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The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-
dimensional (3D) slope is essential to prevent landslides, but the most important and difficult problem is how to determine the
3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element
method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil
slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the
safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to
reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D
benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface
and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the
proposed method can be used for the stability analysis of a 3D soil slope.

1. Introduction

Landsides are a common worldwide geological disaster that
can cause heavy casualties and huge economic losses [1–
3]. The slope is not only an important environment of
human existence but also an important part of engineering
construction. Slope instability has been called one of the
three major geological disasters, along with earthquakes
and volcanoes [4]. The slope instability problem is closely
associatedwith safety and economic benefits; as a result, slope
stability analysis has a very important practical significance
and economic value. A great deal of accumulated experience
has been obtained on slope stability analysis, which is based
on limit equilibrium theory [5–7]. Limit equilibriummethod
is the most popular method in assessing slope stability [8,
9]; however, this method cannot provide the relationship of
internal stress and strain in rock or soil slopes, and they donot
always provide unique factors of safety owing to the inherent

assumptions of limit equilibrium analyses [10]. Currently,
finite elementmethod is widely used in slope stability analysis
because the method can calculate the stress and strain based
on the nonlinear constitutive relation of rock and soilmass [2,
11, 12]. However, this method cannot consider both the stress
and moment equilibrium [13]. Although the strength reduc-
tionmethod can determine the failure zone and the safety fac-
tor [2, 14, 15], it is difficult to link the finite element calculation
results with the traditional safety factor of the slope.

Currently, many engineers still adopt two-dimensional
(2D) analysis methods due to the various limitations of the
3D slope stability analysis [6]. The three-dimensional (3D)
slope is often simplified as a 2D slope problem because
the above methods are not convenient for use in the direct
3D slope stability analysis [16, 17]. The most commonly
used method in practical engineering to analyze the 3D
slope stability is to consider each profile as a 2D slope [18].
Finally, the safety factor of the slope can be calculated by

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 7895615, 11 pages
http://dx.doi.org/10.1155/2016/7895615



2 Mathematical Problems in Engineering

Critical slip surface

Sliding direction

(a)

Three-dimensional slope

Sliding direction

Critical slip 
surface

(b)

Figure 1: Stability problem of 3D slopes: (a) failure of a natural slope and (b) stability analysis for 3D soil slopes.

the weighted average of each profile; however, the method
often introduces some errors. At present, various existing
computational methods have different accuracies in deter-
mining the critical slip surface and the corresponding safety
factor [2, 19]. Cheng et al. introduced a practical way in
using NURBS surface and ellipsoidal surface to simulate a
three-dimensional sliding surface [20]. Ahangar-Asr et al.
proposed a three-dimensional approach in conjunction with
genetic algorithm (GA) to investigate the effect of earthquake
force inclination on the minimum safety factor of slope and
the shape and direction of the corresponding failure surface
[21]. Hajiazizi and Tavana determined three-dimensional
nonspherical critical slip surface in earth slopes using an
optimization method to obtain the nonspherical critical slip
surface, which is more consistent with the actual slip surface
in nature by using the three-dimensional alternating variable
local gradient [15]. According to the above references, the
safety factor using 3D analysis methods is higher than that
from the corresponding 2D analysis; that is, the 3D analysis
provides a more economic slope design method [20].

In this paper, a 3D slope stability analysis method,
combined with the finite element method and the limit
equilibrium principle, is proposed to determine the critical
slip surface and the corresponding safety factor of 3D soil
slopes. Some assumptions are introduced to reduce the search
range of the center points and the radius of spheres or ellip-
soids. And the proposed method is validated by a classical
benchmark slope and compared with other conventional 3D
slope stability analysis methods. Some useful conclusions are
presented in this paper.

2. Method

In this section, according to the rotational failure in 3D soil
slopes, the stress field of the 3D soil slope is calculated using
the finite element method. The safety factor of a certain
slip surface can be determined by using the elastic-perfectly
plastic soil model, the Mohr-Coulomb criteria, and the limit
equilibrium principle. And the spherical and ellipsoidal slip
surfaces are used to determine the critical slip surface.

2.1. 3D Slope Stability. Landslides (or slope failure) oftenpose
a great threat to human beings and/or manmade structures.
Figure 1(a) shows a landslide that occurred in the soil slope
at the Zhaotong City, Yunnan, Southwest China, which is a
typical form of rotational failure in soils. Rational assessment
of the slope stability using analytical methods is very impor-
tant for the hazard prevention and mitigation of landslides.
According to the stability analysis of 3D soil slopes, two key
issues should be determined: (a) the location of the critical
slip surface and (b) the corresponding safety factor of this
critical slip surface.

As shown in Figure 1(b), for the rotational sliding in soil
slopes, the form of the slip surface is complicated and is
influenced by the geological conditions; however, the critical
slip surface can be assumed to be a spherical surface or
ellipsoidal surface, which can explain most conditions of the
actual landslide characteristics in soil slopes. Furthermore,
this assumption can ensure the feasibility of determining the
safety factor of the critical slip surface.

2.2. Stress Field of a Slope. The stress field of a slope under
natural conditions can be simulated by different numerical
methods. A commonly used method for determining the
stress field of a slope is the finite element method [13].
Figure 2(a) shows the vertical stress distribution of a 3D soil
slope solved using the finite element method. A potential
slip surface is located behind the stress field of the 3D slope;
this surface is the critical slip surface of the slope and must
be determined. As shown in Figure 2(a), the slope elements
are cut by a spherical surface or an ellipsoidal surface, with
several different elements interactingwith the cutting surface,
and the slip surface is composed of a group of elements.
Figure 2(b) shows the stress distribution of a slip surface
element in one representative element.

As shown in Figure 2(b), the principal stresses 𝜎
1
, 𝜎
2
,

and 𝜎
3
of the representative element can be determined via

numerical simulation, assuming that the area of the slip
surface 𝑆 is 𝑑𝐴 and the total stress on the slip surface 𝑆 is 𝑝

𝑖
:

𝑝
𝑖
= √𝜎
2

𝑖
+ 𝜏
2

𝑖
, (1)
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Figure 2: Stress distribution of a 3D slope and slip surface: (a) vertical stress distribution of a 3D soil slope and (b) stress analysis for the slip
surface of one representative element.

where 𝜎
𝑖
and 𝜏
𝑖
are the normal stress and shear stress on the

slip surface, respectively.
According to force equilibrium analysis, the total stress,

𝑝
𝑖
, can be divided into three parts along the axis directions of

𝑋, 𝑌, and 𝑍:

𝑝
𝑖
(𝑥) = 𝜎

3
⋅ cos𝛼,

𝑝
𝑖
(𝑦) = 𝜎

2
⋅ cos𝛽,

𝑝
𝑖
(𝑧) = 𝜎

1
⋅ cos 𝛾,

(2)

where 𝛼, 𝛽, and 𝛾 are the angles between the normal direction
of the slip surface 𝑆 and the axis directions of 𝑋, 𝑌, and 𝑍,
respectively. The relationship between these there angles is
given by

(cos𝛼)2 + (cos𝛽)2 + (cos 𝛾)2 = 1. (3)

The normal stress and total stress on the slip surface can
be determined as follows:

𝜎
𝑖
= 𝑝
𝑖
(𝑥) cos𝛼 + 𝑝

𝑖
(𝑦) cos𝛽 + 𝑝

𝑖
(𝑧) cos 𝛾

= 𝜎
3
(cos𝛼)2 + 𝜎

2
(cos𝛽)2 + 𝜎

1
(cos 𝛾)2 ,

𝑝
𝑖
= √𝜎
2

3
(cos𝛼)2 + 𝜎

2

2
(cos𝛽)2 + 𝜎

2

1
(cos 𝛾)2.

(4)

The shear stress on the slip surface can be computed as
follows:

𝜏
𝑖
= √𝑝

2

𝑖
− 𝜎
2

𝑖
. (5)

The shear resistance on the slip surface 𝑆 can be deter-
mined according to the Mohr-Coulomb criterion:

𝜏
𝑓

𝑖
= 𝑐
𝑖
+ 𝜎
𝑖
tan𝜑
𝑖
, (6)

where 𝑐
𝑖
and 𝜑

𝑖
are the cohesion and friction angle of the soil,

respectively.
If the geometric information and the stress field of one

representative element are known, then the shear stress
and shear resistance on this slip surface element can be
determined.

2.3. Safety Factor of a Certain Slip Surface. For the stability
analysis of 3D soil slopes, the determination of the 3D critical
slip surface from a series of potential slip surfaces in global
optimization is a difficult task, thus making the solution
time tremendously long [19]. Currently, spherical shapes are
commonly used for the slip surfaces in the 3D slope stability
analysis because of the relative lack of difficulty in performing
global optimization.However, the nonspherical slip surface is
themost general shape that can be considered in the 3D slope
stability analysis process [24]. In this paper, both spherical
and ellipsoidal (nonspherical) shapes of slip surfaces are
considered for the stability analysis of 3D soil slopes. Some
assumptions are introduced during the determination of the
safety factor for a certain slip surface, and details are shown
in Figure 3.

As shown in Figure 3, the sliding directions of the slip
surface elements are all parallel to the 𝑋𝑌 plane. If the
determination of the safety factor of a slip surface is regarded
as a two-dimensional problem and the total number of slip
surface elements is 𝑛, then the safety factor (𝐹

𝑠
) of the slip

surface can be computed as follows:

𝐹
𝑠
=

𝜏
𝑓

𝜏

=

∑
𝑛

𝑖=1
𝜏
𝑓

𝑖

∑
𝑛

𝑖=1
𝜏
𝑖

=

∑
𝑛

𝑖=1
(𝑐
𝑖
+ 𝜎
𝑖
tan𝜑
𝑖
)

∑
𝑛

𝑖=1
𝜏
𝑖

, (7)

where 𝜏𝑓 and 𝜏 are the total shear resistance and shear stress
on the slip surface, respectively, and 𝑐 and 𝜑 are the cohesion
and friction angle of the slope soil, respectively.

However, the safety factor under 3D conditions is difficult
to calculate using (7) because the directions of the shear
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Figure 3: Some assumptions for the slip surface of 3D soil slopes: (a) spherical slip surface and (b) ellipsoidal slip surface.

stress 𝜏
𝑖
and the normal stress 𝜎

𝑖
are not consistent for each

slip surface element. The geometric features of a sphere or
an ellipsoid have the same characteristics: a fixed center,
where the normal stress 𝜎

𝑖
for each slip element is pointing

to this fixed center and perpendicular to the slip surface.
Furthermore, it is assumed that shear stresses are directed
consistently with the overall sliding direction, which is all
parallel to the 𝑋𝑌 plane. Next, the safety factor is defined in
terms of moment rather than in the terms of shear stress [10],
which can be calculated by integrating all of the slip elements;
subsequently, the safety factor of a determined slip surface
can be calculated as follows:

𝐹
𝑠
=

𝑀
𝑅

𝑀
𝑆

=

∬
𝑆
(𝑐
𝑖
𝑙
𝑖
+ 𝜎
𝑖
tan𝜑
𝑖
𝑙
𝑖
) 𝑑𝑠

∬
𝑆
𝜏
𝑖
𝑙
𝑖
𝑑𝑠

, (8)

where 𝑀
𝑅
is the resisting moment, which is related with the

shear resistance on the slip surface; 𝑀
𝑆
is the slip moment,

which is related with the shear stress on the slip surface; and
𝑙
𝑖
is the vertical distance from the center of a spherical or

ellipsoid to the surface of each element. If the slip surface is
a spherical style, then 𝑙

𝑖
is equal to the radius of the sphere;

however, if the slip surface is an ellipsoidal style, then 𝑙
𝑖
is

related to the size parameters of the ellipsoid.

2.4. Determination of the Critical Slip Surface. During the
process of determining the critical slip surface, the number
of calculation steps is high because of the numerous potential
slip surfaces; as a result, some assumptions and optimization
algorithms should be introduced. The spherical slip surface
can be described with the following equation:

(𝑥 − 𝑥
0
)
2

+ (𝑦 − 𝑦
0
)
2

+ (𝑧 − 𝑧
0
)
2

= 𝑟
2
, (9)

where (𝑥
0
, 𝑦
0
, 𝑧
0
) are the coordinate values of center point of

a sphere and 𝑟 is the radius of the sphere.

However, for the ellipsoidal slip surface, the description
equation can expressed as follows:

(𝑥 − 𝑥
0
)
2

𝑎
2

+

(𝑦 − 𝑦
0
)
2

𝑏
2

+

(𝑧 − 𝑧
0
)
2

𝑐
2

= 1,
(10)

where (𝑥
0
, 𝑦
0
, 𝑧
0
) are the coordinate values of the center point

for an ellipsoidal shape and 𝑎, 𝑏, and 𝑐 are the radii in 𝑋, 𝑌,
and 𝑍 directions, respectively.

According to (9), there are four uncertain parameters
(𝑥
0
, 𝑦
0
, 𝑧
0
, 𝑟) to determine for the spherical slip surfaces. The

soil slope is cut by several different spheres and forms several
slip surfaces, which have the corresponding safety factor.The
slip surface with theminimum safety factor is the critical one.
Figure 4 shows a 3D slope cut via a sphere from a different
perspective.

As shown in Figure 4, for the spherical slip surface,
fortunately, the sphere rotated in any direction has no effect
on the shape of slip surface. However, for the ellipsoidal slip
surface, nine uncertain parameters should be determined:
𝑥
0
, 𝑦
0
, 𝑧
0
, 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, and 𝛾, where 𝛼, 𝛽, and 𝛾 are

the rotation angles of the ellipsoid surface around the axis
directions 𝑋, 𝑌, and 𝑍, respectively. The increasing number
of uncertain parameters will lead to an exponential increase
in the computational burden. Figure 5 shows a 3D slope cut
by an ellipsoid from different perspectives.

To reduce the number of calculations, the following
assumptions are introduced. First, the semimajor axis of the
ellipsoidal is parallel to the slope (as shown in Figure 5(a),
where OP is assumed parallel to MN) and there are no
rotations around the directions 𝑋 and 𝑌. As a result, only
one rotation angle exists, where 𝛼 and 𝛽 are equal to 0 and
𝛾 is equal to the inclination of slope. With this assumption,
the number of uncertain parameters is reduced to six.
Furthermore, it is assumed that a relationship exists among
the radius parameters of the ellipsoid; here, the assumption
for the relationship among 𝑎, 𝑏, and 𝑐 presented by Zhao et al.
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Figure 4: A 3D slope is cut by a sphere: (a) side view and (b) top view.
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Figure 5: A 3D slope is cut by an ellipsoidal: (a) side view and (b) top view.

is used that parameter 𝑎 is the maximum value and the value
of 𝑏 is less than 𝑐 [25].

Furthermore, determining the appropriate center coordi-
nate and search range of the sphere or ellipsoid embedded
in the three-dimensional slope is a problem [15]. To reduce
the number of calculations, the center points are limited in
one plane [13, 26], which is the same as the two-dimensional
problem. According to the symmetry soil slopes, the center
points are located in the vertical plane across midpoint 𝐴 of
the slope (details shown in Figure 6).

As shown in Figure 6, the center points are located in the
rectangle 𝐴𝐵𝐶𝐷, and the coordinate 𝑍 is a constant. In this
manner, the appropriate search domain can effectively reduce
the number of calculations. For a determined geometry of
3D soil slopes, the search range of the center points can be
further reduced. The optimization for the search range of the
center points can simplify the calculation and improve the
computing speed [15]. Figure 7 shows the further optimiza-
tion assumption for the search range of the center points.

As shown in Figure 7, point 𝑅 is the midpoint of the
straight line 𝐴𝑀

󸀠, and two auxiliary lines 𝑅𝑄
󸀠
/𝑅𝑄 are

added, which are perpendicular to 𝑀
󸀠
𝐸
󸀠
/𝐴𝑀
󸀠, respectively.

Regarding to the slope geometry and the potential slip
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Figure 6: Primary setting for the search range of the center points.

surface, the search range of the center points can be greatly
reduced into the range of 𝑄𝑄

󸀠
𝑆𝑆
󸀠. For the soil slopes, when

the sliding surface is tangent to the plane MEF (as shown in
Figure 6), the slip surface cuts a small part of the 3D slope,
which cannot be the most dangerous slip surface. While the
depth of the tangent plane in the slope is greater thanMRwith
the slip surface, the resistance moment of the slip surface will
be relatively large [8]. The radius of the spheres or ellipsoids
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can be limited to a small range [4]. Furthermore, to address
the very large number of calculations for the 3D slope, some
optimization algorithms can be introduced to improve the
computational efficiency [15].

2.5. Calculation Process. The calculation process for deter-
mining the critical slip surface of 3D soil slopes from stress
field using the finite element method is shown as follows:

(1) According to a special 3D soil slope, first, the numer-
ical model of this slope should be established, and,
then, the finite elementmethod is used to calculate the
stress field of this slope by means of gravity loading;
here, the Mohr-Coulomb constitutive model for the
soils is used during the numerical simulation process.

(2) After the completion of numerical simulation, the
computing nodes, elements, mechanical parameters,
and stress field of the slope are exported to four
data files (nodes.txt, elements.txt, parameters.txt, and
stress.txt); the four files can be loaded by the VBA
(Visual Basic for Applications) programming lan-
guage.

(3) After the main program has loaded the four exported
files, that is, nodes.txt, elements.txt, parameters.txt,
and stress.txt, to set the search range of the center
points, the rotation angle of the ellipsoid, the range
of values of the radius, and other initial conditions,
including the boundary condition of the slope, can
be automatically detected and the shear strength
parameters of each element can be found in the file
of parameters.txt.

(4) After several random slip surfaces are generated
under some certain optimization principles, the safety
factor of each slip surface can be determined using
(8), where the minimum value is the safety factor of
the soil slope and the corresponding slip surface is the
critical one.

(5) After exporting the geometry information of the
critical slip surface, the stress field on the critical
slip surface can be visualized using various drawing
software packages, such as Surfer or Tecplot.

Table 1: Mechanical parameters of the benchmark soil slope.

Soil 𝐸 (MPa) V 𝛾 (g/cm3) 𝑐 (kPa) 𝜑 (∘)
Layer 1 500 0.30 1.92 29 20
Layer 2 200 0.33 1.92 10 0
Layer 3 500 0.30 1.92 29 20
Note. 𝐸 is the elastic modulus; V is Poisson’s ratio; 𝛾 is the density; 𝑐 is the
cohesion; and 𝜑 is the friction angle.
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Figure 8: Geometric condition of the 3D benchmark slope.

3. Results

In this section, a classical benchmark soil slope is used verify
the proposed stability analysis method for 3D soil slopes [22,
23, 26]. Comparison analysis between the other methods is
performed for the location of the critical slip surface and the
corresponding safety factor.

3.1. Benchmark Slope Conditions. The 3D benchmark soil
slope consists of three different types of soil layers: layers 1, 2,
and 3, from top to bottom, where layer 2 is a weak interlayer
with a height of 0.3m [17]. Figure 8 shows the geometric
condition and finite element mesh of this 3D benchmark
slope, which is commonly used for the verification of the 3D
slope stability analysis method.

As shown in Figure 8, the benchmark slope has the
following characteristics: a height of 22.2m, length of 80m,
width of 50m, and slope inclination of 27∘. Here, the com-
mercial finite element software ABAQUA is used to calculate
the stress field within the soil slope. The slope mesh consists
of solid-brick elements with eight nodes and elastic-perfectly
plastic behavior (Figure 8). Table 1 presents the mechanical
parameters of the benchmark soil slope.

As shown in Figure 8, the bottom surface is fixed of
displacement constraints in 𝑥, 𝑦, and 𝑧 directions; the
two side surfaces in 𝑥 direction are fixed of displacement
constraints in 𝑥 and 𝑧 directions; and the two side surfaces
in 𝑧 direction are also fixed of displacement constraints in 𝑥

and 𝑧 directions. After all the initial conditions are defined
for the numerical mesh, the elastic stress of the slope is
firstly calculated under the only action of gravity loading.
When the elastic process of the gravity loading is finished,
the associated displacements and strains of the numerical
nodes and elements are all reset to zero.The initial stress field
for the soil slope is determined, and then all the numerical
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Figure 9: Stress distribution characteristics of the benchmark slope: (a) maximum principal stress and (b) minimum principal stress.
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Figure 10: Determination of the spherical slip surface for the 3D benchmark soil slope: (a) slope cut by a sphere and (b) search range of the
center points and radius.

meshes are used the elastic-perfectly plastic properties. The
secondary calculation process of the slope stress field is
carried out by using the Mohr-Coulomb model; this stress
field is the input data for slope stability analysis. After the
completion of numerical simulation, the computing nodes,
elements, mechanical parameters, and stress field of the slope
are exported to four data files by using the self-designed sec-
ondary development codes for the ABAQUS. Figure 9 shows
the stress distribution characteristics of the benchmark slope.

From Figure 9, the benchmark slope is mainly under
compressive stress with a low level; because the slope height
is at a small scale, the maximum compressive stress of
the benchmark slope is in the range of 0 to 0.45MPa.
Furthermore, small tensile stress exists at the slope surface,
and stress dislocation appears around weak layer 2. As the
potential slip surface cannot be directly determined from the
stress field of the 3D slope, some indirect methods should
be introduced to determine the critical slip surface and its
corresponding safety factor. The following stability analysis

results are performed based on these stress field results for
the benchmark slope.

3.2. Spherical Slip Surface. First, a potential spherical slip
surface is assumed to exist in the 3D benchmark soil slope,
and the center of these potential spherical slip surfaces are
located in the middle of the width direction, as shown in
Figure 10(a). The benchmark slope is cut by these potential
spherical slip surfaces.

According to the geometric information of the bench-
mark slope, the precise search range 𝑄𝑄

󸀠
𝑆𝑆
󸀠 for the center

point of potential spheres can be determined, as shown in
Figure 10(b). The details of the search range of the center
points can be gained from Figure 10(b); that is, the center
point must be located in the range 𝑄𝑄

󸀠
𝑆𝑆
󸀠. As a result, the

corresponding radius range of the spheres is from 18.3m to
29.3m.

Once the search range of the center points and radius for
the spherical slip surfaces are determined, several random
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Figure 11: Stability analysis result of the benchmark slope by use of the spherical slip surface: (a) normal stress distribution on the critical
slip surface and (b) safety factor results of the critical slip surface.

Table 2: Comparison of the stability results of the spherical slip
surface for different methods.

Methods Safety factor Radius (m) Center point (m)
Zhang’ result [22] 2.122 / /
Zhou’ result [8] 2.092 24.4 (5.1, 19.6, 25.0)
Chen’ result [17] 2.262 24.4 /
Presented method 2.135 24.5 (6.1, 19.3, 25.0)

spheres are generated. The slope is cut by these spheres; for
each spherical slip surface, the geometric information and
stress distribution of the surface can be computed and the
corresponding safety factor can be determined, where the
minimum safety factor is the critical slip surface. Figure 11(a)
shows the normal stress distribution on the critical slip
surface, which is in the range of 6.0 kPa to 145 kPa. The
normal stress on the slip surface is related with the stress
field of the soil slope and can be used to compute the shear
resistance of the slip surface. Figure 11(b) shows the safety
factor results of the critical slip surface.

From Figure 11(b), the center point of the critical slip
surface is “6.1m, 19.3m, and 25.0m” and the radius is 24.5m.
The slip moment and resisting moment are 187.9 kN⋅m and
401.2 kN⋅m, respectively, the corresponding safety factor is
2.135. A comparison of the proposed method with other
previous methods is presented in Table 2 (previous methods
are from [8, 17, 22]).

As shown in Table 2, although there is little difference
in the shape of spherical slip surface, the safety factor of
benchmark soil slope using the presented method is close to
those of other methods. The simulated results indicate that
the proposed method can be used for the spherical stability
analysis of a 3D soil slope.

3.3. Ellipsoidal Slip Surface. The search of the ellipsoidal slip
surface is more complicated than the search of the spherical

slip surface. Some assumptions are introduced to reduce
the number of calculations; Figure 12(a) shows the 3D soil
slope cut by a ellipsoid, where the center of these potential
ellipsoidal slip surfaces are located at the middle in the width
direction.

As shown in Figure 12(a), no rotation angle exists around
the axis directions𝑋 and𝑌, but the rotation angle around the
axis direction𝑍 is equal to the inclination of the soil slope and
the rotation angles (𝛼, 𝛽, 𝛾) are “27∘, 0∘, and 0∘,” respectively.
The initial value of (𝑎, 𝑏, 𝑐) are set as (20m, 15m, and 15m),
respectively; these values are no larger than 25m. The search
range of the center points is the same as the spherical slip
surface.

Once the search range of the center points and radius for
the ellipsoidal slip surfaces are determined, several random
spheres are generated. The slope is cut by these ellipsoids,
and the safety factor of these ellipsoidal slip surfaces can
be computed, where the minimum one is the critical slip
surface. Figure 12(b) shows the safety factor results of the
critical slip surface. As shown in Figure 12(b), the center point
of the critical slip surface is “8.0m, 15.1m, and 25.0m” and
the radius values (𝑎, 𝑏, 𝑐) are “24.4m, 11.7m, and 20.7m,”
respectively. The slip moment and resisting moment are
189.1 kN⋅m and 414.6 kN⋅m, respectively; the corresponding
safety factor is 2.193. Comparison of the presented method
with previous methods is presented in Table 3 (improved
simplified Janbu’s method [23]).

As presented in Table 3, the safety factor determined
using the proposed method is 2.193, which is larger than that
of Zhang’s result and is also larger than that of the spherical
slip surface because the proposed method meets all forces
andmoment equilibriumconditions base on slope stress field.
However, from all of other results and this paper’s results, we
found that the safety factor of this benchmark slope is in the
range of 2.0 to 2.2. The simulated results indicate that the
presented method can suit not only the stability analysis of
spherical slip surface but also the ellipsoidal slip surface.



Mathematical Problems in Engineering 9

Table 3: Comparison of the stability results of the ellipsoidal slip surface for different methods.

Methods Safety factor Radius (m) Center point (m)
Zhang’s result [23] 2.096 𝑎 = 46, 𝑏 = 𝑐 = 24.4 (0.0, 36.6, 27.4)
Presented method 2.193 𝑎 = 24.4, 𝑏 = 11.7, 𝑐 = 20.7 (8.0, 15.1, 25.0)

X
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Z
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+
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+
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20.72
= 1

Unit (m) 
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Z

X

2.193 
MR = 414.6kN·m
MS = 189.1kN·m
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(b)

Figure 12: Stability analysis result of the benchmark slope using an ellipsoidal slip surface: (a) slope cut by a sphere and (b) safety factor
results of the critical slip surface.

4. Discussion and Conclusion

In geotechnical engineering, the slope stability problem is
an important issue for construction safety and long-term
operation. Because many theoretical issues remain not fully
resolved, the mechanics of the slope instability should con-
tinue to be studied [27–29]. The finite element method is
the most widely used method for slope stability analysis
[4]. However, the critical slip surface and the corresponding
safety factor cannot be determined directly based on the
stress field and displacement field of the slope; thus, an
indirect method should be introduced to solve this problem,
such as the strength reductionmethod [13, 28]. However, this
method requires iterative calculations and limits the node
unbalanced force, which inevitably result in the calculating
efficiency not high. In this paper, a stability analysis method
was proposed to determine the critical slip surface of 3D
soils slopes from the stress field with the finite element
method. Spherical and ellipsoidal slip surfaces are considered
for the 3D soil slopes. And the safety factor of the slip
surface is computed based on Mohr-Coulomb criteria and
limit equilibrium principle.

A classical benchmark soil slope is used to verify the
proposed stability analysis method for 3D soil slopes. The
simulated results indicate that, for the spherical slip surface,
the slip moment and resisting moment are 187.9 kN⋅m and
401.2 kN⋅m, respectively, and the corresponding safety factor
is 2.135, which is close to the value of the previous three
different methods considered [8, 17, 22]. For the ellipsoidal
slip surface, the slip moment and resisting moment are
189.1 kN⋅m and 414.6 kN⋅m, respectively; the corresponding

safety factor is 2.193, which is close to Zhang’s result [23].
From all of the previous results and this paper’s results, the
safety factor of this benchmark slope is in the range of 2.0 to
2.2.

The proposedmethod can resolve some limitations of the
existing 3D methods that are based on the limit equilibrium
approach. For the limit equilibrium approach, the method
cannot consider the internal stress field of the slope, and
many assumptions are necessary considered for the slices
of slope soils. Besides, the traditional finite element method
cannot directly determine the critical slip surface of slope
and calculate the corresponding safety factor. The organic
combination of the FEM with the limit equilibrium principle
can fully account for soil deformation and the influence of
elastoplastic stress adjustment on the slope stability. That
means the proposed method can determine the critical
slip surface via mathematical programming using the stress
field of the slope as the input. Based on the FEM and
limit equilibrium principle, the slope transfers the element
interaction force by itself. When a critical state is reached, the
element nodes appear failure. The proposed method can not
only determine the location of critical slip surface but also can
calculate the corresponding safety factor of the 3D soil slopes.
Furthermore, it makes good use of geometric combination to
reduce the search range during the calculation process.

Regarding the proposed method for the stability anal-
ysis of a 3D soil slope, some reasonable assumptions were
introduced to reduce the search range of the center points
and radius. In addition, the definition of the safety factor
was relatively unique by using the resisting moment and the
slip moment. Combined with the assumption of the sliding
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direction, the safety factor is very convenient for the inte-
gral solution in the sliding surface. Therefore the proposed
method can provide some realistic guidance for the 3D
symmetric soil slope stability.
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