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This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step
beam with moment of inertia and mass per unit length varying as I(x) = a;(1 + [j’x)’+4 and m(x) = o, (1 + Bx)" was studied. By
using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section
is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic
equation of four-order differential equation with constant coeflicients, two kinds of modal shape functions are obtained, and
the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach
to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer
matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated
frequencies and modal shapes are in good agreement with the finite element method (FEM), which demonstrates the solutions of

present method are exact ones.

1. Introduction

Beams with nonuniform cross section are widely used in
various engineering fields, such as bridges, tall buildings, and
helicopter rotor blades. A large number of studies can be
found in literature about the free vibrations of nonuniform
beams. Vibration problems of beams with nonuniform cross
section are often described by partial differential equations
and in most cases it is extremely difficult to find their closed
form solutions. Consequently, a wide range of approximate
and numerical solutions such as Rayleigh-Ritz, Galerkin,
finite difference, finite element, and spectral finite element
methods have been used to obtain the natural vibration
characteristics of variable-section beams [1-4].

Huang and Li investigated the free vibration of axially
functionally graded beams with variable flexural rigidity and
mass density [5]. A novel and simple approach was pre-
sented to solve modal shapes and corresponding frequencies
through transforming traditional fourth-order governing dif-
ferential equation into Fredholm integral equation. Koplow et
al. proposed an analytical solution for the dynamic response
of Euler-Bernoulli beams with step changes in cross section,

which was verified by experimental tests and receptance cou-
pling methods [6]. Firouz-Abadi et al. studied the transverse
free vibrations of a class of variable-cross section beams using
Wentzel-Kramers-Brillouin (WKB) approximation [7]. The
governing equation of motion for the Euler-Bernoulli beam
including axial force distribution was utilized to obtain a sin-
gular differential equation in terms of the natural frequency
of vibration and a WKB expansion series was applied to find
the solution. Inaudi and Matusevich investigated longitudinal
vibration problems of variable-cross section rods using an
improved power series method [8]. This method introduced
domain partition implementation in matrix formulation, as
an alternative to other power series techniques in vibration
analysis. Therefore, the method solved linear differential
equations efficiently up to a desired degree of accuracy and
remedies two limitations of the conventional power series
method. The Adomian decomposition method (ADM) is
employed to investigate the free vibrations of tapered Euler-
Bernoulli beams with a continuously exponential variation of
width and a constant thickness along the length under various
boundary conditions [9]. Duan and Wang demonstrated the
free vibration of beams with multiple step changes using the



modified discrete singular convolution (DSC) [10]. The jump
conditions at the steps were used to overcome the difficulty
in using ordinary DSC for dealing with ill-posed problems.
A transfer matrix method and the Frobenius method were
adopted by J. W. Lee and J. Y. Lee to solve the free vibration
characteristics of a tapered Bernoulli-Euler beam and obtain
the power series solution for bending vibrations [11].

Nevertheless, besides all advantages of such numerical
methods, exact solutions can provide adequate insight into
the physics of the problems and convenience for parametric
studies. The other advantage of exact solutions is their signif-
icance in the field of inverse problems. An exact solution can
be more useful than numerical solutions to design the charac-
teristics and damage identification of a structure.

Wang derived the closed form solutions for free vibration
of a flexural bar with variably distributed stiffness but uni-
form mass [12]. Using a systematic approach, Abrate obtained
a closed form solution of longitudinal vibration for rods
whose cross section varies as A(x) = Ay(1 + a[x/L])* [13].
Kumar and Sujith found the exact solutions for longitudinal
vibration of nonuniform rods whose cross section varies as
A = (a+bx)"and A = A,sin’*(a + bx) [14]. Li presented
an exact approach for free longitudinal vibrations of one-step
nonuniform rod with classical and nonclassical boundary
conditions [15]. The approach assumed that the distribution
of mass is arbitrary, and distribution of longitudinal stiffness
is expressed as a functional relation with mass distribution
and vice versa. Li et al. obtained exact solutions of flexural
vibration for beam-like structures whose moment of inertia
and mass per unitlength vary as EI(x) = a(1+ ﬁx)””, m(x) =
a(l + Bx)" and El(x) = a - exp(=bx), m(x) = « - exp(-bx),
respectively [16, 17].

The components whose moment of inertia I(x) and mass
per unit length m(x) satisfy I(x) = o, (1 + [33()”r4 and m(x) =
a,(1 + Bx)" are widely used in civil engineering, such as the
bridge with cross section height varying as h(x) = h,(1+x)*.
This kind of beam-like structure is usually solved by dividing
it into several segments whose I(x) and m(x) satisty different
distributions. The paper derived the exact general solution
of one-step nonuniform beam firstly and then obtained the
exact solution of multistep nonuniform beam by combining
the transfer matrix method and exact solutions of one-step
beam. The exact solutions of present method not only can
provide convenience for parametric studies, but also are very
useful for inverse problems such as damage identification.

2. Modal Shape Function of One-Step Beam

2.1. Beams with Uniform Cross Section. The governing differ-
ential equation for undamped free flexural vibration of beam
with uniform cross section can be written as [18]

B4y (x,t) 82)/ (x,t)

=0, @
ot M op

EI

where E is Young’s modulus, I is moment of inertia, m is
mass per unit length, and y(x,t) is transverse displacement
at position x and time ¢.
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Assuming the beam performs a harmonic free vibration
at equilibrium position, that is,

y(x,t) = ¢ (x) &, )

where ¢"(x) is mode shape function of uniform beam, w is
corresponding natural frequency.
Inserting (2) into (1) obtains

d4¢u (x) -

EI
dx*

w'm¢* (x) = 0. )

Equation (3) leads to the modal shape function of beam
with uniform cross section:

4
¢ (x) = ) BS} (x), (4)
i=1

where S§7(x) = sinhkx, S(x) = coshkx, S§(x) = sinkx,
Sy (x) = coskx, are B; (i = 1,2, 3, 4) are integration constants,
k* = w*m/EL

2.2. Beams with Variable Cross Section. The governing differ-
ential equation for undamped free flexural vibration of beam
with variable cross section can be written as [19]

0* 0* y(x,1)

2
— [El(x)—] +m(x)M =

=0, 5
O0x? 0x? ot? 0 ®)

where E is Young’s modulus, I(x) is bending moment of iner-
tia at position x, m(x) is mass per unit length at position x,
and y(x, t) is transverse displacement at position x and time .

Assuming the beam performs a harmonic free vibration
at equilibrium position, that is,

y(x%,t) = ¢ (x) e, (6)

where ¢(x) is mode shape function of beam, w is natural
frequency.
Substituting (6) into (5) arrives at

d2

d’¢ (x)

To | em@em=0. O

The moment of inertia I(x) and mass per unit length m(x)
of beam are assumed to vary as

I(x)=a, (1+px)"

>

m(x)=a, (1+px)", (8)

(o, @, 8#0),

where «;, «,, and f3 are arbitrary constants but not equal to 0
and r is a positive integer.
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Substituting (8) into (7) yields

d 4
0= Ea (1+Bx)" ‘Zx(jc)
3
+ 2B, B (r +4) (1 + Bx)’ %

2
+E“1[32 (r+4) (}"+ 3) (1 + ‘Bx)Z dﬁf;x(zx)
_“)2“2(/’(96)-

Let
2= In(1+ ).
d
D=

It can be derived that

d(/)k (x) (1 n ﬁx)k

dxk

—FD(D-1)(D-2)---(D-k+1)¢$(2),

(k=1,2,...,n).
Introducing (1) into (9), one arrives at
0=Ex,f'D(D-1)(D-2)(D-3)¢(2)
+ 2B, B* (r+4)D(D-1)(D-2) ¢ (2)
+Eo, B (r +4) (r +3)D(D - 1) ¢ (2)
- W0, (2).
Equation (12) can be simplified as

0=|D*'+Q2(r+4)-6)D’

+((r+4)(r+3)-6(r+4)+11) D’

2
w o,

Ea, f3*

+(4@r+4)-(r+4)(r+3)-6)D -

$(2).
Let
a, =2(r+4)-6,
a,=0r+4)(r+3)-6(r+4)+11,
a;=4(r+4)-(r+4)(r+3)-6,

2
wa,

a,=— .
Eo, p*

Equation (13) can be written as

(D*+a,D’ +a,D* + a;D + a,) ¢ (2) = 0.

)

(10)

(11)

(12)

(13)

(14)

(15)

3
The characteristic equation of (15) is
d* +a,d +a,d +a;d +a, = 0. (16)
The four roots of (16) are
2
L _g-alne(@2-g) -0 )
12 = >
’ 2
(17)
2
-g-a/2+ \/(al/Z +g) —4(t/2+ f)
d3,4 = > >
where
2 3 2 3
t=3 —Q+\/q Py _g_\jq+P %,
2 4 27 2 4 27 3
t is a real root,
1,
p=aa; =20, ~ 4ay,
1 2 5 5, 8 (18)
q= §a1a2a3 - Eaz —aja, + §a2a4 -a;,

f=

2 12
]
_ (a,t/4 —as/2)

The modal shape function of one-step beam with variable
cross section can be written as

¢ (x) = ¢, e + e + ce®7 + ¢ o™, (19)

where ¢, ¢,, 6, and ¢, are four undetermined coefficients.

Sincea, < 0,then f > t/2,andt/2—f < 0, it can be found
that d, and d, are two real roots in the first equation of (17).
From the second equation in (17), it can be found that when
(a,/2+ g)2 > 4(t/2+ f), d; and d, are also two real roots and
when (a,/2 + g)* < 4(t/2 + f), d, and d, are two conjugate
complex roots.

Modal shapes of one-step beam are determined by the
roots as follows:

(1) When d,, d,, d;, and d, are all real roots, substituting
z =In(1 + Sx) into (19), one obtains

¢ (x) =B, (1+Bx)" +B, (1 +fx)™
(20)

+ By (1+Bx)" + B, (1+Bx)™.

(2) When d, and d, are real roots, while d, and d, are two
conjugate complex roots, let
—9-a/2

s = 5 ,

o Va(t/2+ f) - (@/2+9)|
2= P >

(1)
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FIGURE 1: Multistep beam.

the roots d; and d, can be expressed as

dy =s;+5,/, )
dy=s; -5

where j = V-1.
Substituting z = In(1 + Bx) and (22) into (19) yields

¢ (x) = By (1+ Bx)" + B, (1 + fx)™

+ B, (1+ Bx)" coss, In (1 + Bx) (23)
+ B, (1 + x)" sins, In (1 + Bx).

In (20) and (23), B; (i = 1,2, 3,4) have the same meanings as
those in (4) and they are integration constants. The solutions
of (20) and (23) are the exact general solutions only at the con-
dition of 3 # 0. This is because z will be equal to zero in (10) if
for B = 0. And the derivation of constant term for the second
equation in (10) has no mathematical meaning. Meanwhile,
from the numerical point of view, small value of 8 (f — 0) is
adopted and the uniform beam is approached; then, it could
be solved by (20) or (23). However, compared to solutions of
uniform beam by (4), the solutions of approximate uniform
beam are not exact general solutions but numerical solutions.

Equations (20) and (23) can be expressed with a uniform
style as

4
¢ (x) =) BS; (x); (24)

i=1

when the modal shape function is (20), S;(x) = (1 + ﬁx)d*
fori = 1,2,3,4, and when it is (23), S;(x) = (1 + ﬁx)d" for
i = 1,2,and S5(x) = (1 + Bx)" coss, In(1 + fx), Sy(x) =
(1 + Bx)* sins, In(1 + Bx).

3. Transfer Relationship for
Undetermined Coefficients of Multistep
Beam Modal Shapes

As shown in Figure 1, the multistep beam is divided into m
segments. For an arbitrary beam segment k (k = 1,2,...,m)
with length [, a local Cartesian coordinated system is
established with the origin locating at the left end of segment,
I,.(x) is bending moment of inertia for the kth segment, and
¢r(x) is mode shape function for the kth segment, where x is
defined as belonging to the kth segment in the local Cartesian
coordinated system.

Taking the kth segment, for example, the continuity of
deformations, equilibrium of moments, and shear forces are
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satisfied at the right end of the kth segment and left end of the
(k + 1)th segment; that is,

o (x)llek = P (x)|x:0 >
‘/)]Ic (x)|x:lk = ¢I,<+1 (X)|x:0 >

E[L ()¢ @], = B[l ) 8 0]| .

d [EIk (x) - ¢]I{I (x)] (25)

dx

x=I),

B d [EIk+1 (x) - ¢1I<’+1 (x)]
- dx

x=0

where prime denotes the derivative with respect to local
coordinate x.

Substituting modal shape functions of the kth and (k +
1)th segments ((4) or (24)) into (25) yields

4 4
Y BES! (1) = Y BESE (0
i=1 i=1
4
ZB Slk k Slk+1 (0) ,

=1

L () ZB S () = I (0) ZBkHS”kH( )

i=1

(26)
I () ZBz S (1) + I (1) ZBz s (1)

4
_ I]L+1 (0) ZB:HIS:IkH (0)

i=1

4
+ Ik+1 (0) ZBerlS;”kﬂ (0) ,

i=1

where Bf.c denotes the ith undetermined coeflicient of modal
shape function of the kth segment and SF is the ith term in

modal shape function of the kth segment.
Equation (26) can be rewritten into a matrix form:

H Uy = Hy,, U, (27)

where

= 1{B* B* B B},

U _ Bk+1 Bk+1 Bk+1 Bk+1 ,
= [H x1 Hiy Hps Hk4])
Hk+ [H(k+1) H(k+1)2 I_I(k+1)3 H(k+1)4] >
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in which
[ $i ()
()
L () 87 (1)
L1 (5) Sz{’k () + I () Simk ()

(29)
Sf'ﬁ—l (0)
S;k+1 (0)

Ik+1 (0) Sirlk+1 (0)
-Ili+1 (O) S:lkﬂ (0) + Ik+1 (0) Sl{nk+1 (0)

Hjnyi =

Let
T, = HIZLHki (30)
then,
Uy, = H HiUp = T U, (1)

Equation (31) represents the transfer relationship of four
undetermined coefficients for modal shapes of the kth and
(k + 1)th segments. T}, is the transfer matrix. In accordance
with (31), transfer relationship between the first segment and
the last segment can be expressed as

U, = Tmflefz U T2T1U1 = TUlr (32)

whereT=T,,_,T,_, - T,T,.

4. Solutions of Natural Frequencies
and Modal Shapes

Based on the modal shape function of one-step beam ((4) or
(24)) and transfer relationships for undetermined coefficients
of modal shapes for each segment ((32)), natural frequencies
and modal shapes of multistep beam can be determined
by boundary conditions of the beam. The cantilever and
simply supported boundaries are considered in this paper,
respectively.

For cantilever multistep beam, the boundary conditions
are

(/51 (0) = O)
¢ ()], =0,
El, ()¢, ()|, =0, (33)

2 (1, (%) - b ()]
dx

x=l,,

Inserting the modal shape functions into (33) and utiliz-
ing transfer relationship in (32), one arrives at

© U, =0 34
[CmT] T Gy

where

[s} (0) S;(0) S;(0) 51(0)]
1= >

S;H(0) Sy (0) Si(0) S (0)
(35)

ST ) ST E) S () S (5
m Si”m (lm) S;IIm (lm) Sg’m (lm) S[I}Hm (lm) :

For simply supported multistep beam, the boundary
conditions are

¢1 (0) = 0’
EL (x) - ¢y ()] _, =0,
(36)
b (1) = 0,
El, () ¢, (0], =0.
Similar to (34), one obtains
C
, |Uui=0, (37)
Cc T
where
. [S} 0) $;(0) S3(0) S (o>]
L Lsm) Sy sM) S o))
(38)

IS SEG) ST S
“n [si’m () S (1) S0 (1) SI™ (zm)} |

Equations (34) and (37) can be written into a uniform
style

1 G2 63 Gy
1
G1 Gy O3 04| |B
cu = | " 2, (39)
G1 Gy G3 Gy | | B;

1
G S Gz Cul (B,

where the elements ¢; (i, j = 1,2,3,4) in C are functions of
natural frequencies w for multistep beam.

Existence of nontrivial solutions of (39) leads to the
following frequency equation

IC| = 0. (40)

If the frequency region [w,;, wy;] for the ith natural
frequency w; of multistep beam and the expressions of modal
shape functions for each segment ((20) or (23)) can be
determined, then the expressions of elements in matrix C
can be uniquely determined. The ith natural frequency w; of
multistep beam can be calculated by (40) directly, and unde-
termined coefficients in modal shape function of the first seg-
ment can be solved by (39); then, the undetermined coeffici-
ents for other segments can be obtained by using transfer
relationship in (32).



FIGURE 2: Two-step beam.

If the frequency region or expressions of modal shape
function for each segment ((20) or (23)) cannot be deter-
mined, the natural frequencies and modal shapes can be
solved by the half-interval method [20]. The detailed process
for determining natural frequencies is as follows. Firstly, an
initial value of the ith natural frequency w,; is assumed, and
the expressions for modal shape function of each segment
corresponding to w,; can be determined ((20) or (23)); then,
the coeflicient matrix C corresponding to w,; is obtained
and the determinant of matrix C is calculated (denoted as
D,; = |C(w,y)]). Then, a new value wy,;, = w,; + Aw with
Aw (e.g., Aw = 0.5) representing the increment of w is
assumed, and the same calculations are repeated to determine
the new determinant corresponding to wy,; (denoted as D;; =
|C(w)]). If D,; and Dy, have opposite signs, there is at least
one natural frequency in the interval [w,;, wy;]; otherwise,
let w,; = wy; and continue the above procedures until D;
and D,,; have opposite signs. For the next step, let w,; =
(w,; + wy;)/2; if D,; and D,; have the same sign, let w,; = w,;;
otherwise, let wy,;, = w,;; a new interval [w,;, w,;] is obtained.
The same calculations are repeated to determine the new
interval [w,;, wy,;] until the rank of matrix C is equal to three.
The accurate values of w are obtained, respectively, using the
half-interval method.

5. Numerical Examples

To verify the correctness of present analytical method, several
numerical examples are studied in this paper. The materials
used in these examples are all the same; that is, Yong’s modu-
lus is 3.25 x 10" Pa and density is 2500 kg/m®. Poisson’s ratio
is v = 0.3 in a two-dimensional FEM (2D-FEM) analysis.

5.1. Reliability of the Proposed Method

5.1.1. Validation by Finite Element Method. In order to
illustrate the proposed method, a two-step beam with 10 m
span, as shown in Figure 2, is used as numerical model and
solved by one-dimensional FEM (1D-FEM), 2D-FEM, and
the present analytical method, respectively.

Cross section of this beam is rectangular with constant
width 0.3m. The heights of sections at A, B, and C are
expressed by hy, hg, and hg, respectively. hy, = hg, hg =
0.7h,. And the height of each step varies nonlinearly as

AtoB:
hap (x) = hy (1+ Bapx)’, (0 x<5),

Vilhiai-1  7i0-1 ()
ﬁAB = 5 = 5 5

Mathematical Problems in Engineering

FIGURE 3: A two-dimensional ANSYS model for 2D-FEM analysis
(L/h, =10).

BtoC:
hpe (§) = hy (1 + ﬁ3c5)2>

(E=x-5 5<x<10),
P77 W (42)
BC = = .

5 5

For ID-FEM. The finite element method with two-nodes
beam element. Each node of the beam element has two
degree-of-freedoms, that is, transverse displacement and
rotation angle. The cubic Hermite polynomial is adopted
as shape function for beam element. Therefore, the shape
functions N; (i = 1,2, 3,4) can be expressed as

(13 -3l + 2x3)
1= 1—3’

g, - B2 e x)

L2
N, = (3lx2 - 2x3) (43)
& ’

2
0<x<l

In (43), I is the length of beam element and / = 0.5m.
Let N = {N; N, N; N,}; stiffness matrix and mass
matrix of the beam element can be evaluated as

1
K= J B"EI (x) Bdx,
y (44)
M’ = J m (x) NN dx,
0

where B = d?N/dx? is the strain matrix of beam element.
Using above stiffness matrix and mass matrix, finite element
analysis is carried on by the codes written in MATLAB.

For 2D-FEM. A finite element analysis is carried out using
ANSYS software. A 2D-FEM model of two-step beam is built
with 8-node PLANEI83 elements as shown in Figure 3.

The ratios of span and height at A (L/h,) vary from 10 to
100. h», hg, and h, are variables with L/h,, and 345 and Bz
are constants. Relative errors of the first two-order natural
frequencies obtained by 1D-FEM and 2D-FEM with respect
to present analytical method are shown in Figure 4.

As can be seen from Figure 4, the relative errors between
1D-FEM and present method remain at a very small lever
all the time no matter how L/h, changes, and the relative



Mathematical Problems in Engineering

Relative error (%)

—A— Relative error of 1st frequency between 1D-FEM and
present method

-A- Relative error of 1st frequency between 2D-FEM and
present method

— Relative error of 2nd frequency between 1D-FEM and
present method

--- Relative error of 2nd frequency between 2D-FEM and
present method

FIGURE 4: Relative error of 1D-FEM and 2D-FEM.

errors between 2D-FEM and the present method decrease
rapidly with L/h , increasing. This is because 1D-FEM and the
present method are employed without considering the effect
of shear deformation and the stiffness and mass matrixes are
formed by integration method for the variable moment of
inertia and mass in 1D-FEM modeling. However, the shear
deformation is inevitable for a two-dimensional FEM model.
When L/h, reaches a certain lever, the error between 2D-
FEM and the present method becomes smaller. For example,
when L/h, = 60, the frequencies obtained by 2D-FEM and
the present method are very close and relative error of the
first two order frequencies is about —0.1%. With regard to
beam-like structural free vibration, it can be treated as plane
stress problem, so a 2D-FEM analysis is more accurate than
a 1ID-FEM analysis in theory. For easy of calculation, the
beam-like structure can be treated as Euler-Bernoulli beam
when L/h, reaches a certain lever and the effect of shear
deformation could be ignored. And the object of this paper
is not considering the effect of shear deformation, so the
solutions of the proposed method are exact ones based on
Euler-Bernoulli beam theory. This leads to different relative
errors of 1D-FEM and 2D-FEM shown in Figure 4. It also
reveals that the present method possesses favorable accuracy
for the larger ratio of span and sectional height.

5.1.2. Numerical Simulation for Small Value of 3. From the
numerical point of view, small value of § (8 — 0) is
adopted, and the uniform beam is approached. In order to
verify the explanations, a one-step beam with small value
of B (shown in Figure 5) and a one-step uniform beam
(shown in Figure 6) are used for numerical simulation by the

T

A 15 B

FIGURE 6: One-step uniform beam.

present method ((20) and (23) for nonuniform beams, (4) for
uniform beams).

One-Step Beam with Small Value of [3. The span is 15 m. Cross
section of this beam is rectangular with constant width 0.3 m.

The heights of sections at A and B are h, = 0.25m and
hg = 0.249 m, respectively, and the height varies nonlinearly
from A to Bas

h(x)=h, (1+px)’, (0<x<15),
Vil -1 2497250 - 1 (45)
P=""1 5 (B0,
Therefore,
3 3 6
I(x) = b’ (x) _ bhy (1 + Bx) ,
12 12
(46)

m (x) = pbh (x) = pbh, (1 + px)’,
(0<x<15).

One-Step Uniform Beam. The beam is also 15m span with
constant width 0.3 m, and the height is 0.249 m.

The one-step beams with different boundary conditions
have been analyzed.

Case 1. A cantilever beam model.
Case 2. A simply supported beam model.

The first three natural frequencies of one-step beam with
small value of B (f — 0) calculated by (20) or (23) are
compared with those of one-step uniform beam calculated by
(4); the results are listed in Tables 1 and 2.

As can be seen from the results, the relative errors
between nonuniform beam with small value of 8 and uniform
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TaBLE 1: Calculation results of natural frequencies for Case 1.

Beam type One-step beam with small value of 8 One-step uniform beam with height 0.249 m Relative error (%)

Ist (rad/s) 4.0680 4.0499 —0.4451

2nd (rad/s) 25.4507 25.3805 -0.2755

3rd (rad/s) 71.2273 71.0663 -0.2261
TABLE 2: Calculation results of natural frequencies for Case 2.

Beam type One-step beam with small value of 8 One-step uniform beam with height 0.249 m Relative error (%)

Ist (rad/s) 11.3912 11.3684 -0.2002

2nd (rad/s) 45.5647 45.4734 -0.2003

3rd (rad/s) 102.5205 102.3152 -0.2003

beam are very small. It reveals that the uniform beam is
approached when f is small enough (f — 0). However, for
small value of f3 representing a uniform beam, the solutions
are not exact general solutions but numerical solutions.

5.2. One-Step Beam. A one-step beam with 15m span, as
shown in Figure 5, is used for numerical simulation. Cross
section of this beam is rectangular with constant width 0.3 m.
The heights of sections at A and B are h, = 0.25m and
hg = 0.175m, respectively, and the sectional height varies
nonlinearly from A to B as

h(x)=hy (1+Bx),

(0<x<15),
g VPl =1 _ 701 (“47)

15 15

Therefore,

3 3 6
() = b’ (x) _ bh, (1 + Bx) ’
12 12

m (x) = pbh (x) = pbhy, (1 + px)’, (48)

(0<x<15).

The one-step beam with different boundary conditions
has been analyzed.

Case 3. A cantilever beam model.
Case 4. A simply supported beam model.

The first three natural frequencies of one-step beam with
different boundary conditions calculated by the proposed
method and FEM are listed in Tables 3 and 4; modal shapes
are shown in Figures 7 and 8.

As can be seen from the results calculated by the proposed
method and FEM, relative errors for the first three natural
frequencies of the one-step beam with different boundary
conditions are very small. It reveals that the solutions for
one-step beam with variable cross section by the proposed
method are exact ones. The reasons lie in that only the
differential equations of motion for one-step beam with
variable cross section are used to make the solutions, and no
other assumptions are introduced.

0.8 +
0.6
04 +
0.2+
Om—
-02

-04 -
-0.6
-0.8

1L

Vertical mode displacements

—— Ist mode-2D-FEM
--- 2nd mode-2D-FEM
== 3rd mode-2D-FEM

- 1st mode-present
-@- 2nd mode-present
- - 3rd mode-present

FIGURE 7: Modal shapes of Case 3.

Vertical mode displacements

—— 1Ist mode-2D-FEM
——- 2nd mode-2D-FEM
-—--= 3rd mode-2D-FEM

—- Ist mode-present
-@- 2nd mode-present
-- 3rd mode-present

F1GURE 8: Modal shapes of Case 4.

5.3. Multistep Beam. To verify the correctness of present
method for free vibration analysis of multistep beams, a two-
step simply supported beam with variable cross section (as
shown in Figure 9) is used for numerical simulation firstly.
The cross section of this beam is rectangular. The segments
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(a) (®)
FIGURE 9: Two-step simply supported beam: (a) elevation graph; (b) plane graph.
TABLE 3: Calculation results of natural frequencies for Case 3.
i 0,
Methods Present (rad/s) 1D-FEM (rad/s) 2D-FEM (rad/s) Relative error (%)
1D-FEM 2D-FEM
Ist 4.2234 4.2229 4.2232 -0.0120 -0.0047
2nd 22.8615 22.8680 22.8406 0.0283 -0.0914
3rd 61.3271 61.3522 61.1800 0.0410 —-0.2399
TABLE 4: Calculation results of natural frequencies for Case 4.
1 0,
Methods Present (rad/s) 1D-FEM (rad/s) 2D-FEM (rad/s) Relative error (%)
1D-FEM 2D-FEM
Ist 9.5349 9.5398 9.5316 0.0511 -0.0350
2nd 38.3529 38.3716 38.3029 0.0487 -0.1303
3rd 86.2536 86.2964 85.9980 0.0495 -0.2964

AB and BC have variable heights and widths. In the two-
dimensional FEM analysis, a fine mesh of elements is used
and the average thickness of element is adopted for element
thickness.

For segment AB, the heights of sections A and Bare h, =
0.36 m and hy = 0.24 m, respectively; the widths of sections
A and B are b, = 0.3 m and by = 0.2449 m, respectively. The
height and width from A to B vary as

hyp(x) =hy(1+ l;ABx)z’
bap (x) = by (1 + Bapx),

0<x<10), *
g, - Va1 _ 2
AB T 10 T 10
Therefore,
Ly (x) = byp (x) - hi\B (x) bAhi (1+ ﬁABxy
AB T 12 - 12 ’
(50)

Myp (%) = pbag (x) - g (x) = pbyhy (1 + ﬁAB’C)3 ,
(0<x<10).

For segment BC, the heights of sections B and C are hy =
0.24 m and h = 0.38 m, respectively; the widths of sections B

and C are by = 0.2449 m and b = 0.3082 m, respectively. The
height and width from B to C vary as

hpe (§) = hg (1 + ﬁBCE)Z’
byc (§) = by (1 + Bpct),

E=x-10, 10<x<22), OV
_helhg—1  \19/12-1
Bec = B = 5 )
Therefore,
_ bac ©)- th 3 _ thg (1+ ﬁBcfy
Igc (§) = 5 - = ,
(52)

mpc (§) = pbyc (§) - hpe (§) = pbghy (1 + ﬁBcf)S >
(0<&E=x-10<12).

The first three natural frequencies of two-step simply
supported beam are calculated by the proposed method and
FEM, which are listed in Table 5. The modal shapes are shown
in Figure 10.

Secondly, a three-step simply supported beam with vari-
able cross section, as shown in Figure 11, is used for numerical
simulation. Cross section of this beam is rectangular with
constant width 0.3 m. The segments A-Band C-D are variable
sections, and B-C is uniform cross section.
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TaBLE 5: Calculation results of natural frequencies of two-step simply supported beam.
1 0,
Methods Present (rad/s) 1D-FEM (rad/s) 2D-FEM (rad/s) Relative error (%)
1D-FEM 2D-FEM
Ist 5.7666 5.7712 5.7570 0.0805 -0.1656
2nd 25.1551 25.1761 25.1157 0.0838 -0.1566
3rd 571504 57.2114 56.9501 0.1068 —-0.3490
TABLE 6: Calculation results of natural frequencies of three-step simply supported beam.
1 0,
Methods Present (rad/s) 1D-FEM (rad/s) 2D-FEM (rad/s) Relative error (%)
1D-FEM 2D-FEM
Ist 5.2110 5.2132 5.2089 0.0414 -0.0402
2nd 21.6022 21.5989 21.5683 -0.0155 -0.1571
3rd 50.2561 50.3032 50.1738 0.0938 —-0.1638
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1L
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FIGURE 10: Modal shapes of two-step simply supported beam.

For segment AB, the heights of sections A and Bare h, =
0.3m and hg = 0.2 m, respectively. The height of section from
A to B varies as

hap (x) = hy (1+ Bapx)’, (0 x<5),

53
\hglhy, -1 2/3-1 (53)
=5 =775
Therefore,
6
Ly () = blp (x) _ bl (1+ Papx) ,
12 12

(54)

Mg (x) = pbh g (x) = pbhy (1 + Bapx)’,
(0<x<5).

hCD(E)zhC(l"',BCDE)Z, (0S€=X—15S5),
Vhp/he — 1 3/2-1 (55)
ﬂCD = 5 = 5 .
Therefore,
bh? bh. (1 6
ICD (E) — CiD2 (E) _ C ( I’zﬁCDE) ,
(56)

mep (§) = pbhcp (€) = pbhe (1+ fopf)’
(0<é=x-15<5).

The first three natural frequencies of three-step simply
supported beam calculated by the proposed method and FEM
are listed in Table 6, and the modal shapes are shown in
Figure 12.

From Tables 5 and 6 and Figures 10 and 12, for two-
step and three-step simply supported beams, it can be found
that the first three natural frequencies and modal shapes
calculated by the proposed method are in good agreement
with those calculated by FEM. It reveals that the solutions for
multistep beam with variable cross section by the proposed
method are exact ones. This is because only transfer matrix
method and exact solutions of one-step beam with variable
cross section are used to solve the equations of vibration
for multistep beam with variable cross section, and no other
assumptions are introduced.
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Vertical mode displacements

—— Ist mode-2D-FEM
--- 2nd mode-2D-FEM
== 3rd mode-2D-FEM

- 1st mode-present
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-A- 3rd mode-present

FIGURE 12: Modal shapes of three-step simply supported beam.

6. Conclusions

In this paper, an exact approach to investigate the flexural
free vibrations of multistep nonuniform beams is presented.
The differential equation for flexural free vibration of one-
step beam with I(x) = oq(1 + ,Bx)’Jr4 and m(x) = a,(1 +
Bx)" is reduced to a four-order differential equation with
constant coefficients by using appropriate transformations.
And the general solutions of one-step beam are obtained,
whose modal shape functions are found to have two kinds
of expressions. Then, combining transfer method, iterative
method, and the general solutions of one-step beam, the
solving method for natural frequencies and modal shapes
of multistep beam is formulated. Numerical simulations on
multistep nonuniform beam are used to verify the feasibility.
The following conclusions can be obtained:

(1) The comparison of relative errors among the present
analytical method and finite element methods reveals
that the solutions of proposed method are exact ones
based on Euler-Bernoulli beam theory. The present
method is suitable for the larger ratio of span and
sectional height and possesses favorable accuracy.

(2) The relative errors between nonuniform beam with
small value of § and uniform beam are very small.
It reveals that for small value of f3 representing a
uniform beam, the solutions are not exact general
solutions but numerical solutions.

(3) Numerical studies of one-step cantilever beam and
simply supported beam indicate that natural frequen-
cies and modal shapes calculated by the proposed
method are very close to the FEM results, which
demonstrates the solutions of one-step beam are exact
ones. And numerical examples of two-step and three-
step simply supported beams show that the calcu-
lated frequencies and modal shapes are also in good
agreements with FEM results, which also demonstrate
the solutions of presented method for multistep beam
with variable cross section are exact ones. The reasons

1

lie in that only transfer matrix method and general
solution of one-step beam are used to obtain the
solution equation of natural vibration characteristics,
and no other assumptions are introduced.

The exact solutions of proposed method can provide ade-
quate insight into the physics of problems and convenience
for parametric studies. Furthermore, they are very useful for
inverse problems such as structural damage identification.
Therefore, it is always desirable to obtain exact solutions for
such problems. However, when the ratio of span and sectional
height is small, relative errors between FEM and present
method may be rather larger. The deficiency of this paper
is not considering shear deformation in vibration analysis of
nonuniform beams, leading to larger error for the small ratio
of span and sectional height. This also has become the topic
which the author further deliberated from now on.
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