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Laminar cooling process is a large-scale, nonlinear system, so the temperature control of such system is a difficult and complex
problem. In this paper, a novelmodelingmethod and aGPC-PID based control strategy for laminar cooling process are proposed to
control the global temperature curve to produce high quality steel. First, based on the analysis of the cooling process of laminar flow,
a new TS fuzzy model which possesses intelligence and self-learning ability is established to improve the temperature prediction
accuracy. Second, the target temperature curve can be divided into several subgoals and each subgoal can be described by a
CARIMA type of model. Then, by the decentralized predictive control method, GPC-PID based control strategy is introduced
to guarantee the laminar cooling process to achieve subtargets, respectively; in that way the steel plate temperature will drop along
the optimal temperature curve. Moreover, by employing the dSPACE control board into the process control system, the matrix
process ability is added to the production line without large-scale reconstruction. Finally, the effectiveness and performance of the
proposedmodeling and control strategy are demonstrated by the industrial data andmetallography detection in one steel company.

1. Introduction

Nowadays, higher requirements have been posed for the
property of steel plates in fields like shipbuilding, auto
industry, bridge construction, and so forth. The property of
steel plates and their microstructures are, to a large extent,
determined by the accuracy of the temperature control in the
cooling process [1, 2]. Controlling the steel final temperature
in the cooling process after rolling has been a representative
control problem for metallurgical engineering control and it
has attracted considerable attention for the control commu-
nity. The final temperature, called coiling temperature (CT),
determines the physical and mechanical properties of the
steel product. However, in recent years higher requirements
are proposed that the temperature curve of the whole process
needs to be controlled to produce finer microstructure. Since
the laminar cooling process only lasts for a very short time
and is unidirectional, in practice themodel predictive control
(MPC) is the most widely used to control this process.
Before the real-time control, a simulation must be done to

calculate the initial inputs to achieve the desired temperature
(coiling temperature). Therefore, establishing a model with
high precision and efficiency is especially important [3].

There are two kinds of challenges in improving the pre-
cision of the target temperature during the control process.
One challenge is to build a model with high efficiency and
accuracy. There usually exist two different types of models
in recent study: the physical model and the statistical model.
In physical model, mechanism analysis is generally used to
model the laminar cooling process, which is capable of fully
reflecting the heat transfer conditions and then outputting
relatively precise coiling temperature [4, 5]. However, the
accuracy of this kind of model is difficult to be further
improved owing to its nonlinearity, multicoupling, and mul-
tivariate parameters. In order to get more accurate results,
artificial intelligent method is introduced to model the lami-
nar cooling process [6]. Also, there aremany researches using
neural network to control the laminar flow cooling process
[1, 7]. Some studies use fuzzy logic to improve the accuracy of
model [5, 8, 9].The disadvantage of this method is that a large

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 7454805, 16 pages
http://dx.doi.org/10.1155/2016/7454805



2 Mathematical Problems in Engineering

number of plates have to be cooled for training the neural net-
work before the neural network is ready for use [10].The accu-
racy of the statistical model is subject to the numbers of clas-
sification. Based on the analysis of those two models, a high
efficiency model which combines both the physical model
and the statistical model is proposed in this paper to control
the laminar cooling process and avoid each natural defect.

Another challenge is to design a high-efficiency control
method in laminar cooling process. Many different control
methodologies have been attempted; among them the model
predictive control is the most common used. For example,
Smith predictor control [11], element tracking control [12],
self-learning control [13], and adaptive control [14] are
employed to control the coiling temperature by using the
simplified model. Most existing MPC methods use the ther-
modynamicmodel to estimate the spatial distribution of strip
temperature and get a high precision of CT [2, 15]. In
recent year, some of the scholars present various effective
approaches that attempt to control the cooling rate and cool-
ing curve. Literature works [16–18] try to use distributemodel
predictive control to design a supervisory controller regulat-
ing the temperature curve. In [19] distributed and horizon-
varying model predictive control is applied to control the
cooling rate and the fine temperature and gets a very good
performance. However, those works are mostly verified in
simulation or in the laboratory condition, no production
results, and metal crystal detection is performed to verify
the effectiveness. In the manufactory, the compute ability of
control computer is usually not powerful enough to handle so
many matrixes in one control cycle. To control the tempera-
ture curve of the whole process, an effective method should
be designed to utilize in the industrial current environ-
ment without large-scale reconstruction or upgrade project.
Besides, it is well known that controlling the coiling temper-
ature curve dropping along a designed optimal temperature
can produce high quality of steel plate [8, 17–19]. However, in
the manufactory, the temperature curve in the runout table
usually is ignored, since controlling the final temperature to
match the target temperature could get good steel. Further-
more, based on the existing equipment in the manufactory,
the target temperature curve is impossible to control.

Motivated by these recent developments in laminar cool-
ing control strategy and the demand of the industry produc-
tion, this paper presents a novelty modeling method and a
GPC-PID based control strategy for computational and prac-
tical reason which could enhance the precision and flexibility
of the manufactory control system. Developing an integrated
modelingmethod and a controller for easy tuning and imple-
mentation are what we focus on most. While similar models
and controls have been used and reported in the literature for
laminar cooling process control, the novelty of the approach
presented in this work lies in the following aspects. (a) The
intelligent TS fuzzy model proposed combines the advantage
of the data model and the physical model by adding the phys-
ical model with self-learning ability. (b) The coiling temper-
ature and the temperature curve could be controlled in one
control method and could be chosen based on the demand.
(c) The MPC type of control method contains both the
CARIMAmodel based on stable point and the physicalmodel

of thewhole process, and they are coordinated to be employed
in the different steps of the control. (d) A practical and effec-
tive solution is provided for the using of the control strategy in
the product line by the current condition without large-scale
redevelopment of the control system in production line.

The contents are organized as follows. Section 2 first
describes the mechanism analysis and the method to build
the physicalmodel and then presents the intelligentmodeling
strategy of laminar cooling process. Section 3 presents the
TS modeling and recognition method, and a data processing
technology of the intelligent model is deduced. Section 4
describes that the control strategy of the laminar cooling
process to regulate the temperature curve is designed by
setting subgoals along the production line and controlling the
subgoals.TheGPC-PID control algorithm is derived and pro-
vides a computing algorithm. The simulation results and the
experimental validation of both model and control method
are summarized in Section 5, followed by the conclusion in
Section 6.

2. Intelligent Modeling

2.1. Mechanism Analysis. The laminar cooling process is
illustrated in Figure 1. A laminar flow cooling process refers
to a process inwhich rolled steel plates cool down in a laminar
flow cooling zone; after that process the steel plate is cooled
at preset temperature. The final temperature is also called
the cooling temperature. The laminar cooling process is a
very important part of iron-making industry to product high
quality steel plate. It is used to cool a strip from a high tem-
perature about 800–1000∘C down to a cooling temperature
of roughly 400–680∘C in the runout table, according to the
steel grade and varieties. The runout table is about 145m in
length and 80 groups of spray headers are installed above and
below it. The first 64 groups headers are for the main cooling
section and the last 16 groups are for the fine section. When
the steel plate is about to be cooled, firstly it is cooled by the
main section to nearly the target temperature; then the fine
section cools it to the target temperature more accurately.
There are only 4 pyrometers located along the runout table,
because in the cooling process a large amount of water vapor
floating above the steelmakes it impossible for the noncontact
infrared sensor to measure the real temperature of the plate.
The temperature could only be measured when the steel plate
is out of the water.

The laminar flow is cooled through various means, such
as water cooling heat transfer, air convection heat dissipation,
thermal radiation dissipation, and phase change latent heat
and the velocity of steel plates and spayed water quantum are
controllable in the cooling process. It is important to figure
out the extent to which each influencing factor may affect the
laminar cooling process by using the laminar cooling pro-
duction data and conventional laminar flow cooling model.
Table 1 lists the heat dissipation amount of different kinds of
1000 kg-weighted steel plates and their mean value.

From Table 1 and Figure 2 it can be seen that although
certain amount of heat is released in phase change of steel
plates, heat dissipation takes the main role in laminar flow
cooling process. As being calculated, the heat transferred by
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Table 1: The composition of heat release.

Total heat release Thermal radiation Water cooled heat Air cooled heat Else
100% 6.4% 82.6% 7.1% 3.9%
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Figure 1: The process of the laminar cooling.

Thermal radiation,
6.40%

Water cooled
heat, 82.60%

Air cooled heat, 
7.10%

Else, 3.90%

Thermal radiation
Water cooled heat

Air cooled heat
Else

Figure 2: The composition of heat release.

water cooling accounts for over 86% of the total heat dis-
sipation. However, in a laminar flow cooling process, only
water cooling heat transfer is controllable by adjusting the
flux of water and water cooling time. Therefore, except for
water cooling transferred heat, the heat dissipated through
other means can be replaced by a theoretical value and its
difference from the actual quantity can be considered as a part
of water cooling transferred heat. As long as the water cooling
transferred heat quantum is calculated reasonably, we can get
relatively accurate total heat dissipation and curl temperature:

𝑑𝑄
𝑐
= −𝐹 ⋅ 𝛼 ⋅ (𝑇

𝑠
− 𝑇
𝑤
) ⋅ 𝑑𝜏, (1)

where 𝑑𝑄
𝑐
is the amount of heat loss through convection at

unit time, J/s, including heat losses through water-cooling
and air convection; 𝑇

𝑠
is strip temperature, ∘C; 𝑇

𝑤
is the

cooling water temperature, ∘C; 𝐹 is the contact surface area
between the plate and the cooling water, m2; 𝑑𝜏 is the contact

cooling time, s; 𝛼 is the heat convection constant, represent-
ing the heat exchange intensity at unit area, W/(m2⋅K).

According to formula (1), the key parameter affecting
water cooling heat dissipation is water cooling heat transfer
coefficient 𝑎

𝑤
, which is temperature-dependent. Since tem-

perature is not a constant, it is very hard to calculate this
coefficient accurately. In addition, subject to the influence of
water temperature and themovement of steel plate, it is nearly
unrealistic to determine water cooling heat transfer coeffi-
cient by one formula only. In view of these, we use TS model
method of water cooling heat transfer coefficient to solve the
problems described above.

2.2. Modeling Structure. The intelligent model built in this
paper refers to the physicalmodel and combines with the data
processing method to structure a kind of model which owns
data self-learning ability. The model requires two aspects
performances, since the laminar cooling process is large-
scale, short-time, nonlinear characteristics. Firstly, based on
the process inputs, the model should calculate the strip tem-
perature accurately, in order to provide the initial setting of
the production line. Secondly, the production line is so rapid
that fast calculation of the model is needed; consequently the
structure of the model should be simple and efficient. The
novel type of modeling strategy for laminar cooling process
is shown in Figure 3.

The intelligent model contains three parts: the mech-
anism model, the TS Fuzzy model, and the self-learning
model. The mechanism model is the traditional model with-
out the water cooling heat transfer coefficient which is deter-
mined by the TS fuzzy model. The intelligent model tries to
use the output of the TS fuzzy model to substitute the water
cooling heat transfer coefficient function. The self-learning
model processes data collected from the production line
to identify the parameter of the TS model. A database is
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Figure 3: Intelligent model structure diagram.

included in the model of the self-learning model which
contains sets of newest data collected from the product line.
The self-learning model identifies the TS fuzzy parameters at
each identification period and transfers them to the TS fuzzy
model.Then, the fuzzy model calculates 𝑎

𝑤
which is the most

important parameter in mechanism model to get the strip
output.

In TS fuzzy model, offline and online methods work
together. Offlinemethod is used to get initial parameters with
massive data; online method continuously collects the pro-
ducing data of laminar flow cooling process and updates the
parameters of TS fuzzymodel tomake it adaptive to the prod-
uct line. In this way, our intelligent model acquires self-study
ability.

Although the TS fuzzy model is rapid and accurate, it
needs many pieces of data to adjust the model. At the start of
the calculation, the TS fuzzy model’s precision cannot meet
the need of the product. In order to increase the robustness
of the system, two complementary strategies are introduced.
Besides the fuzzy model, the improved method of the tradi-
tional equation is used. The traditional equation of the water
cooling heat transfer coefficient cannot adjust its parameters
although the production environment is constantly changing,
but it is robustness. Once the equation parameters are deter-
mined, it could immediately calculate the output according to
the input. Based on the above reasons, the TS fuzzy model is
combined with the improved equation to achieve the robust-
ness and accuracy of the system.

3. TS Modeling of the Laminar Cooling

Actually, TS fuzzy model is a model with a fixed input-output
relationship. As long as an appropriate input-output relation-
ship is determined, system recognition can be fulfilled and a
TS fuzzy model can be thus obtained [20]. Although water

TS fuzzy model

Tc

awT0

qw

Figure 4: Input-output-state relation of the TS Fuzzy model.

cooling heat transfer coefficient is very important, it is diffi-
cult to be determined, so TS fuzzy modeling method is uti-
lized to estimate water cooling heat transfer coefficient with
real production parameter.

3.1. TSModel. The input-output relationship of water cooling
heat transfer coefficient is shown as Figure 4. Provided that
the initial temperature 𝑇

0
, cooling temperature 𝑇

𝑐
, and water

density 𝑞
𝑤
of a laminar cooling process are known, the aver-

age water cooling heat transfer coefficient can be determined.
The input-output relationship of TS fuzzy model is deter-
mined by Figure 4.

TS fuzzy model has some advantages: it can describe
highly nonlinear complex system with few regular numbers;
its structure and parameters can be easily adjusted; it makes
system analysis and conventional controller design easier.
Due to the fact that it is simple in structure and fast in calcu-
lation, TS fuzzy model is chosen by us as a predicting model
[20–22].

TS fuzzy model works in this way: (1) create a few
fuzzy regulations; (2) each regulation deals with parameters
belonging to certain zone; (3) these regulations work together
to form an integral fuzzy regulation space; (4) use this fuzzy
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Figure 5: The process of the TS Fuzzy model.

regulation space to describe its output. The process of the TS
fuzzy model was shown in Figure 5.

The contribution of the 𝑖th TS fuzzy rules to the system
was expressed in the form of “If. . .Then” statement as follows:

𝑅
𝑖: If x

1
(𝑘) is A𝑖

1

⋅ ⋅ ⋅ and x
𝑛
(𝑘) is A𝑖

𝑛

Then y𝑖 (𝑘 + 1) = 𝑝
𝑖

0

+ 𝑝
𝑖

1

𝑥
1
+ ⋅ ⋅ ⋅ + 𝑝

𝑖

𝑛

x
𝑛
; 𝑖 = 1, 2, . . . , 𝑐,

(2)

where 𝑐 is the number of fuzzy rules, 𝑛 is the input variables
number of the T-S fuzzymodel, x

1
(𝑘), x
2
(𝑘), . . . , x

𝑛
(𝑘) are the

regressive variables consisting of output and input data at the
𝑘th instance and before, x(𝑘) = [𝑥

1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘)] is

the input vector of the T-S fuzzy model, A𝑖
1

,A𝑖
2

, . . . ,A𝑖
𝑛

are
the membership functions associated with the 𝑖th rule, and
𝑝
𝑖

0

, 𝑝
𝑖

1

, . . . , 𝑝
𝑖

𝑛

are the consequent parameters of the submodel
(fuzzy rules) 𝑖.

We denote 𝛽
𝑖
as the fitness grade of the submodel 𝑖, and

thus the model output y(𝑘 + 1) at the (𝑘 + 1)th instance can
be calculated as follows [21]:

y (𝑘) =
𝑐

∑

𝑖=1

𝛽
𝑖
y𝑖 (𝑘) =

𝑐

∑
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𝑇

,
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1
, 𝜃
2
, . . . , 𝜃

𝑟
]
𝑇

= [p
10
, p
20
, . . . , p

𝑐0
, p
11
, p
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, . . . ,

p
𝑐1
, . . . , p

𝑐𝑛
]
𝑇

;

Φ (𝑘) = [𝛽
1
, . . . , 𝛽

𝑐
, 𝛽
1
x
1
(𝑘) , . . . , 𝛽

𝑐
x
1
(𝑘) , . . . , 𝛽

1
x
𝑛
(𝑘) , . . . ,

𝛽
𝑐
x
𝑛
(𝑘)]
𝑇

,

(3)

where 𝑟 = 𝑐 ⋅ (𝑛 + 1); then we can get

y (𝑘) = Φ (𝑘)𝑇 ×Θ (𝑘) . (4)

Generally speaking, the antecedent structure identifica-
tion is completed through fuzzy clustering based on the
principle of a fuzzy𝐶-mean (FCM) algorithm and the conse-
quent parameters are identified according to the least squares
method [22].

3.2. TS Model Recognition. For a TS fuzzy model, the most
important thing is to acquire antecedent and consequent
parameters.The consequent parameters are acquired by fuzzy
cluster method based on fuzzy 𝐶mean value algorithm, and
consequent parameters are obtained with least squared
method.

Follow the steps below to recognize antecedent and con-
sequent parameters by inputting x(𝑘) and y(𝑘 + 1):

(1) Use 𝐶 cluster algorithm to recognize the subordinate
degree function u

𝑖
of x(𝑘).

(2) When the input equals x(𝑘), the fitness of the 𝑖th
regulation to the system output can be calculated by

𝛽
𝑖
=

𝑐

∑

𝑗=1

(
𝑢
𝑖

𝑢
𝑗

) , 𝑖 = 1, 2, . . . , 𝑐. (5)

Its vector can be calculated by

Φ (𝑘)

= [𝛽
1
, . . . , 𝛽

𝑐
, 𝛽
1
𝑥
1
(𝑘) , . . . , 𝛽

𝑐
𝑥
1
(𝑘) , . . . , 𝛽

𝑐
𝑥
𝑛
(𝑘)]
𝑇

.

(6)

(3) As y(𝑘 + 1) and Φ(𝑘) are both known quantities,
according to formula y(𝑘 + 1) = Φ(𝑘)Θ(𝑘), we can
get

Θ (𝑘) = (Φ
𝑇

Φ)
−1

Φ
𝑇

⋅ y (𝑘 + 1) . (7)

3.3. Data Processing of the Intelligent Model. The data col-
lected in laminar cooling process may deviate from normal
range due to controlling failure or a jammed water valve, so it
is necessary to shim the collected production data. After the
statistical analysis of laminar flow cooling process data and
theoretical analysis, the relationship between production data
can be summarized:

𝑇
𝑐
= 𝑇
0
−

𝑐 ⋅ 𝑛

𝑎 ⋅ ℎ ⋅ V
,

𝑅 = �̇�
𝑐
=

Δ𝑡
𝑏

𝐿/V
,

(8)

where 𝑇
𝑐
is the crimp temperature, ∘C; 𝑇

0
is the initial tem-

perature, ∘C; ℎ is the plate thickness, m, and 𝑛 is the number
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Table 2: Digital characteristics of the TS fuzzy model.

Number of data 50 200 500 1000 2000
Mean square error (∘C) 53.3 32.4 15.2 7.82 6.17
Identification time (ms) 130 233 521 732 1340

of the valves opened; Δ𝑡
𝑏
is the temperature drop, ∘C; V is

the average velocity of the steel plate, m/s, 𝐿 is the length of
the product line, m; 𝑎, 𝑐 are the coefficient of the production
line. If the difference of 𝑇

𝑐
+ 𝑅 obtained by substituting the

collected data 𝑛, 𝐿, Δ𝑡
𝑏
into formula from the actual collected

data is over 10%, the collected data will be eliminated.
AsTS fuzzymodel needs to recognize the production data

in real time, themore data it gets, themore accurate its output
will be. However large amount of data requires large data
storage space and long time for data recognizing; therefore, it
is necessary to provide a suitable storage space for it. Table 2
shows us the results calculated by a computer with 3.0GHz
CPU, 4G memory.

Mean square error is calculated by comparing data col-
lected in real time and data generated by model. Recognizing
time is the time that MATLAB spends on TS model parame-
ter recognizing. According to the table, when the data reaches
1000 sets, mean square error can be kept less than 10∘C and
calculating time is also acceptable. Increasing more data can
no longer obviously improve the accuracy of model, so just
keeping 1000 sets of product data is acceptable. Then all the
work needed to build the intelligent model was completed.
The total process of the intelligentmodel is shown as Figure 6.

4. Control System

In order to improve the quality of the steel plate, the control
system in the manufactory needs to be improved to produce
higher quality and performance steel plate. The existing
method in industrial manufactory tries to control the cooling
temperature. The average cooling rate is regarded as the real
cooling rate of the steel plate. So the opened header groups
𝑁
0
is computed as follows:

𝑁
0
=
V
𝑐

𝑙
⋅
𝑇
0
− 𝑇
𝑐

𝑅
𝑐

, (9)

where 𝑇
0
is the start temperature, 𝑇

𝑐
is the cooling tempera-

ture, 𝑙 is the length of the runout table, the V
𝑐
is the average

speed of the steel (usually the speed is changing all the time),
and 𝑅

𝑐
is the average temperature drop caused by one group

of headers.
In manufactory, 𝑁

0
sometimes is given by experienced

engineers according by the common configure of one type of
steel. In some of more advanced factory, the laminar cooling
model induces the engineers to calculate the initial setting
of the production line. Although many intelligent cooling
models with high accuracy are established and the final tem-
perature of the steel plate is controlled precisely, the cooling
rate is not properly handled. Reference [16] presents a kind
of distributed model predictive control for plant-wide hot-
rolled strip laminar cooling process, but the laminar cooling
process is very fast, the sampling period only lasts within one

Data collection
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Meet the requirements of the 
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Data storage
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Recognize the subordinate
degree function

Calculate water-cooled
heat release

Yes

No

Yes

No

End

Yes

Calculate the total heat 
release

Calculate the real-time 
temperature

Coiling complete
No

Calculate aw

Figure 6: The total process of the intelligent model.

second, and the present control computers do not have the
ability to handle too many matrices in a single sampling
period. A series of high speed and accuracy control strategies
is needed to control the whole curve of the cooling tempera-
ture.

The control strategy is shown in Figure 7, the model gives
the initial setting of the process, and local PID controllers
control their local target. If the subtarget temperatures are
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properly handled, the steel plate temperature will drop along
the setting temperature curve.

4.1. Subgoal Setting. The whole system is divided into 𝑁

subsystem; the system ranges from 1 to 𝑛. If the speed is con-
trolled in a constant, the running time is determined by the
location. The desired geometrically location-dependent tem-
peratures are selected at the locations 𝐿1, 𝐿2, 𝐿3, . . . , 𝐿𝑛 as the
reference temperatures with the notation 𝑟 = [𝑟1, 𝑟2, . . . , 𝑟𝑛].
The process is shown in Figures 8 and 9.When the type of the
steel plate is determined, its optimal cooling curve is certain.
The discrete reference point 𝑟 needs to be selected to reflect
the characteristics of the optimal cooling curve. The number
of sampling points is determined by the need of the control
precision. The appropriate number of sampling points is the
balance of the quickness and accuracy.

4.2. Submodel. Unlike other kinds of the laminar cooling
models, the relationship between the inputs and outputs near
the reference temperature are described by the CARIMA
model. The steel plate exchanges heat with outside mainly
through three ways: heat conduction and thermal radiation
and heat convection.

The surface layer is described as follows:

𝑑𝑄
0
= 𝑑𝑄radiation + 𝑑𝑄convection + 𝑑𝑄

0,1
,

𝑑𝑄radiation = −𝐴
𝑟
⋅ 𝜀 ⋅ 𝜎 ⋅ [(𝑇

𝑠
)
4

− (𝑇
𝑎
)
4

] ⋅ 𝑑𝑡,

𝑑𝑄convection = −𝐴
𝑟
⋅ 𝛼 ⋅ (𝑇

1
− 𝑇
𝑤
) ⋅ 𝑑𝑡,

𝑐 ⋅ 𝑚 ⋅ 𝑑𝑇 = {𝜆 ⋅ 𝐴
𝑟
⋅
𝑇
2
− 𝑇
1

ℎ
− 𝐴
𝑟
⋅ 𝛼 ⋅ (𝑇

1
− 𝑇
𝑤
)

− 𝐴
𝑟
⋅ 𝜀 ⋅ 𝜎 ⋅ [(𝑇

𝑠
)
4

− (𝑇
𝑎
)
4

]} 𝑑𝑡.

(10)

Transform the differential equation into discrete form:

𝑐 ⋅ 𝑚 ⋅ (𝑇
1
(𝑘 + 1) − 𝑇

1
(𝑘)) = {𝜆 ⋅ 𝐴

𝑟
⋅
𝑇
1
(𝑘) − 𝑇

2
(𝑘)

ℎ

− 𝐴
𝑟
⋅ 𝛼 ⋅ (𝑇

1
(𝑘) − 𝑇

𝑤
) − 𝐴
𝑟
⋅ 𝜀 ⋅ 𝜎

⋅ 𝑓 (𝑇
1
(𝑘))} 𝑑𝑡.

(11)

Thedifference between the internal layer and surface layer
is no external heat dissipating, only internal levels of heat
transfer:

𝑑𝑄
𝑖
= 𝑑𝑄
𝑖−1,𝑖

+ 𝑑𝑄
𝑖
,

𝑑𝑄
𝑖−1,𝑖

= 𝜆 (𝑇) ⋅ 𝐴
𝑟
⋅

𝑇
𝑚−1

− 𝑇
𝑚

(ℎ
𝑚
+ ℎ
𝑚−1

) /2
⋅ 𝑑𝑡,

𝑑𝑄
𝑖,𝑖+1

= 𝜆 (𝑇) ⋅ 𝐴
𝑟
⋅

𝑇
𝑚+1

− 𝑇
𝑚

(ℎ
𝑚+1

+ ℎ
𝑚
) /2

⋅ 𝑑𝑡,

𝑐 ⋅ 𝑚 ⋅ (𝑇
2
(𝑘 + 1) − 𝑇

2
(𝑘))

= {𝜆 ⋅ 𝐴
𝑟
⋅
2𝑇
2
(𝑘) − 𝑇

1
(𝑘) − 𝑇

3
(𝑘)

ℎ
} 𝑑𝑡.

(12)
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Figure 8: Subgoals setting along the running direction.
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Figure 9: Subgoals setting along the cooling process.

Matrix form is described as follows:

(
(
(

(

𝑇
1
(𝑘 + 1)

𝑇
2
(𝑘 + 1)

𝑇
3
(𝑘 + 1)

.

.

.

𝑇
𝑛
(𝑘 + 1)

)
)
)

)

=
(
(
(

(

1+
𝜆𝐴

ℎ𝑐𝑚
+
𝛼𝐴

𝑐𝑚
−
𝜆𝐴

ℎ𝑐𝑚
0

−
𝜆𝐴

ℎ𝑐𝑚
1 +

2𝜆𝐴

ℎ𝑐𝑚
−
𝜆𝐴

ℎ𝑐𝑚

−
𝜆𝐴

ℎ𝑐𝑚
1 +

𝜆𝐴

ℎ𝑐𝑚
+
𝛼𝐴

𝑐𝑚

)
)
)

)

(
(
(

(

𝑇
1
(𝑘)

𝑇
2
(𝑘)

𝑇
3
(𝑘)

.

.

.

𝑇
𝑛
(𝑘)

)
)
)

)

+(

−𝐴𝑇
𝑤

0

.

.

.

−𝐴𝑇
𝑤

)𝛼

+𝐴𝜀𝜎𝑓 (𝑇
1
(𝑘)) ,

T (𝑘 + 1) = MT (𝑘) + Nu + 𝜉.

(13)
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Rewriting according to the predictive control equation,
we get the following:

T (𝑘 + 1) = (M N) (
T (𝑘)

u
) + 𝜉,

Ax (𝑘 + 1) = Bu (𝑡) + 𝜉.

(14)

4.3. GPC-PID Control Method. The generalized predictive
control (GPC) is chosen as a basis for predictive PID for two
major reasons. First, the receding horizon solution of GPC
can be described easily in a linear polynomial representation.
In comparison, the receding form of DMC is cumbersome
because it is based on a convolution model. Second, GPC is
a generalized strategy which includes all desirable properties
of the industry proven MPC formulations [23]. It is assumed
that the plant is adequately represented by the CARIMA
model:

A (𝑧
−1

) y (𝑘) = B (𝑧
−1

) 𝑧
−𝑑u (𝑘) +

C (𝑧
−1

) 𝜉 (𝑘)

Δ
, (15)

where

A (𝑧
−1

) = 1 + 𝑎
1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛
𝑎

𝑧
−𝑛
𝑎 ,

B (𝑧
−1

) = 𝑏
0
+ 𝑏
1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
𝑏

𝑧
𝑛
𝑏 ,

C (𝑧
−1

) = 𝑐
0
+ 𝑐
1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑐

𝑧
𝑛
𝑐 ,

(16)

where 𝑧
−1 is the backward shift operator. y(𝑡) is the plant

output or the measured output signal, u(𝑡) is the control
input, 𝜉(𝑡) is the noise that disturbs the output signal, and
Δ = 1 − 𝑧

−1.
To derive a GPC law that minimizes the performance

index, two Diophantine equations are solved:

1 = A (𝑧
−1

)E
𝑗
(𝑧
−1

) Δ + 𝑧
−𝑗F
𝑗
(𝑧
−1

) ,

E
𝑗
(𝑧
−1

)B (𝑧
−1

) = G
𝑗
(𝑧
−1

) + 𝑧
−𝑗H
𝑗
(𝑧
−1

) ,

(17)

where

E
𝑗
(𝑧
−1

) = 1 + 𝑒
𝑗,1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑒
𝑗,𝑗−1

𝑧
−(𝑗−1)

,

F
𝑗
(𝑧
−1

) = 𝑓
𝑗,0

+ 𝑓
𝑗,1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑓
𝑗,𝑛
𝑎

𝑧
−𝑛
𝑎 ,

G
𝑗
(𝑧
−1

) = 𝑔
0
+ 𝑔
1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑔
𝑗−1

𝑧
−𝑗+1

,

H
𝑗
(𝑧
−1

) = ℎ
𝑗,0

+ 𝑔
𝑗,1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑔
𝑗,𝑛
𝑏
−1
𝑧
−𝑛
𝑏
+1

.

(18)

The 𝑗 steps ahead predictive output is given as follows:

y (𝑡 + 𝑗) = G
𝑗
Δu (𝑡 + 𝑗 − 1) + F

𝑖
y (𝑡) +H

𝑗
Δu (𝑡 − 1)

+ E
𝑗
w (𝑡 + 𝑗) .

(19)

E
𝑗
w(𝑡 + 𝑗) is the disturbance signal, and the vector form of

the optimal predictive outputs is expressed as follows:

y = Gu + Fy (𝑡) +HΔu (𝑡 − 1) , (20)

where

y𝑇 = [𝑦 (𝑡 + 1) , . . . , 𝑦 (𝑡 + 𝑁)] ,

u𝑇 = [Δu (𝑡) , . . . , Δu (𝑡 + 𝑁 − 1)] ,

F𝑇 = (𝐹
1
, . . . , 𝐹

𝑁
) ,

H𝑇 = [H
1
, . . . ,H

𝑁
] ,

G =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑔
0

⋅ ⋅ ⋅ 0

𝑔
1

𝑔
0

⋅ ⋅ ⋅

d
.
.
.

.

.

.

.

.

.

𝑔
𝑁−1

𝑔
𝑁−2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑔
0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(21)

The future reference trajectory is defined as y
𝑟
= [y
𝑟
(𝑘 +

𝑁
1
), y
𝑟
(𝑘 + 𝑁

1
+ 1), . . . , y

𝑟
(𝑘 + 𝑁

2
)]
𝑇.

The GPC control objective is composed of a sum of
squares prediction error term and a control action penalty
term given by

𝐽 = 𝐸
{

{

{

𝑁

∑

𝑗=1

[y0 (𝑡 + 𝑗) − y
𝑟
(𝑡)]
2

+

𝑁

∑

𝑗=1

Q
𝑗
(𝑧
−1

) [Δu (𝑡 + 𝑗 − 1)]
2

}

}

}

,

(22)

where y
𝑟
is the setpoint,𝑁 is the control horizon, andQ is the

control weight:

Q
1
(𝑧
−1

) = 𝑞
1

0

+ 𝑞
1

1

𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑞
1

𝑛
𝑏

𝑧
−𝑛
𝑏 ,

Q
𝑗
(𝑧
−1

) = 𝑞
𝑗

0

𝑗 = 2, 3, . . . , 𝑁.

(23)

The vector form is described as follows:

𝐽 = 𝐸 {(y − y
𝑟
)
𝑇

(y − y
𝑟
) + u𝑇Qu} . (24)

The optimal solution with respect to Δu is obtained as

Δu = (G𝑇G + 𝜆I)
−1

G𝑇 (y
𝑟
− y
1
) ,

u (𝑘) = u (𝑘 − 1)

+ [1, 0, . . . , 0] (G𝑇G + 𝜆I)
−1

G𝑇 (y
𝑟
− y
1
) .

(25)

The input Δu(𝑡) is rewritten by the following:

Δu (𝑡) =
𝑁

∑

𝑗=0

𝑝
𝑗
y
𝑟
(𝑡) −

𝑁

∑

𝑗=1

𝑝
𝑗
F
𝑗
(𝑧
−1

) y (𝑡)

−

𝑁

∑

𝑗=1

𝑝
𝑗
H
𝑗
(𝑧
−1

) Δu (𝑡 − 1) .

(26)
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The incremental discrete PID control law is developed by
starting with the noninteracting continuous algorithm given
by

𝑢 (𝑡) = 𝑘
𝑝
[𝑒 (𝑡) +

1

𝑇
𝐼

∫

𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑇
𝐷

𝑑𝑒 (𝑡)

𝑑𝑡
]

= 𝑘
𝑝
𝑒 (𝑡) + 𝑘

𝐼
∫

𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑘
𝐷

𝑑𝑒 (𝑡)

𝑑𝑡
,

(27)

where u(𝑡) is the input of the control system, 𝑘
𝑝
is the

proportional constants, 𝑘
𝐼
is the integral constants, 𝑘

𝐷
is

the derivative constants, and 𝑒(𝑡) is the error. The transfer
function can be written as follows:

𝐺
𝑐
(𝑠) =

𝑈 (𝑠)

𝐸 (𝑠)
=
𝑘
𝑝
𝑇
𝐷
𝑇
𝐼
𝑠
2

+ 𝑘
𝑝
𝑇
𝐼
𝑠 + 𝑘
𝑝

𝑇
𝐼
𝑠

. (28)

A first-order discretization of the results is given in the
following discrete control law:

𝑢 (𝑡) = 𝑢 (𝑡 − 1) + 𝑝
0
𝑒 (𝑡) + 𝑝

1
𝑒 (𝑡) + 𝑝

2
𝑒 (𝑡 − 2) ,

𝐺
𝑐
(𝑧) =

𝑝
0
+ 𝑝
1
𝑧
−1

+ 𝑝
2
𝑧
−1

1 − 𝑧−1
.

(29)

Compared with (26), we have the following:

𝑝
0
= 𝑘
𝑝
+ 𝑘
𝐼
+ 𝑘
𝐷
= 𝑘
𝑝
+
𝑘
𝑝
𝑇
𝑠

𝑇
𝐼

+
𝑘
𝑝
𝑇
𝐷

𝑇
𝑠

,

𝑝
1
= −𝑘
𝑝
− 2𝑘
𝐷
= −𝑘
𝑝
−
2𝑘
𝑝
𝑇
𝐷

𝑇
𝑠

,

𝑝
2
= 𝑘
𝐷
=
𝑘
𝑝
𝑇
𝐷

𝑇
𝑠

.

(30)

Discrete expression of PID controller is described as
follows:

𝐿 (𝑧
−1

) 𝑢 (𝑡) = 𝑀(𝑧
−1

) 𝑦
𝑟
(𝑡) − 𝑁 (𝑧

−1

) 𝑦 (𝑡) . (31)

The control law of the GPC is

Δ𝑢 (𝑡)

=

𝑁

∑

𝑗=0

𝑝
𝑗
𝑦
𝑟
(𝑡) −

𝑁

∑

𝑗=1

𝑝
𝑗
𝐹
𝑗
(𝑧
−1

) 𝑦 (𝑡)

−

𝑁

∑

𝑗=1

𝑝
𝑗
𝐻
𝑗
(𝑧
−1

) Δ𝑢 (𝑡 − 1) ,

𝐿 (𝑧) = 1 − 𝑧
−1

,

𝑀 (𝑧
−1

) =

𝑁

∑

𝑗=1

𝑝
𝑗
,

𝑁 (𝑧
−1

) =

𝑁

∑

𝑗=1

𝑝
𝑗
𝐹
𝑗
(𝑧
−1

) ,

𝑁

∑

𝑗=1

𝑝
𝑗
𝐻
𝑗
(𝑧
−1

) Δ𝑢 (𝑡 − 1) = 𝑝
1

𝑁

∑

𝑖=1

𝑞
1

𝑖

Δ𝑢 (𝑡 − 𝑖) ,

𝑞
1

𝑖

=
1

𝑝
1

𝑁

∑

1

𝑝
𝑗
ℎ
𝑗

𝑖−1

, 𝑖 = 1, 2, . . . , 𝑛
𝑏
.

(32)

According to the result of the above derivation, the PID
parameters can be rewritten, to get the self-tuning PID con-
troller parameters:

𝑢 (𝑡) =
𝑘
𝐼

1 − 𝑧−1
𝑒 (𝑡) − [𝑘

𝑝
+ (1 − 𝑧

−1

) 𝑘
𝐷
] 𝑦 (𝑡) . (33)

Then get the following results:

(1 − 𝑧
−1

) 𝑢 (𝑡) = 𝑘
𝐼
𝑦
𝑟
(𝑡)

− [𝑘
𝐼
+ (1 − 𝑧

−1

) 𝑘
𝑝
+ (1 − 𝑧

−1

) 𝑘
𝐷
] 𝑦 (𝑡)

= 𝑘
𝐼
𝑦
𝑟
(𝑡)

− [(𝑘
𝐼
+ 𝑘
𝑝
+ 𝑘
𝐷
) − (𝑘

𝑝
+ 2𝑘
𝐷
) 𝑧
−1

+ 𝑘
𝐷
𝑧
−2

]

⋅ 𝑦 (𝑡) .

(34)

Compare the PID with GPC:

𝐿 (𝑧
−1

) = 1 − 𝑧
−1

,

𝑀 (𝑧
−1

) = 𝑘
𝐼
=

𝑁

∑

𝑗=1

𝑝
𝑗
,

𝑁 (𝑧
−1

) = (𝑘
𝐼
+ 𝑘
𝑝
+ 𝑘
𝐷
) − (𝑘

𝑝
+ 2𝑘
𝐷
) 𝑧
−1

+ 𝑘
𝐷
𝑧
−2

=

𝑁

∑

𝑗=1

𝑝
𝑗
𝐹
𝑗
(𝑧
−1

)

=

𝑁

∑

𝑗=1

𝑝
𝑗
𝑓
𝑗

0

+

𝑁

∑

𝑗=1

𝑝
𝑗
𝑓
𝑗

1

𝑧
−1

+

𝑁

∑

𝑗=1

𝑝
𝑗
𝑓
𝑗

2

𝑧
−2

.

(35)

The PID parameters are calculated as follows [24, 25]:

𝑘
𝑝
= −

𝑁

∑

𝑗=1

𝑝
𝑗
(𝑓
𝑗

1

+ 2𝑓
𝑗

2

) ,

𝑘
𝐼
=

𝑁

∑

𝑗=1

𝑝
𝑗
,

𝑘
𝐷
=

𝑁

∑

𝑗=1

𝑝
𝑗
𝑓
𝑗

2

.

(36)
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The optimal control input can be calculated by

u (𝑡) = u (𝑡 − 1) −

𝑁

∑

𝑗=1

𝑝
𝑗
(𝑓
𝑗

1

+ 2𝑓
𝑗

2

) [y (𝑡 − 1) − y (𝑡)]

+

𝑁

∑

𝑗=1

𝑝
𝑗
[y
𝑟
(𝑡) − y (𝑡)]

+

𝑁

∑

𝑗=1

𝑝
𝑗
𝑓
𝑗

2

[2y (𝑡 − 1) − y (𝑡 − 2) − y (𝑡)] .

(37)

Finally, the GPC-PID control algorithm is gotten:

(1) Firstly, the model of the control plate needs to be
identified to get A(𝑧−1), B(𝑧−1) in the CARIMA
model.

(2) Calculate the G
𝑗
(𝑧
−1

), F
𝑗
(𝑧
−1

) by solving the Dio-
phantine equation.

(3) Then, the control inputΔu = (G𝑇G+𝜆I)−1G𝑇(y
𝑟
−y
1
).

(4) Compute the PID control parameters 𝑘
𝐼
, 𝑘
𝐷
, 𝑘
𝑝
.

(5) Get the control input u(𝑡).

Now the design of GPC-PID control method for laminar
cooling process is completed and some experiments are
presented in the next section.

5. Validation of the Modeling and
Control Method

5.1. Modeling. The model is built in MATLAB/Simulink
environment, and the results are calculated by a computer
with 3.0GHz CPU, 4G memory.

5.1.1. Validation of the System Model. To test the validation
of this method, some experiments are conducted using real
industrial data.The type of steel X80 is chosen to validate the
model.

Use the method described above to model a laminar flow
cooling process, filter abnormal data, recognize parameter
with 1000 sets of effective data, substitute the parameter into
TS fuzzy model, and then collect 300 sets of production data
to verify the output results.

5.1.2. Comparison between the Traditional Model and Intel-
ligent Model. Figures 10 and 11 compare the results of the
conventionalmechanismmodel data and TSmodel data with
real producing data, respectively. It is obvious that TS fuzzy
model gives us a more accurate result than conventional
mechanism model in Figure 12.

From Table 3, the TS fuzzy model can largely improve
the accuracy of a laminar flow cooling model. The cooling
temperature predicted by TS fuzzy model is matched well
with real production data, with the difference between them
kept less than 10∘C. Also, the error between TSmodeling data
and real production data is largely reduced; and mean square
error can be reduced by 50% compared to conventional
model.

Table 3: The comparison of the two types of model.

Method Maximum error
(∘C)

Mean square error
(MSE) (∘C)

Mechanism model 17.3 9.32
Intelligent model 8.8 4.42

0 50 100 150 200 250 300 350
450

500

550

600

650

700

750

Number

New model data
Production data

T
(∘

C)

Figure 10: The comparison of the model data and the product data
of the mechanism model.
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Figure 11: The comparison of the model data and the product data
of the intelligent model.

5.1.3. Output of the Intelligent Model. The intelligent model
is validated in the last section, so the output could reflect
the reality of the laminar cooling process. Figure 13 shows
the whole temperature curve of the steel along the thickness
direction. The initial temperature is about 800∘C–900∘C;
when the steel plate enters the main cooling zone the tem-
perature of the surface layer will largely drop, but the inside
layer’s temperature is still very high because the heat inside
should be release through conduct with the outside layer. So
the internal layer’s temperature will be hysteretic compared
with the surface layers. There will be internal and external
temperature differencewhen the steel enters the cooling zone.
On the other hand, when the plate is running out of the
cooling zone, the cooling rate of the surface will decrease,
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Figure 13: The temperature curve of different layers.

but the internal is still very hot, so the heat flows from
internal layer to external layer. The phenomenon will show
that the internal temperature still declines while the external
temperature rises. This phenomenon is clearly expressed in
Figure 13.

The intelligent model could compute the temperature
differences between the internal and the external layer of the
plate shown in Figure 14(a). Figure 14(b) shows the average
temperature curve of the steel.Themodel also could calculate
other parameters difficult to be directly measured in the
laminar cooling process, shown in Figures 14(c)–14(f).

5.2. Control Strategy

5.2.1. Experimentation. To illustrate the performance of pro-
posed modeling and control method, application of this
method to laminar cooling process test is performed in one
steel testing product line in Hubei, China.The control system
is shown in Figure 15. In the factory, the initial control system
is very difficult for the improvement of the equipment and is
not convenient for the use of the new control algorithm, since
the Distributed Control System (DCS) could not process
the matrix. As a consequence, new equipment needs to be
introduced to solve that disadvantage.

The dSPACE control system, DS1103 PPC Controller
Board, is utilized to add the intelligent model to the con-
trol system without large-scale reconstruction of the initial
control system. The controller board is designed to meet the
requirements of modern rapid control prototyping and is
highly suitable for applications. The DS1103 is an all-rounder
in rapid control prototyping. It can be mounted in a dSPACE

Expansion Box or dSPACE AutoBox to test new control
functions in a laboratory or directly in the product line. The
dSPACE 1103 PPC system has a PowerPC Type CPU, PPC
750GX, with CPU clock 1GHz. The unparalleled number of
I/O interfaces makes the DS1103 a versatile controller board
for numerous applications.

The initial control system only provides several interfaces
to collect data provided by the intelligent model running
in the dSPACE system. The dSPACE system could run the
intelligentmodel; meanwhile the process is going to exchange
information with the laminar cooling process. At the start of
the cooling process, the intelligentmodel calculates the initial
input of the control system based on the known initial infor-
mation of the production line, such as the beginning temper-
ature of the steel plate, the target temperature, the thickness,
the type, and the grade of the steel. Before the laminar cooling
process is ongoing, the intelligent model calculates the
parameters of the CARIMA model and the PID parameters
of all the temperature control points and then passes data
to the industrial computer and PLC controller. The PID
parameters will not be changed in one cooling process of
one type of steel. Although processing the matrix in GPC
algorithm is a very complex work, it is not calculated every
control period. Instead, the control outputs are based on the
PID control and other kinds of control methods such as feed-
forward and feedback control. In this way the control strategy
will be robust and will be easily handled for the engineers.

5.2.2. Performance of Proposed Controller. In the manufac-
tory, the control target of the laminar cooling contains two
related aspects: the cooling temperature (CT) and the whole
temperature curve (TC).The CT is the last temperature point
in TC which is important for the cooling, and the TC plays
important role in the construction of the microstructure of
the steel. Figure 16 shows that the CT is well controlled in
the manufactory by the strategy proposed above. The control
variables are shown in Figure 17. Figure 18 shows the temper-
ature curve dropping along the subgoals.

5.2.3. Physical Verification. To validate the control method, a
metallography detection is carried on in a research institute
inWuhan, China.TheWL510 type of steel is selected and the
crystal structure of iron is detected through Zeiss metallo-
graphic microscope. Figures 19(a)–19(c) are the steel cooled
in laminar cooling process with just the CT controlled, while
Figures 19(e) and 19(f) show that the temperature control is
in line with the designed curve. (a, d) is the surface impurity
detection. (b, e) is at the thickness of 1/4, while (c, f) is at
the 1/2 thickness. The comparison between the two groups
of metallographic pictures shows that the TC control makes
fewer impurities and avoids the widmanstatten and a large
crystal structure harmful to mechanical property.

6. Conclusion

In this study, a novelty modeling method and GPC-PID con-
trol strategy are presented to control the temperature curve in
laminar cooling process. First, the coolingmechanism in lam-
inar cooling process is investigated; then the TS fuzzy model
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Figure 14: The parameters calculated by the model.

which boasts high self-study ability by combining data
filtering method and parameter recognizing method is intro-
duced into the intelligent model. The new modeling method
proposed by this paper enables the intelligent laminar flow
cooling model to monitor the process of a laminar flow
cooling process rapidly. Second, several subgoals based on the
location of the runout table are set to make the temperature
curve be realized with a few computational burdens. In order
to guarantee the steel plate cooling along the target temper-
ature curve, the GPC-PID control method is implemented,
which makes the distributed PID controllers achieve the sub-
goals. Third, the dSPACE control board which is running the
intelligent model is provided to make the GPC-PID applied

in the control system without large-scale reconstruction.
Finally, the data collected from the real production line
demonstrates the efficiency and precision of the control strat-
egy formulated in this paper, and themetallography detection
by the metallographic microscope indicates that applying
the temperature curve control can obtain finer microstruc-
ture compared with the CT control.

Although a practical modeling and an effective control
strategy have been proposed to obtain an ideal result success-
fully, there are still some improvements to be accomplished
further about this work. First, the number of the subgoals
cannot be added more than 6 due to the complexity of the
control method and the constraint of the calculative ability of
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Figure 17: The control variables in the cooling process.
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Figure 18: The temperature curve dropping along the subgoals.
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Figure 19: The metallography detection of two sets of steel.

industrial computers. Second, the local CARIMA models
need to be adjusted after some steel plate production. Those
problems will be solved in future works.
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