write and innerHTML,
which is ignored by CSP. The XSS attack occurs once the
data controlled or tainted by the attacker is inputted into
these JavaScript APIs. These insecure JavaScript APIs with
powerful ability to inject arbitraryHTMLand JavaScript code
are easy to incur vulnerabilities and make the sanitization
of untrusted input a very challenging task [7]. For exam-
ple, function foo(taint data){document.write("<input onclick
='foo("+taint data+") '>");} makes the server side sanitiza-
tion infeasible since taint data is repeatedly pumped through
the JavaScript and HTML parsers.

On the other hand, these insecure usages are not neces-
sary in web application development and are recommended
to be replaced with the safe HTML5 DOM methods to
explicitly create HTML elements such as createElement and
appendChild [21]. However, they are still prevalent in contem-
porary web applications due to the simplicity or compatibility
and are proved to be easy to incur vulnerabilities in practice
[22].

In addition, the strict mode of JavaScript is introduced
from ECMAScript 5 [23] which has been supported by all
major web browsers. It is used to limit the unsafe grammars
of JavaScript in order to avoid some potential bugs or errors.
However, the strict mode is not popular in current web
applications mainly for the sake of compatibility.

2.5. Problem 5: Abuse of JavaScript APIs. A prominent
problem which web applications are now facing is that each
web page owns the whole ability of HTML and JavaScript
code. Once the web page is loaded, arbitrary HTML and
JavaScript code is allowed to be executed in the web browser.
In other words, once it is suffering from vulnerabilities such
as XSS, an attacker can inject and execute arbitrary HTML or
JavaScript code in the web page. It means that a vulnerability
in the web page will damage all the functionalities or ability
without limitation. The most serious case is that thousands
of JavaScript APIs with powerful ability are provided by web
browsers, but only a very few of them are actually needed in
real-world web pages. This obviously violates the principle of
least authority that if an application does not need a capability,
it should not have it.

JavaScript is one of the most important components
on the web platform which enables a new generation of
dynamic and interactive web applications. If modern web
browsers are considered as a simple operating system, the
web application can be defined as web pages using JavaScript
APIs to obtain high-level service (e.g., network, storage, and
hardware) provided by the web browser. It may lead to a
serious security problem if one or several of these JavaScript
APIs with powerful ability are exploited by attackers. For
example, the JavaScript APIActiveXObject is not used inmost
web applications but can be exploited to connect other native
applications in IE by attackers.

Unfortunately, at present, there is no security mechanism
to give a solution to the problem that each web page can
invoke all the JavaScript APIs provided by web browsers. As
JavaScript APIs such asHTML5APIs are becomingmore and
more powerful than before, the problem must occupy more
attention of security practitioners.

3. System Overview

3.1. Approach Overview. All the problems discussed above
indicate that the protection of CSP against malicious HTML
and JavaScript code is not enough. It is time to approach these
problems from a different angle instead of whitelisting the
origins of resource.The goal of PMHJ is to provide not only a
systemic strengthening of CSP, but also an independent and
complete security mechanism against malicious HTML and
JavaScript code in vulnerable web applications.

Firstly PMHJ provides a content protection mechanism
for web applications which enables the web browser to
identify and prevent the code injected by attackers. The
content of web pages is loaded directly or indirectly byHTML
elements, and different kinds of HTML elements usually
correspond to different content types. Thus, HTML elements
are treated as the basic unit of content protection in PMHJ.
The HTML5 recommendation and web browsers define a
number of HTML elements for web applications, but not all
of them are used to load content such as the br element.
PMHJ only protects theHTMLelementswhich are facedwith
serious security risks in web applications since a complex
protectionmechanism for all HTML elements is unnecessary.

Inspired by the nonce attribute of the inline script or
style element used in CSP 1.1 and CSP 2 to solve the
efficiency problem [24] caused by disabling inline scripts in
CSP 1.0, a new nonce attribute is defined for the protected
HTML elements which is used to specify a random value in
PMHJ.The web browser distinguishes the developer’s HTML
elements from the attacker’s HTML elements via the nonce
attribute value.

Another method to identify the HTML elements injected
by attackers is computing the hash values of HTML elements,
which has been proposed to identify the script element in
BEEP [20] and the inline script or style element in CSP 1.1
and CSP 2. Different from them, we make use of the hash
values of HTML elements to protect the integrity of HTML
elements which cannot be destroyed by malicious attacks.
PMHJ defines a hash attribute for the protected HTML
elements, which is used to record the hash value of theHTML
element. The web browser checks the hash attribute value to
confirm the integrity.

Different from CSP which only disables the functions
converting a string to JavaScript code, PMHJ systemically
strengthens the limits on the insecure usages of JavaScript
which may incur bugs or vulnerabilities. PMHJ also provides
a strict restriction on unsafe HTML usages supported by web
browsers. By these ways, PMHJ ensures the content security
of web pages even if without limiting the content servers via
CSP.

At last PMHJ allows the developer to get a fine-grained
control over the JavaScript APIs which can be invoked in
each web page. It provides a strong protection for the unused
JavaScript APIs against malicious attacks. Due to the fact
that a large number of JavaScript APIs are provided by web
browsers, themethod of the whitelist tomanage all JavaScript
APIs is impossible. PMJA defines a set of JavaScript APIs
faced with serious security risks and employs the blacklist to
rein these JavaScript APIs. PMHJ utilizes JavaScript objects

Mathematical Problems in Engineering 5

Developer Server Browser

opt

(5) Reporting the violated code and policy to the specified server
[Any code violates the PMHJ policy]

(3) Responding to the web page and its PMHJ policy

(1) Providing the PMHJ policy for the web page
(2) Requesting the web page

(7) Changing the code or the policy to avoid the policy violations

(6) Reporting the policy violations

(4) Abandoning the HTML
element or JavaScript API
that violates the policy

Figure 1: The system architecture of PMHJ.

[23] to represent JavaScript APIs, which include the host
objects supplied by the hosting environment, the objects
defined by the ECMAScript standard, and the objects created
in JavaScript code, respectively.

3.2. System Architecture. Themethodology of PMHJ policies
is given above. Another important problem is how to deploy
these policies into the web platform considering the security,
usability, and compatibility at the same time. We give the
system architecture to deploy PMHJ into the web platform
below, as shown in Figure 1.

On the one hand, the security mechanism on the pure
browser side is not easy to balance the functionality require-
ments and the security. For example, a strict policy may
prevent the normal functionality and a relax policy can
greatly reduce the security. On the other hand, the security
mechanism on the pure server side is not easy to guarantee
whether the policy is strictly enforced by web browsers,
because the code of HTML or JavaScript is finally run in the
browsers not the servers. In a word, the developer of web
application knows exactly what HTML or JavaScript code
(namely, the HTML element or the JavaScript API) should
be executed or not compared with the web browser, and the
web browser knows exactly whether the code is run or not.

Therefore, PMHJ adopts a working mechanism that the
policy is designed by the developer, transported by theHTTP,
and eventually enforced by the web browser. That is, PMHJ
needs to be supported by both web applications and web
browsers. PMHJ designs and enforces policies for each single
web page independently, because each web page displayed
in the browser is running with an independent running
environment.

Specifically, the PMHJ policy is designed and provided
by the developer for each web page according to the security
requirement (sometimes via the semiautomatic or automatic
policy tool). When the web page is requested by a web
browser, the server responds to the web page and its PMHJ
policy to the browser. When receiving the response, the
browser reads the PMHJ policy before parsing and running
any content of the web page. In the end, the browser strictly
enforces the PMHJ policy when parsing and running the web
page.

Moreover, if a PMHJ policy is violated in theweb browser,
it means that the policy is improper for the web page
or that the web page is suffering from malicious attacks.
Inspired by CSP, themechanism reporting the information of
policy violation to the developer or security administrator is
introduced by PMHJ. The web browser reports the violation
information to the server specified by the policy via theHTTP
request, respectively. It is able to report the policy violation
to the security administrator when the web page is running,
so that it can detect the policy violation caused by malicious
attacks. That is, it can be used as an early-warning system
to notify the administrator when an injection attack may be
occurring. It can also help to remind the developer to change
the code or the policy to avoid the policy violation when
debugging the web page.

4. PMHJ Policies

4.1. Policy Design. PMHJ defines a set of HTML elements
with serious security risks, namely, 𝐸 = {script, form, style,
base, link, iframe, frame, meta, object, embed}. Each HTML
element in the set 𝐸 is used to load a type of content, such

6 Mathematical Problems in Engineering

Table 1: The JavaScript objects with serious security risks.

Category Functionality Object

Communication Network communication, Cross-Document Messaging,
Web Real-Time Communication

WebSocket, EventSource, XMLHttpRequest, postMessage,
RTCPeerConnection, RTCDataChannel

Storage Storage, File System API localStorage, sessionStorage, indexedDB, openDatabase,
requestFileSystem

Device Hardware Device Access getUserMedia, geolocation, vibrate, battery, connection

Interaction Interaction with users (such as popups, desktop
notifications, and full screen)

open (window.open), showModalDialog, showModelessDialog,
alert, prompt, print, createPopup, Notification,
requestFullscreen

Privilege
Special privileges (e.g., connecting to other
applications) and High-Risk HTML5 APIs (e.g.,
executing the script in the background)

clipboardData, addFavorite, addPanel, setHomePage,
AddSearchProvider, ActiveXObject, Worker, history,
webkitCreateShadowRoot

as the script element loading JavaScript code. These HTML
elements and their corresponding content types are faced
with a serious security risk which is exploited by attackers
leading to a serious consequence.

PMHJ defines a new attribute named nonce for all HTML
elements in 𝐸. The nonce attribute value is a string which
should be randomly generated on the server for each request
before inserting it into an HTTP response.

It needs to be stressed that if the HTML element 𝑒 ∈ 𝐸
needs to be protected by the nonce attribute, every HTML
element 𝑒 in the web page must use the nonce attribute at
the same time. The length of the nonce attribute value can be
arbitrarily assigned by the server, but the string of 16 bytes is
recommended in order to ensure safety and availability. In a
web page different nonce attributes can use different random
values. However, we recommend that all the nonce attribute
values in a web page might share the same random string for
ease of use.

A global attribute named hash for all HTML elements is
defined in PMHJ. Its attribute value is the hash value of the
HTML element, which is computed by the SHA-2 algorithms
including SHA-256, SHA-384, and SHA-384. However, only
one kind of these hash algorithms can be used in a web page.
For the sake of simplicity and efficiency that a large number
of computing hash values increase the rendering time of the
web page, we recommend only using the hash attribute for
the script element.

All JavaScript objects that convert a string to JavaScript
code can be summarized as a set J = {eval, Function,
setTimeout, setInterval}.

All JavaScript objects that parse a string to the HTML
parser unsafely are denoted as a setH = {write,writeln, inner-
HTML, outerHTML, pasteHTML, insertAdjacentHTML}.

The JavaScript objects with serious security risks are
defined as a set 𝑈, which is listed in Table 1. These JavaScript
objects with powerful capacity are usually the goals or means
of attacks.

Define 𝑀 = {𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑑𝑒V𝑖𝑐𝑒, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐-
𝑡𝑖𝑜𝑛, 𝑝𝑟𝑖V𝑖𝑙𝑒𝑔𝑒}, where each 𝑚 ∈ 𝑀 denotes a category of
JavaScript objects in Table 1.

4.1.1. Policy Language. The policy of PMHJ is a rule set
which needs to be enforced by web browsers. A simple policy
language of PMHJ is given as follows.

A policy is composed of directives and the directives are
split on spaces. All the directives of a web page are denoted as
a set 𝑃 and the set 𝑃 is the PMHJ policy of the web page.

An element directive with the same name of the element
in 𝐸 is used to declare that all the HTML elements with
the name in the web page should use the nonce attribute.
In particular, the element directive 𝑎𝑙𝑙𝑒𝑙𝑒𝑚𝑒𝑛𝑡 satisfies that
𝑎𝑙𝑙𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝑃 is equivalent to 𝐸 ⊆ 𝑃.

A nonce directive nonce-$random is used to declare a
string $random which can be used as a valid nonce attribute
value in the web page.

A hash directive in 𝑆 = {sha-256, sha-384, sha-512} is used
to specify the hash algorithm used in the web page.

The directive 𝑠𝑡𝑟𝑖𝑛𝑔2𝑗𝑠 is used to proclaim that the set of
JavaScript objects 𝐽 should be disabled to convert a string to
JavaScript code.

The directive 𝑠𝑡𝑟𝑖𝑛𝑔2ℎ𝑡𝑚𝑙 is used to declare that the set of
JavaScript objects𝐻 is disabled.

The directive ℎ𝑡𝑚𝑙𝑠𝑡𝑟𝑖𝑐𝑡 and the directive 𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑡𝑟𝑖𝑐𝑡 are
used to state a kind of strict mode of HTML and JavaScript,
respectively.

A multiple-object directive with the same name of the
element in𝑀 is used to declare that the category of JavaScript
objects defined by the homonymic element in𝑀 is disabled.
In particular, the multiple-object directive 𝑎𝑙𝑙𝑜𝑏𝑗𝑒𝑐𝑡 satisfies
that 𝑎𝑙𝑙𝑜𝑏𝑗𝑒𝑐𝑡 ∈ 𝑃 is equivalent to𝑀 ⊆ 𝑃.

An object directive with the same name of the element
in 𝑈 is used to state that the homonymic JavaScript object is
still able to be usable even if it is disabled by multiple-object
directives.

A report directive report-$URL is used to specify a server
by the URL address $URLwhere the web browser reports the
policy violation information (including the line and column
number of the code and the violated directive at least) if a
PMHJ policy violation occurs.

To sum up, all the directives of PMHJ can be denoted as a
set 𝐼 = 𝐸∪𝑆∪𝑀∪𝑈∪ {allelement, allobject, nonce-$random,
string2js, string2html, htmlstrict, scriptstrict, report-$URL}. A
PMHJ policy 𝑃 satisfies 𝑃 ⊆ 𝐼.

Mathematical Problems in Engineering 7

4.2. PolicyDelivery. PMHJdelivers policies from the server to
the web browser via the HTTP response header. A new field
named PMHJPolicy is defined in the HTTP response header.
It is used to specify a set of directives, namely, the PMHJ
policy, which should be enforced by the web browser.

For example, a response might include the following
PMHJ header field to deliver the PMHJ policy of the web
page:

PMHJPolicy: nonce-z0h3sdfaEDNnf03n nonce-dDNnf03-
nceIOfn39 allelement
htmlstrict string2js allobject string2html
XMLHttpRequest
report-http://www.exa.com/report.php

This header field delivers the PMHJ policy of the web page
to inform the web browser that when running the web
page, all HTML elements defined in the set 𝐸 must own a
nonce attribute with the attribute value z0h3sdfaEDNnf03n or
dDNnf03nceIOfn39, all JavaScript objects defined in the set
𝑈∪𝐽∪𝐻 except XMLHttpRequestmust be disabled, and any
code violates the policy must report the detailed information
to the server http://www.exa.com/report.php.

4.3. Policy Enforcement. After receiving the HTTP response
and before parsing and executing the content of the web page,
the web browser obtains all the PMHJ directives denoted by
a set 𝑃 by reading and parsing the values of the PMHJPolicy
field in the HTTP response header.

To help to describe how the web browser internally
enforces the PMHJ policy, we give the formalized definition
of the needed sets at first.

Let 𝐸
𝑃
= 𝑃 ∩ (𝐸 ∪ {𝑎𝑙𝑙𝑒𝑙𝑒𝑚𝑒𝑛𝑡}) be the set of HTML

elements specified by all the element directives in 𝑃, where
𝑎𝑙𝑙𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝑃means 𝐸

𝑃
= 𝐸. It is obvious that 𝐸

𝑃
⊆ 𝐸. 𝐸

𝑃
is

the set of all the HTML elements which need to be verified.
Let 𝑁

𝑃
be the set of values specified by all the nonce

directives in𝑃, and let 𝑆
𝑃
= 𝑃∩𝑆 be the set of hash algorithms

specified by all the hash directives in 𝑃.𝑁
𝑃
is the set of all the

legitimate nonce attribute values of the HTML elements in
𝐸
𝑃
, and 𝑆

𝑃
is the set of all the legitimate hash algorithms for

the hash attribute values.
Let𝑀

𝑃
= 𝑃 ∩ (𝑀 ∪ {𝑎𝑙𝑙𝑜𝑏𝑗𝑒𝑐𝑡}) be the set of JavaScript

objects specified by all the multiple-object directives in 𝑃,
where 𝑎𝑙𝑙𝑜𝑏𝑗𝑒𝑐𝑡 ∈ 𝑃 means 𝑀

𝑃
= 𝑈. Let 𝑈

𝑃
= 𝑃 ∩ 𝑈

be the set of JavaScript objects specified by all the object
directives in𝑃.Then, the difference set of𝑀

𝑃
and𝑈

𝑃
, namely,

𝐷
𝑃
= 𝑀
𝑃
− 𝑈
𝑃
= {𝑎 | 𝑎 ∈ 𝑀

𝑃
, 𝑎 ∉ 𝑈

𝑃
}, is actually the set of

all the JavaScript objects which need to be disabled according
to all the multiple-object directives and the object directives
in the policy.

Let 𝑅
𝑃
be the set of URLs specified by all the report

directives in 𝑃. In fact, 𝑅
𝑃
gives all the servers that the

policy violation information should be reported to by the web
browser.

If 𝑃 ̸= 0, the web browser strictly enforces the following
policies in thewhole process of parsing and executing theweb
page:

(i) For each 𝑒 ∈ 𝐸
𝑃
, if the HTML element 𝑒 does not

have the nonce attribute or the nonce attribute value
𝑛
𝑒
is not correct, namely, 𝑛

𝑒
∉ 𝑁, then the browser

abandons the HTML element 𝑒. Otherwise, the ele-
ment 𝑒 is parsed as usual.

(ii) The nonce attributes of HTML elements in 𝐸
𝑃
cannot

be accessed by JavaScript code.
(iii) If 𝑠𝑐𝑟𝑖𝑝𝑡 ∈ 𝑃, the event handler attributes of

HTML elements and javascript:protocol URLs that
cause JavaScript code to execute are disabled.

(iv) If 𝑠𝑡𝑦𝑙𝑒 ∈ 𝑃, the style attributes of HTML elements are
disabled.

(v) If a HTML element 𝑒 has a hash attribute with the
attribute value ℎ

𝑒
and there is only one hash algorithm

in 𝑃, namely, |𝑆
𝑃
| = 1, the browser computes the

hash value ℎ of the element 𝑒 using the hash algorithm
specified by 𝑆

𝑃
. If and only if ℎ = ℎ

𝑒
, the HTML

element 𝑒 is parsed; otherwise, it is abandoned.
(vi) If ℎ𝑡𝑚𝑙𝑠𝑡𝑟𝑖𝑐𝑡 ∈ 𝑃, then

(a) the incorrectHTMLelements are rejected by the
browser including that the tags cannot be closed
normally and that the attribute values cannot be
terminated with quotation marks,

(b) the nested form elements, the HTML elements
with the same id attribute value, and the base or
meta element used outside the head element are
all invalid.

(vii) If 𝑠𝑡𝑟𝑖𝑛𝑔2ℎ𝑡𝑚𝑙 ∈ 𝑃, all the JavaScript objects in the set
𝐻 are disabled.

(viii) If 𝑠𝑡𝑟𝑖𝑛𝑔2𝑗𝑠 ∈ 𝑃, all the JavaScript objects in the set 𝐽
are disabled to convert a string to JavaScript code.

(ix) If𝐷
𝑃
̸= 0, all the JavaScript objects in𝐷

𝑃
are disabled.

(x) If 𝑠𝑐𝑟𝑖𝑝𝑠𝑡𝑟𝑖𝑐𝑡 ∈ 𝑃, then the strict mode of
ECMAScript is applied to all the JavaScript code in
the web page.

(xi) If 𝑅
𝑃
̸= 0 and a policy above (the policy from 𝑖 to

𝑥) is violated, the violation information including the
reason and code of the policy violation is reported to
the specified servers of 𝑅

𝑃
via the HTTP request.

4.4. Examples. Often, the easiest way to explain usages of a
policy language is through examples. Here we provide simple
samples that are illustrative.

Example 1. PMHJPolicy: device geolocation report-http://
www.exa.com/report.php.

The JavaScript objects in the set 𝐷
𝑃
= 𝑑𝑒V𝑖𝑐𝑒 − {𝑔𝑒𝑜-

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛} = {getUserMedia, vibrate, battery, connection} are
disabled according to the policy in Example 1. And if
any JavaScript object in 𝐷

𝑃
is invoked, then a violation

report will be sent to the server specified by the URL
http://www.exa.com/report.php.

Example 2. PMHJPolicy: script htmlstrict string2html string-
2js nonce-z0h3sdfaEDNnf03n.

8 Mathematical Problems in Engineering

Table 2: The codes violating the policy in Example 2.

The code violating the policy Reason Policy
<script>malicious script</script> Missing the nonce attribute (i)
<script nonce="dDNnf03nceIOfn39">malicious script</script> An incorrect nonce attribute value (i)
<script nonce="z0h3sdfaEDNnf03n"id="example">
alert(document.getElementById("example").getAttribute("nonce"));
</script>

The nonce attribute cannot be obtained or set by
JavaScript code (ii)

 example
example

The javascript:protocol URL and the attribute onclick are
disabled (iii)

<img src ='http://evil.com/log.cgi?
<base href = 'http://evil.com/'>
<form action = 'update profile.php'>
<input type = 'hidden' id='share with' value='fred'>
<input id = 'share with' value='bogo'>
</form>

An incorrect src attribute value
The base element outside the head element
The two input elements owning the same id attribute
value are both invalid

(vi)

<script nonce="z0h3sdfaEDNnf03n">
document.write("malicious html or script")
</script>

The call to the JavaScript object document.write is
forbidden (vii)

<script nonce="z0h3sdfaEDNnf03n">
setTimeout("malicious script",1000)
</script>

The first parameter of setTimeout is a string (viii)

The codes in Table 2 are all violating the policy in
Example 2. That is, these code are invalid in the web page
employing the policy.

5. Security Properties

The security properties which can or should be satisfied by
PMHJ are discussed below.

Property 1. If 𝑒 ∈ 𝑃 ∩ 𝐸, the 𝑒 element injected by attackers is
invalid.

Proof. It is a fact that the JavaScript code in web applications
cannot access the value of the response header field including
the PMHJPolicy header field. The attacker also cannot access
the nonce attribute value in the web page according the policy
(ii) via JavaScript code. The nonce attribute value of the 𝑒
element is randomly generated when the server responds to
the web page every time, so that the attacker cannot guess
a valid nonce attribute value. Therefore, the attacker without
a valid nonce attribute value cannot inject a valid 𝑒 element
which is able to be parsed by the web browser according to
policy (i).

PMHJ utilizes the nonce attribute with a random value to
help the web browser to distinguish which HTML elements
belong to the developer and which HTML elements are
injected by attackers. That is, PMHJ is able to protect web
applications against malicious injection attacks of HTML
elements.

Property 2. If the HTML element 𝑒 has a hash attribute and
|𝑆
𝑃
| = 1, the element 𝑒 which is suffering from a node-split

attack will not be parsed by the web browser.

Proof. According to the propertyof the SHA-2 algorithm [25],
given a hash value, the attacker cannot construct a string with
the same hash value within the existing computing power
at least. If a node-split attack on the element 𝑒 occurs, the
integrity of 𝑒 is broken so that the hash value of the element 𝑒
is changed. According to policy (V), if the web browser detects
that the hash value of 𝑒 is different from the hash attribute
value of 𝑒, it will discard the HTML element 𝑒.

It is obvious that the nonce attribute cannot protect the
integrity of HTML elements. The hash attribute provides
a simple and effective method to prevent the node-split
attackwhichCSP relying on an origin-level protection cannot
prevent. Unfortunately, since some other attacks that break
the HTML document integrity such as the attribute injection
attack [19] need a value-level granularity protection such
as sanitization, PMHJ providing a HTML element level
protection cannot work. Other attempts against these attacks
such as DSI [19] and blueprint [26] also fail in practice due
to many problems especially in availability and compatibility
with the exiting web platform, although they give valuable
solutions in theory.

Each HTML element in 𝐸 is used to load a type of
content in the web page. However, different HTML elements
can load the same type of content. For example, the style
and link elements can both be used to load CSS (cascading
style sheets). For the sake of describing convenience, PMHJ
considers that the CSS loaded by the style element and the link
element are the two different content types. In other words,
the HTML elements in 𝐸 are used to load different content
types.

Property 3. If 𝑒 ∈ 𝐸
𝑃
, the content type of 𝑒 in the web page

can only be loaded by one of the following two methods:

Mathematical Problems in Engineering 9

(1) loaded by 𝑒 element which has a nonce attribute with the
attribute value 𝑛

𝑒
satisfying 𝑛

𝑒
∈ 𝑁; (2) created by a piece

of JavaScript code satisfying the notion that if 𝑠𝑐𝑟𝑖𝑝𝑡 ∈ 𝑃,
the JavaScript code is loaded by a script element which has a
nonce attribute with the attribute value 𝑛

𝑠
∈ 𝑁.

Proof. PMHJ disables the insecure methods of loading
JavaScript and CSS by policies (iii) and (iv). There are only
two kinds of methods to load the content types in 𝐸 into the
web page using PMHJ, that is, loaded by HTML elements
or created dynamically by JavaScript code. Then we can get
Property 3 by combining Property 1 with policy (i).

Property 3 shows that the content type protected by
PMHJ in the web page can only be loaded by the trusted
HTML element or generated by the JavaScript code which
is loaded by a trusted script element. That is, PMHJ can
ensure that the content types in 𝐸 load only by secure HTML
elements.

The properties above provide no protection against vul-
nerabilities in JavaScript code such as DOM based XSS [2].
These vulnerabilities are caused by some unsafe JavaScript
objects.The directive 𝑠𝑡𝑟𝑖𝑛𝑔2ℎ𝑡𝑚𝑙 and the directive 𝑠𝑡𝑟𝑖𝑛𝑔2𝑗𝑠
disable these dangerous JavaScript objects which convert
a string to HTML and JavaScript code, respectively. The
directive 𝑠𝑐𝑟𝑖𝑝𝑠𝑡𝑟𝑖𝑐𝑡makes the web browser able to apply the
strict mode to all the JavaScript code in the web page. The
directive ℎ𝑡𝑚𝑙𝑠𝑡𝑟𝑖𝑐𝑡disables the unsafeHTMLusages defined
in Problem 5. These directives are able to avoid vulnerabil-
ities, mitigate attacks, and help developers to improve their
programming habits.

A combination of multiple-object directives and object
directives is able to disable the unneeded JavaScript objects
with serious security risks defined in Table 1 according to
the least authority principle. The disabled JavaScript objects
cannot be exploited by attackers any more. It also makes
different web pages own different JavaScript APIs which can
be invoked. That is, it allows a better separation of JavaScript
even if they are from the same origin as an extension to the
same origin policy.

Another important security property is that all the PMHJ
policies only limit the exiting ability of HTML and JavaScript
code in web applications. They provide no new functionality
or ability to a web page. An attacker cannot make a web
page less secure than it would have been without PMHJ even
if by maliciously injecting the PMHJ policy into the web
page. Therefore, PMHJ only strengthens the security of web
applications by restricting what it can do under control of an
attacker. The ability disabled by PMHJ cannot be exploited
by attackers, so that the web page using PMHJ is at least safer
than the web page without using PMHJ.

One or more JavaScript objects need to be disabled
by the directives including 𝑠𝑡𝑟𝑖𝑛𝑔2ℎ𝑡𝑚𝑙, 𝑠𝑡𝑟𝑖𝑛𝑔2𝑗𝑠, and the
multiple-object directives. A JavaScript object discussed in
PMHJ stands for a kind of ability or functionality provided
by web browsers. That is, when a JavaScript object is disabled
by PMHJ, the JavaScript code in the web page cannot obtain
the ability of the JavaScript object anymore. It is an important
property which should be ensured in the implementation of

web browser. A serious issue is that, according to the same
origin policy, a call of JavaScript objects in other HTML
documents with the same origin is possible. For example,
window.eval, window.parent.eval, and window.frames[0].eval
can be called by the code, which are all aliases for the same
function in the native code of the web browser. And other
access paths specified by web standards or provided by some
nonstandard browser features for a particular release should
be taken into consideration in the browser implementation of
PMHJ.

We emphasize that there are great differences of insecure
HTML usages and unsafe JavaScript objects in different web
browsers, such as the applet element obsoleted by W3C but
still supported by many web browsers, the expression or
behavior attribute of CSS supported by old IE, the XBL bind-
ings ever used in Firefox, andmany specific JavaScript objects
with different names or functionality such as experimental
HTML5 API. That is, the definitions of 𝐸 and 𝑈 are specific
to the web browser. HTML5 is developing rapidly and web
browsers are updating frequently, so that the definitions of 𝐸
and 𝑈 should be maintained and improved according to the
specific web browser.

6. Implementation

PMHJ needs to be supported by both web applications and
web browsers. The key technology to implement PMHJ in
web applications and browsers is discussed, respectively, as
follows.

To support PMHJ, every the protected HTML element in
theweb page needs to add a nonce attribute.Theunsafe usages
of HTML and JavaScript disabled by the PMHJ policy need to
be replaced by some more safe usages, such as adding a click
event to replace javascript:protocol URLs, using addEventLis-
tener to add events instead of using event handler attributes
of HTML elements, using a function as the first parameter
of setTimeout and setInterval instead of a string, replacing
write and innerHTML with the usages recommended by
HTML5 (e.g., createElement and createTextNode), and eval
being replaced by the recommended safe alternatives [22]
(e.g., JSON.parse). In addition, the PMHJPolicy header field
needs to be set in the HTTP response header on the server
side.

Thebrowsers supporting PMHJ are necessary and crucial.
As we know, WebKit [27] is one of the most popular web
browser engines employed by Chrome, Safari, and Opera.
We constructed a prototype implementation of PMHJ by the
modification of WebKit r174650. The implementation totally
adds approximately 6700 lines of C++ codes to patch various
parts of the code ofWebKit. Specifically, the several key parts
are as follows.

Firstly a C++ class with 1086 lines of codes is used to parse
the PMHJ policy in the response header. Then the protected
HTML elements are verified strictly according to policies (i),
(iii), (iv), (v), and (vi) when the browser is parsing the HTML
code of web pages where 1827 lines of code are changed in
the original HTML parser. In particular, since the SHA-2
algorithms have been supported by WebKit, policy (v) can
take advantage of the exiting hash algorithms. Policy (ii) can

10 Mathematical Problems in Engineering

Table 3: The web pages used for the experiment.

Website Web page
Google.com mail.google.com, google.com, translate.google.com, accounts.google.com, news.google.com
Facebook.com facebook.com, apps.facebook.com, web.facebook.com, m.facebook.com, developers.facebook.com
Baidu.com baidu.com, tieba.baidu.com, zhidao.baidu.com, baike.baidu.com, image.baidu.com
Hao123.com hao123.com, movie.hao123.com, tv.hao123.com, m.hao123.com, soft.hao123.com
Amazon.com amazon.com, smile.amazon.com, aws.amazon.com, developer.amazon.com, kdp.amazon.com
Wikipedia.org en.wikipedia.org, ja.wikipedia.org, ru.wikipedia.org, de.wikipedia.org, zh.wikipedia.org
Sina.com.cn blog.sina.com.cn, news.sina.com.cn, sina.com.cn, sports.sina.com.cn, house.sina.com.cn
Twitter.com twitter.com, analytics.twitter.com, mobile.twitter.com, support.twitter.com, ads.twitter.com
Linkedin.com linkedin.com, in.linkedin.com, help.linkedin.com, business.linkedin.com, uk.linkedin.com

Youtube.com
youtube.com, youtube.com/channel/UC-9-kyTW8ZkZNDHQJ6FgpwQ,
youtube.com/channel/UCl8dMTqDrJQ0c8y23UBu4kQ, youtube.com/channel/UCOpNcN46UbXVtpKMrmU4Abg,
youtube.com/channel/UClgRkhTL3 hImCAmdLfDE4g

Taobao.com taobao.com, item.taobao.com, bbs.taobao.com, s.taobao.com, world.taobao.com
Msn.com msn.com, prodigy.msn.com, u.msn.com, cn.msn.com, zone.msn.com
Live.com login.live.com, mail.live.com, outlook.live.com, onedrive.live.com, account.live.com
Qq.com qzone.qq.com, news.qq.com, house.qq.com, t.qq.com, mail.qq.com
Weibo.com weibo.com,s.weibo.com, open.weibo.com, e.weibo.com, desktop.weibo.com
Bing.com bing.com, bing.com/maps, bing.com/videos, bing.com/images, bing.com/knows
Yandex.ru yandex.ru, mail.yandex.ru, market.yandex.ru, metrika.yandex.ru, news.yandex.ru
Yahoo.com mail.yahoo.com, search.yahoo.com, yahoo.com, news.yahoo.com, login.yahoo.com
Mail.ru e.mail.ru, my.mail.ru, go.mail.ru, mail.ru, news.mail.ru
Ebay.com ebay.com, my.ebay.com, k2b-bulk.ebay.com, signin.ebay.com, payments.ebay.com

be implemented by deleting directly thenonce attribute values
of HTML elements after the web browser has checked them.

Policies (vii), (viii), and (ix) can be implemented by
disabling one or more JavaScript objects in the web browser.
The traditional methods to disable JavaScript objects in
web sandboxes such as rewriting, wrappers, and filters [28]
cannot work well in PMHJ. We instrument the native code
of JavaScript objects. When a JavaScript object is called
the instrumented code decides whether it is allowed by the
PMHJ policy of the web page where the JavaScript object
is invoked. The 44 JavaScript objects defined by the set
𝑈 ∪ 𝐽 ∪ 𝐻 are instrumented with a total of 1390 lines of
code. Some JavaScript objects such as ActiveXObject which
are not supported by the original WebKit are introduced
(actually empty functions with the same name) for the sake
of test and evaluation. Policy (x) can directly utilize the
strict mode for each block of script in the JavaScript engine.
The implementation of policy (xi) can refer to the report
mechanism of policy violation in CSP.

To sum up, the implementations of PMHJ inmodern web
browsers such as WebKit only need a little change since most
security infrastructures have been well built after supporting
CSP. And our implementation is just used as a proof-of-
concept implementation without a poof of the safety impact
on other parts of web browsers, which is a difficult issue.
However, it is enough for illustration and testing.

At last, we introduce an easy and convenient method to
design the PMHJ policy automatically. Given a web page,
let the directives 𝑎𝑙𝑙𝑜𝑏𝑗𝑒𝑐𝑡 and report-$URL be the PMHJ

policy. Then, via the policy violation reports, we can get all
the unused JavaScript objects which need to be disabled. In a
similar way, by themost strict policy P = {allelement, allobject,
string2js, htmlstrict, string2html, htmlstrict, scriptstrict, report-
$URL}, we can get the HTML elements which need to add a
nonce attribute and the unsafe usages ofHTMLand JavaScript
which need to be replaced by the safe usages. It removes the
heavy burden on the developer for specifying the right policy
by hand which is prone to errors.

7. Evaluation

To evaluate the usability, we implement PMHJ on one
hundred web pages from Alexa top 20 websites (the most
popular five web pages are chosen from each website). All
HTML and JavaScript code is considered including the third-
party code in the web page. The tested web pages are listed
in Table 3, and a part of the test results of ten web pages are
shown in Figures 2 and 3. Combining with the experiment
results, the PMHJ policies in real-world web applications are
evaluated below.

In fact PMHJ is an access control mechanism supported
by both web applications and web browsers to provide
a second-line of defense against malicious HTML and
JavaScript code in vulnerable web applications. The goal of
PMHJ is not to eliminate or resolve vulnerabilities directly.
It distinguishes the developer’s HTML elements from the
attacker’s HTML elements or the damaged HTML elements
via the element directive, the nonce directive, and the hash

Mathematical Problems in Engineering 11

0

20

40

60

80

100

120

140

The HTML elements which need to be added the nonce attribute
The unused JavaScript objects defined in the set U which need

The used JavaScript objects defined in the sets H and J which
to be disabled

need to be replaced

m
ai

l.g
oo

gl
e.c

om

ba
id

u.
co

m

tie
ba

.b
ai

du
.co

m

am
az

on
.co

m

ta
ob

ao
.co

m

w
ei

bo
.co

m

ne
w

s.q
q.

co
m

en
.w

ik
ip

ed
ia

.o
rg

fa
ce

bo
ok

.co
m

yo
ut

ub
e.c

om

Figure 2: The number of HTML elements and JavaScript objects
involved in PMHJ.

0.00

(%
)

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Time overhead
Code size overhead

m
ai

l.g
oo

gl
e.c

om

ba
id

u.
co

m

tie
ba

.b
ai

du
.co

m

am
az

on
.co

m

ta
ob

ao
.co

m

w
ei

bo
.co

m

qz
on

e.q
q.

co
m

en
.w

ik
ip

ed
ia

.o
rg

fa
ce

bo
ok

.o
rg

yo
ut

ub
e.c

om

Figure 3: The overhead of time and code size in web pages using
PMHJ.

directive. It avoids vulnerabilities by disabling the unsafe
usages that may incur vulnerabilities via the 𝑠𝑡𝑟𝑖𝑛𝑔2ℎ𝑡𝑚𝑙
directive, the 𝑠𝑡𝑟𝑖𝑛𝑔2𝑗𝑠 directive, and the 𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑡𝑟𝑖𝑐𝑡 direc-
tive. It mitigates attacks by defining which HTML or
JavaScript usages in the web page should be allowed or
forbidden by web browsers via the ℎ𝑡𝑚𝑙𝑠𝑡𝑟𝑖𝑐𝑡 directive, the
object directive, and the multiple-object directive.

Considering the compatibility with the existing web
platform, the web browser supporting PMHJ parses the web
page without using PMHJ in the original way, and the web
page using PMHJ can still run normally on the browser
without supporting PMHJwhere the PMHJ policy is ignored.
As proved in Section 5, even simple PMHJ policies used in
web pages are able to effectively strengthen the security.Thus,
PMHJ can be gradually adopted by web applications and web
browsers, and the whole time proves beneficial to adoptive
web pages.

The test results show that the number of unused
JavaScript objects defined in the set 𝑈 which need to be
disabled by multiple-object directives and object directives
ranges from 17 to 31 (25.1 on average), and the number of
used JavaScript objects defined in the set 𝐽 and𝐻which need
to be disabled and replaced by more safe usages ranges from
2 to 8 (5.8 on average), as shown in Figure 2. This result
indicates that there is only a few JavaScript objects defined
in the set 𝑈 used in web pages meaning that exposing them
to attackers is unnecessary and dangerous. It also shows that
PMHJ is urgently needed in real-worldweb applications since
the unsafe usages of HTML and JavaScript are popular. For
example, the event handler attribute is used in 93 percent
of the test web pages and the insecure JavaScript object
document.write is used in 81 percent of the test web pages.

To employ PMHJ (especially for a strict policy), it indeed
needs a lot of work to change the original code of HTML and
JavaScript, whichmainly includes adding the nonce and hash
attributes and replacing the disabled HTML and JavaScript
usages. But, combining the strictest policy and the policy
violation reports discussed in Section 6, the PMHJ policy
for a given web page can be semiautomatically obtained by
changing the policy or the code step by step. The whole
process is not complex such as adding a nonce attribute for
the protected element. For example, the test result shows that
the number of HTML elements which need to be added to
the nonce attributes ranges from 15 to 176 (49.1 on average).
That is, the PMHJ policy is flexible and easy to be deployed
into web applications.

The code size of web pages is a major concern for
performance especially for mobile devices with limited stor-
age capacity and for web applications where resources are
transferred over the network in general. The test result shows
that the overhead of code size ranges from 0.09% to 1.8%
(0.7% on average); see Figure 3 for more details. The results
are mainly affected by the size of original code since the code
size added by PMHJ is too small compared with the original
code.

The web page using PMHJ has little impact on the
rendering efficiency. According to the test results, compared
with the original web page and browser, only the web page or
theweb browser using PMHJhas a little influence on run time
(the rendering time from a URL to the visual image) which
can be ignored. And both the web page and web browser
using PMHJ result in the run time increase by 1.1% to 4.9%
(less than 2.6% on average); see more details in Figure 3.
PMHJ has a much better performance in implementation
than the test result of CSP [24] which needs to move all
inline scripts into external scripts. It needs a further study on

12 Mathematical Problems in Engineering

how the rendering time is affected by PMHJ due to different
methods involved in PMHJ (complex HTML or JavaScript
usages for different web pages which may interact together).
In our experiments, themachine configurations are 2.70 GHz
processor and 4 GB of memory. We take the average result in
three times for each web page because of being easily affected
by the network.

8. Related Work

BEEP [20] (Browser-Enforced Embedded Policies) computes
the hash value of each script block in the web page as a
whitelist. The whitelist will be responded with the web page
to the browser. Then the related JavaScript functions will be
rewritten on the browser side, which makes the hash value
of each script block will be computed. The code of the script
block will not run if the hash value is not in the whitelist.
BEEP only protects JavaScript code in the web page and has
an obvious efficiency problem when the protected elements
increase because of computing the hash values. The nonce
attribute used in PMHJ can effectively avoid these problems.

SOMA [10] (the Same Original Mutual Approval Pol-
icy) restricts resource inclusions in web pages by requiring
approval from both the target site and resource provider. A
whitelist of the resource serverswhich the browsers are enable
to request is provided by the web page. When the browser
requests the resource from the server in the whitelist, the
resource server replies with “yes” or “no” according to its
policy. Then the browser decides whether or not to allow
requests by checking the results of the yes/no queries. SOMA
increases a lot of the network communication between
browsers and resource providers, which will greatly reduce
the rendering efficiency of web pages.

Noncespaces [29] uses XML namespaces to help web
browsers to distinguish between trusted and untrusted con-
tent in order to prevent cross-site scripting attack. A web
application using Noncespaces randomizes the XML names-
pace prefixes of tags in each document before delivering it
to the browser. As long as the attacker is unable to guess the
random prefix value, the browser can distinguish between
trusted content created by the web application and untrusted
content provided by an attacker. Noncespaces is limited to
XHTML documents, so other document types not based on
XML may not benefit from this technique.

DSI [19] is a client-server architecture that enforces
document structure integrity in a way to provide robust XSS
defense with no false positives with a minimal effort from the
web developer. It models XSS as a privilege escalation vul-
nerability as opposed to a sanitization problem and employs
parser-level isolation for confinement of user-generated data
throughout the lifetime of the web application. DSI is an ideal
solution of XSS which lacks availability in practice since it
relies on a complex implementation on the server side and
browser side involving too many difficult problems to ensure
security.

Blueprint [26] presents a system for parsing document
content using a trusted and cross-platform JavaScript parser,
rather than built-in parsers of web browsers. It views HTML
parsers in different browsers as untrustworthy because of

browser quirks and views the cross-site scripting problem
as fundamentally arising from this. It provides the browser
with a blueprint of the structure of the page, and a JavaScript
library builds the page from the blueprint rather than trusting
the browser’s HTML parser. Blueprint has significant per-
formance problems, which are inherent to its approach in
avoiding use of the browser’s parser.

CONTEGO [30] (Capability-Based Access Control)
demonstrates that the security problem of the web page
is caused by the lack of access control on capability and
proposes an access control model based on the capability to
prevent against malicious HTML and JavaScript code. The
capability of security risks is divided into eleven categories
and is confined on single HTML element. However, this kind
of fine-grained access control is short of usability so that it
cannot be widely applied to the existing web applications.

DCS [11] (Data-Confined Sandbox) gives a solution for
the security problem caused by complex communication
channels in the web platform. It strictly manages almost all
the communication channels of web pages on the browser
side. However, DCS depends on the fact that the web appli-
cation employs a design similar to the process management
of operating systems; that is, all communication is mediated
by a web page like the master process. This design is not
suitable for all web applications and not easy to be adopted
by developers.

CSP has been supported by almost all web browsers and
is treated as the most promising security mechanism for
web applications. The analysis and enhancement of CSP are
currently a hot research topic. Weinberger et al. [24] evaluate
the efficacy of the large scale web applications using CSP
by retrofitting Bugzilla and HotCRP. Weissbacher et al. [31]
and Patil and Frederik [13] try to explain the trends and
challenges of CSP adoption in real-world web applications.
The CSP suborigin for each web page is proposed by Akhawe
et al. [32]. It is actually a strengthening and development
of the same origin policy and the HTML sandbox and has
been paid great attention by the Chromium project team.
Hanna et al. [33] have found a serious flaw: the insecure
use of postMessage in Facebook Connect and Google Friend
Connect leads to severe vulnerabilities to increase the attack
surface for web applications in unexpected ways. It can be
solved by extending CSP with a directive to specify origins
allowed to send messages to the web page. In order to solve
the problem of insecure server side assembly of JavaScript
code, Johns [34] proposes a solution as a supplement of
CSP by combining the prepared templates of JavaScript with
the stable cryptographic checksums for scripts. Compared
with these work, PMHJ is the first systematic analysis and
enhancement of CSP against maliciousHTML and JavaScript
code.

There are other efforts to help developers to understand
or design the CSP in real-world web applications. Veracode
[13] and Chen et al. [35] publish statistical reports of security
headers certainly including CSP used in Alexa top 1 million
websites. Javed [36] gives an automated aiding system for
the construction of CSP policies in web applications named
AiDer. Unfortunately, AiDer cannot recognize dynamic
changes of DOM. Patil et al. [37] propose UserCSP, namely,

Mathematical Problems in Engineering 13

a Firefox extension, that uses dynamic analysis to automat-
ically infer CSP policies and gives savvy users the author-
ity to enforce client-side policies on web pages. However,
UserCSP is error-prone to rely on a self-design of CSP with
complex client logic and is limited to the specified version of
Firefox.

Aside from the content protection systems above, various
mechanisms have been proposed to lock down the capacity
of JavaScript APIs for different goals. Due to the novel but
vulnerable HTML5 APIs such as postMessage [33] and the
lack of proper defense for these APIs, web browsers are
in trouble between defining a powerful JavaScript API and
limiting the ability of malicious code. A solution in use is
that a call of high-risk JavaScript APIs must be authorized by
the user. Several proposals have developed new primitives for
web applications to adapt to mash-up applications [38, 39].
However, the widely used tools to isolate untrusted third-
party content are web sandboxes [40] such as Google Caja
[41] by limiting the JavaScript APIswhich violate the isolation
policy. PMJA focuses on the least authority of high-risk
JavaScript APIs instead of paying attention to the security of
a single HTML5 API or the goal of isolation.

9. Future Work

PMHJ has been systemically presented in this paper to
provide a robust protection against malicious HTML and
JavaScript code, but extensions to PMHJ can be created to
increase its usability or add additional protections.

It is an important work to well combine PMHJ and
CSP such as how to resolve the policy conflicts that may
be caused by using PMHJ and CSP in the same web page.
The PMHJ policy with a higher priority to the CSP policy
is recommended due to the fact that the PMHJ policy is
stricter than the CSP policy in methodology, when they
are conflicting. Considering that CSP has been applied to
Chrome Extensions and Chrome Apps, it is valuable to apply
PMHJ to these new types of HTML5 applications.

It may also prove useful for web applications to verify
moreHTMLelements such as a and div.While these elements
would not restrict any content types embedded on the page,
they still dictate behavior of the site and may be desirable for
many existing web applications.

More issues in real-world deployment should be taken
into consideration such as the encoding of the nonce and
hash attribute value. It is a heavy but meaningful work to
discuss and prove the security properties of the browser
implementation for PMHJ or CSP.

To aid in constructing a proper PMHJ policy for complex
web pages, a more automatic tool such as UserCSP for CSP
should be created. It can create a policy based on the expected
behavior of the web page via a static or dynamic analysis, and
any deviations from the policy can be reported.

Since PMHJ and CSP cannot thoroughly prevent some
value-level attacks, it is our future work to give a client-
side sanitation mechanism combining with the basic ideas of
PMHJ and DSI. It requires a progress not only in engineering
but in theory.

10. Conclusions

PMHJ not only is a systemic enhancement of CSP but also
works independently to provide a strong and comprehensive
protection against malicious HTML and JavaScript code
in vulnerable web applications. It solves the problems of
malicious injection attacks and node-split attacks of HTML
elements, systemically disables the unsafe HTML usages
to make the content of the web page able to be loaded
only in a safe way, and provides a method to limit the
insecure JavaScript APIs incurring injection vulnerabilities
and allow developers to flexibly rein high-risk JavaScript APIs
with powerful ability in each web page. PMHJ is easy to
be deployed into web applications with a small code size
overhead and has little influence on the rendering efficiency.

Competing Interests

The authors declare that there is no competing interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the 863 National High Tech-
nology Research and Development Program of China (no.
2012AA012902).

References

[1] X. Li and Y. Xue, “A survey on server-side approaches to
securing web applications,” ACM Computing Surveys, vol. 46,
no. 4, article 54, 2014.

[2] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D. Petkov,
XSS Attacks: Cross Site Scripting Exploits and Defense, Syngress,
2011.

[3] N. Nikiforakis, L. Invernizzi, A. Kapravelos et al., “You are
what you include: large-scale evaluation of remote Javascript
inclusions,” in Proceedings of the ACM Conference on Computer
and Communications Security (CCS ’12), pp. 736–747, ACM,
Raleigh, NC, USA, October 2012.

[4] H. Shahriar, K. Weldemariam, M. Zulkernine, and T. Lutellier,
“Effective detection of vulnerable andmalicious browser exten-
sions,” Computers & Security, vol. 47, pp. 66–84, 2014.

[5] I. Hydara, A. B. M. Sultan, H. Zulzalil, and N. Admodisastro,
“Current state of research on cross-site scripting (XSS)—a sys-
tematic literature review,” Information and Software Technology,
vol. 58, pp. 170–186, 2015.

[6] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes,
“Fast and precise sanitizer analysis with BEK,” in Proceedings of
the 20th USENIX Conference on Security (SEC ’11), p. 1, USENIX
Association, Berkeley, Calif, USA, 2011.

[7] J. Weinberger, P. Saxena, D. Akhawe et al., “A systematic
analysis of XSS sanitization in web application frameworks,” in
Computer Security—ESORICS 2011, vol. 6879 of Lecture Notes in
Computer Science, pp. 150–171, Springer, Berlin, Germany, 2011.

[8] T. Scholte, D. Balzarotti, and E. Kirda, “Have things changed
now? An empirical study on input validation vulnerabilities in
web applications,” Computers & Security, vol. 31, no. 3, pp. 344–
356, 2012.

14 Mathematical Problems in Engineering

[9] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) attacks
and defense mechanisms: classification and state-of-the-art,”
International Journal of System Assurance Engineering and
Management, pp. 1–9, 2015.

[10] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji,
“SOMA: mutual approval for included content in web pages,”
in Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS ’08), pp. 89–98, ACM, October
2008.

[11] D. Akhawe, F. Li, W. He et al., “Data-confined HTML5 appli-
cations,” in Computer Security—ESORICS 2013: 18th European
Symposium on Research in Computer Security, Egham, UK,
September 9–13, 2013. Proceedings, vol. 8134 of Lecture Notes
in Computer Science, pp. 736–754, Springer, Berlin, Germany,
2013.

[12] S. Stamm, B. Sterne, and G.Markham, “Reining in the web with
content security policy,” in Proceedings of the 19th International
World Wide Web Conference (WWW ’10), pp. 921–929, Raleigh,
NC, USA, April 2010.

[13] K. Patil and B. Frederik, “A measurement study of the content
security policy on real-world applications,” International Jour-
nal of Network Security, vol. 18, no. 2, pp. 383–392, 2016.

[14] Veracode, “Security Headers on the Top 1,000,000 Websites:
October 2014 Report,” October, 2014, https://www.veracode
.com/blog/2014/10/security-headers-top-1000000-websites-oc-
tober-2014-report.

[15] M. West, A. Barth, and D. Veditz, Content Security Policy Level
2: W3C Candidate Recommendation, 2015, http://www.w3.org/
TR/CSP2/.

[16] Z. C. Schreuders, Functionality-based application confinement
[Ph.D. thesis], Murdoch University, Perth, Australia, 2012.

[17] A. Zarras, A. Kapravelos, G. Stringhini et al., “The dark alleys
of madison avenue: understanding malicious advertisements,”
in Proceedings of the ACM Conference on Internet Measurement
Conference (IMC ’14), pp. 373–380, Vancouver, Canada, Novem-
ber 2014.

[18] M. Finifter, J. Weinberger, and A. Barth, “Preventing capability
leaks in secure javascript subsets,” in Proceedings of the 17th
Network andDistributed SystemSecurity Symposium (NDSS ’10),
2010.

[19] Y. Nadji, P. Saxena, andD. Song, “Document structure integrity:
a robust basis for cross-site scripting defense,” in Proceedings
of the 16th Annual Network & Distributed System Security
Symposium (NDSS ’09), San Diego, Calif, USA, February 2009.

[20] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection
attacks with browser-enforced embedded policies,” in Proceed-
ings of the 16th International World Wide Web Conference
(WWW ’07), pp. 601–610, Bnaff, Canada, May 2007.

[21] M. Zalewski,TheTangledWeb: AGuide to SecuringModernWeb
Applications, No Starch Press, 2012.

[22] C. Yue and H. Wang, “Characterizing insecure JavaScript
practices on the web,” in Proceedings of the 18th International
Conference onWorldWideWeb (WWW’09), pp. 961–970,ACM,
2009.

[23] D. Flanagan, JavaScript: The Definitive Guide, O’Reilly Media,
2012.

[24] J. Weinberger, A. Barth, and D. Song, “Towards client-side
HTML security policies,” in Proceedings of the 6th USENIX
Conference on Hot Topics in Security (HotSec ’11), 2011.

[25] H. Gilbert and H. Handschuh, “Security analysis of SHA-256
and sisters,” in Selected Areas in Cryptography, M. Matsui and

R. J. Zuccherato, Eds., vol. 3006 of Lecture Notes in Computer
Science, pp. 175–193, Springer, Berlin, Germany, 2004.

[26] M. T. Louw and V. N. Venkatakrishnan, “Blueprint: robust
prevention of cross-site scripting attacks for existing browsers,”
in Proceedings of the 30th IEEE Symposium on Security and
Privacy, pp. 331–346, IEEE, Berkeley, Calif, USA, May 2009.

[27] Y. Zhu, The Insider WebKit Technology, Publishing House of
Electronics Industry of China, Beijing, China, 2014.

[28] S. Maffeis, J. C. Mitchell, and A. Taly, “Isolating JavaScript
with filters, rewriting, and wrappers,” in Computer Security—
ESORICS 2009, M. Backes and P. Ning, Eds., vol. 5789 of
Lecture Notes in Computer Science, pp. 505–522, Springer,
Berlin, Germany, 2009.

[29] M. Van Gundy and H. Chen, “Using randomization to enforce
information flow tracking and thwart cross-site scripting
attacks,” inProceedings of the 16thAnnualNetwork&Distributed
System Security Symposium (NDSS ’09), San Diego, Calif, USA,
February 2009.

[30] T. Luo andW. Du, “Contego: capability-based access control for
web browsers,” in Trust and Trustworthy Computing, pp. 231–
238, Springer, Berlin, Germany, 2011.

[31] M. Weissbacher, T. Lauinger, and W. Robertson, “Why is CSP
failing? trends and challenges in CSP adoption,” in Research in
Attacks, Intrusions and Defenses, vol. 8688 of Lecture Notes in
Computer Science, pp. 212–233, Springer, Berlin, Germany, 2014.

[32] D. M. Akhawe, Towards high assurance HTML5 applications
[Ph.D. dissertation], University of California Berkeley, Berkeley,
Calif, USA, 2014.

[33] S. Hanna, R. Shin, D. Akhawe, A. Boehm, P. Saxena, and D.
Song, “The Emperor’s newAPIs: on the (In)secure usage of new
client-side primitives,” in Proceedings of the 4thWeb 2.0 Security
and Privacy Workshop (W2SP ’10), Oakland, Calif, USA, May
2010.

[34] M. Johns, “Script-templates for the content security policy,”
Journal of Information Security and Applications, vol. 19, no. 3,
pp. 209–223, 2014.

[35] P. Chen, N. Nikiforakis, L. Desmet, and C. Huygens, “Security
analysis of the Chinese web: how well is it protected?” in Pro-
ceedings of theWorkshop onCyber Security Analytics, Intelligence
and Automation, pp. 3–9, ACM, November 2014.

[36] A. Javed, “Csp aider: an automated recommendation of content
security policy for web applications,” in Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, Calif, USA, May
2011.

[37] K. Patil, T. Vyas, F. Braun, M. Goodwin, and Z. Liang, Poster:
UserCSP—User SpecifiedContent Security Policies, SOUPS, 2013.

[38] K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang, “Towards fine-
grained access control in JavaScript contexts,” in Proceedings
of the 31st International Conference on Distributed Computing
Systems (ICDCS ’11), pp. 720–729,Minneapolis,Minn,USA, July
2011.

[39] L. Ingram and M. Walfish, “Treehouse: javascript sandboxes
to help web developers help themselves,” in Proceedings of the
USENIX Conference on Annual Technical Conference (USENIX
ATC ’12), pp. 153–164, 2012.

[40] J. G. Politz, S. Eliopoulos, A. Guha et al., “ADsafety: type-based
verification of JavaScript Sandboxing,” in Proceedings of the 20th
Conference on Security (USENIX ’11), p. 12, San Francisco, Calif,
USA, August 2011.

[41] M. S. Miller, M. Samuel, B. Laurie et al., “Safe active content in
sanitized JavaScript,” Tech. Rep., Google, 2008.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

