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The problem of impact-time-control guidance (ITCG) for the homingmissile with time-varying velocity is addressed. First, a novel
ITCG law is proposed based on the integral sliding mode control (ISMC) method.Then, a salvo attack algorithm is designed based
on the proposed guidance law.The performances of the conventional ITCG laws strongly depend on the accuracy of the estimated
time-to-go (TTG). However, the accurate estimated TTG can be obtained only if the missile velocity is constant. The conventional
ITCG laws were designed under the assumption that the missile velocity is constant.The most attractive feature of this work is that
the newly proposed ITCG law relaxes the constant velocity assumption, which only needs the variation range of themissile velocity.
Finally, the numerical simulation demonstrates the effectiveness of the proposed method.

1. Introduction

Proportional navigation guidance law (PNGL) [1–4] has been
widely used in the area of homing guidance, which can
achieve excellent performance in the presence of a nonma-
neuvering target. However, in recent years, with the devel-
opment of defense systems such as space defense antimissile
system [5], electronic countermeasure system (ECMS) [6],
and close-in weapon system (CIWS) [7], the survivability of
attack missile with conventional guidance scheme has been
intimidated. Fortunately, most defense systems have “one-to-
one” feature; thus the salvo attack of multiple missiles can
be one of the most effective countermeasures for missiles
against the threats of defense systems. The salvo attack can
be realized if all missiles hit the target simultaneously; this is
called impact-time-control guidance (ITCG).

In 2006, Jeon et al. [8] first proposed an ITCG law to
realize the salvo attack. The solution is a combination of the
PNGL and the feedback of the impact time error. In [9], a
cooperative-proportional navigation guidance (CPNG) law
was designed to realize the salvo attack by decreasing the
time-to-go (TTG) variance of missiles. In [10], a bias pro-
portional navigation guidance (BPNG) law was developed,
in which the desired impact time and angle were achieved

simultaneously. In [11], the authors proposed an optimal
guidance law for controlling the impact time and angle.
In [12], an ITCG law based on a two-step control strategy
was proposed. In [13], the authors proposed a polynomial
guidance law to control the impact time and angle.

Actually, the above-mentioned ITCG laws in [8–13] were
designed based on linearized-engagement-dynamics. How-
ever, the linearized-engagement-dynamic-based method can
achieve high precision only if the missile’s flight-path angle is
small. It is well known that the sliding mode control (SMC)
method is powerful in controlling nonlinear system [14–17].
So far, some SMC-based ITCG laws have been developed
in [18–20]. And they were derived based on the nonlinear
engagement dynamics. In [18], a guidance law based on the
second-order SMCmethod and the backstepping schemewas
developed. In order to satisfy the impact time constraint, one
coefficient of the guidance law was searched for by using the
off-line simplex algorithm. In [19], a SMC-based guidance law
was developed tomeet the requirement of ITCG, inwhich the
sliding mode was defined as the combination of the line-of-
sight (LOS) angle rate and the impact time error. However,
if the initial LOS angle is zero, the guidance law proposed
in [19] will generate zero-acceleration command during the
whole guidance process. To overcome this problem, in 2015,
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Cho et al. [20] proposed an ITCG law based on a nonsingular
sliding mode. Compared with the sliding mode in [19], the
sliding mode in [20] was defined as only the impact time
error.

Note that the aforementioned ITCG laws in [8–13, 18–20]
all need the TTG. However, the TTG cannot be measured
directly. To overcome this problem, [8–13, 18–20] all design
estimation algorithm to estimate the TTG. These estimation
results in [8–13, 18–20] are obtained under the assumption
that themissile velocity is invariant. However, the assumption
is too restrictive for many cases. In practical missile systems,
the missile velocity is affected inevitably by various forces
such as the driving force of engine and the aerodynamic
forces. When the constant velocity assumption is invalid, the
estimation error of TTG may be large. Thus, these guidance
laws in [8–13, 18–20]maynotworkwell in practical situations.

In this paper, a novel ITCG law is proposed for missile
with time-varying velocity, based on integral sliding mode
control (ISMC). The main contributions of this paper are the
following:

(1) As far as we know, the ITCG law for the missile with
time-varying velocity is achieved for the first time.
Compared with the conventional ITCG laws in [8–
13, 18–20], the constant velocity assumption is relaxed
in this paper. In otherwords, the proposed law ismore
practical than the conventional ITCG laws.

(2) The proposed guidance law is derived based on
the nonlinear engagement dynamic rather than the
linearized dynamics used in [8–13].

The remaining parts of this paper are as follows. In
Section 2, the problems of existing ITCG laws are formulated.
The main results are presented in Section 3. In Section 3,
an ITCG law based on ISMC method is proposed and the
permissible set of the desired impact times is discussed. Sec-
tion 4 shows a salvo attack algorithm based on the proposed
guidance law. In Section 5, the numerical simulations verify
the effectiveness of the proposed method in comparison with
themethods presented in [8, 20]. In Section 6, the conclusions
of the whole paper are presented.

Notations. The following notations will be used in this paper.
𝑡 denotes the elapsed time after launching the missile, 𝑥

0

denotes 𝑥 at initial time 𝑡
0
, and 𝑥(𝑡

𝑘
) denotes 𝑥 at time 𝑡

𝑘
.

2. Problem Formulation

As shown in Figure 1,𝑂𝑥 represents the horizontal direction,
𝑂𝑦 represents the longitudinal direction, 𝑇 represents the
stationary target, 𝑀 represents the missile, 𝜆 represents the
LOS angle, 𝑅 represents the relative distance between the
missile and the target, 𝛾 represents the heading angle, 𝑎

𝑀

represents the missile acceleration, and 𝑉 represents the
missile velocity. From Figure 1, the following equalities can
be established [20]:

�̇� = 𝑉 cos 𝛾,

�̇� = 𝑉 sin 𝛾,

(1)
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Figure 1: Missile-target engagement geometry.

where (𝑥, 𝑦) are the coordinates of missile. The equations for
relative motion can be expressed as [20]

�̇� = −𝑉 cos (𝜆 − 𝛾) = −𝑉 cos𝜙,

𝑅�̇� = −𝑉 sin (𝜆 − 𝛾) = −𝑉 sin𝜙,

𝑎
𝑀

= 𝑉�̇�,

�̇� =
1

2
𝐶
𝑥
𝜌𝑉
2 𝑆𝑀

𝑚
,

(2)

where 𝐶
𝑥
denotes the aerodynamic coefficients, 𝜌 denotes

the air density, 𝑆
𝑀
denotes the reference area, 𝑚 denotes the

missile mass, and 𝑎
𝑀

denotes the lateral acceleration. It is
assumed that air resistance plays a major role in the change
of the missile velocity; thus we have

𝐶
𝑥
< 0. (3)

Note that if condition (4) is satisfied, then the objective of
ITCG is realized [8–13, 18–20]:

𝑡
𝑓
= 𝑡
𝑑

𝑓
, (4)

where 𝑡
𝑓
denotes the impact time and 𝑡

𝑑

𝑓
denotes the desired

impact time. 𝑡
𝑓
can be rewritten as

𝑡
𝑓
= 𝑡 + 𝑡go, (5)

where 𝑡 is the elapsed time after launching the missile and 𝑡go
is the time-to-go (TTG).

Combining (4) with (5), condition (4) is equivalent to the
following condition:

𝑡
𝑑

𝑓
= 𝑡 + 𝑡go. (6)
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In order to satisfy (6), the conventional ITCG laws in [8–13,
18–20] need 𝑡go. However, 𝑡go can not be measured directly.
These literatures design estimation algorithm to estimate the
TTG.The performances of these ITCG laws strongly depend
on the accuracy of the estimated TTG.

The length of the trajectory of missile, 𝑆, is given by

𝑆 = ∫

𝑡𝑓

𝑡0

𝑉𝑑𝑡 = ∫

𝑥(𝑡𝑓)

𝑥0

√1 + (
𝑑𝑦

𝑑𝑥
)

2

𝑑𝑥. (7)

If 𝑉 is constant (�̇� = 0), then we have

𝑡
𝑓
=

1

𝑉
∫

𝑥(𝑡𝑓)

𝑥0

√1 + (
𝑑𝑦

𝑑𝑥
)

2

𝑑𝑥 + 𝑡
0
. (8)

Combining (5) with (8), we have

𝑡go =
1

𝑉
∫

𝑥(𝑡𝑓)

𝑥0

√1 + (
𝑑𝑦

𝑑𝑥
)

2

𝑑𝑥 + 𝑡
0
− 𝑡. (9)

Based on (9), the estimated TTG �̂�go is obtained in [8–13, 18–
20]. For example, in [8], the estimated TTG is

�̂�go =
𝑅

𝑉
(1 +

(𝛾 − 𝜆)
2

10
) . (10)

In [9], the estimated TTG is

�̂�go =
𝑅

𝑉
(1 +

(𝛾 − 𝜆)
2

2 (2𝑁 − 1)
) , (11)

where𝑁 is a constant parameter.
However, if𝑉 is time-varying, (8) cannot be derived from

(7). In other word, the estimation error of TTG may be very
large if we still use the estimation methods in [8–13, 18–
20]. And the requirement of the ITCG cannot be satisfied
with their guidance laws (in Section 5 of this paper, the
simulation result also demonstrates that the performance of
existing ITCG laws is poor when the missile velocity is time-
varying). This motivates the research topic of this paper, that
is, designing a new ITCG law for missile with time-varying
velocity to satisfy condition (4).

The following assumptions should be assumed to be valid
throughout this paper:

(A1) Missile velocity 𝑉 satisfies 𝑉min ≤ 𝑉 ≤ 𝑉max, where
𝑉min and 𝑉max are the known constants.

(A2) �̇� is available (see [21–23]).

Assumption (A1) implies that we only need the bound of
the time-varying velocity. Obviously, assumption (A1) is a
relaxed version of the constant velocity assumption used in
[8–13, 18–20]. Because �̇� can be measured by accelerometer,
assumption (A2) is a commonly used assumption for the
design of guidance law (see [21–23]).

3. New Impact-Time-Control Guidance
Law Based on ISMC

3.1. Design of ITCG Law. Condition (4) is equivalent to the
following conditions:

𝑅 (𝑡) > 0, ∀𝑡
0
≤ 𝑡 < 𝑡

𝑑

𝑓
,

𝑅 (𝑡
𝑑

𝑓
) = 0.

(12)

Conditions (12) mean that the missile can attack the target
only if 𝑡 = 𝑡

𝑑

𝑓
. In this section, a novel ITCG law is developed

to satisfy (12).
A state variable 𝑧

1
is defined as

𝑧
1
= 𝑅 − 𝑉min (𝑡

𝑑

𝑓
− 𝑡) . (13)

Differentiating (13) gives

�̇�
1
= �̇� + 𝑉min. (14)

Let �̇�
1
= 𝑧
2
, and the guidance system (2) can be rewritten as

�̇�
1
= 𝑧
2
,

�̇�
2
= 𝑓 (𝑧) + 𝑔 (𝑧) 𝑢,

�̇� =
1

2
𝐶
𝑥
𝜌𝑉
2 𝑆𝑀

𝑚
,

(15)

where 𝑢 = 𝑎
𝑀
, 𝑓(𝑧) = −�̇� cos (𝜆 − 𝛾) + 𝑉 sin (𝜆 − 𝛾)�̇� and

𝑔(𝑧) = − sin (𝜆 − 𝛾).
A novel integral sliding mode (ISM) is constructed as

𝑠ISM = 𝑧
2
− 𝑧
2
(𝑡
0
) + ∫

𝑡

𝑡0

(

𝑏(𝑡
𝑑

𝑓
− 𝑡) 𝑧
2
+ 𝑐𝑧
1

𝑎 (𝑡
𝑑

𝑓
− 𝑡)

2
)𝑑𝜏, (16)

where 𝑎, 𝑏, and 𝑐 are the guidance parameters, which are all
constants. Then, using the following guidance law:

𝑢 = −𝑔
−1

(𝑧)

⋅ (𝑓 (𝑧) +

𝑏 (𝑡
𝑑

𝑓
− 𝑡) 𝑧
2
+ 𝑐𝑧
1

𝑎 (𝑡
𝑑

𝑓
− 𝑡)

2
+ 𝛽 sgn (𝑠ISM)) ,

(17)

where 𝛽 is a small positive constant and sgn (⋅) denotes the
signum function, we have the following results.
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Theorem 1. Consider system (15) with the guidance law (17),
provided that 𝑞

1
and 𝑞
2
are the solutions to the equation 𝑎𝑞

2
−

(𝑎 + 𝑏)𝑞 + 𝑐 = 0, where 𝑎, 𝑏, and 𝑐 are the guidance parameters
in (17). If 𝑡𝑑

𝑓
satisfies

𝑡
0
+

𝑅
0
𝑞
2

−�̇�
0
− (1 − 𝑞

2
) 𝑉
𝑚𝑖𝑛

< 𝑡
𝑑

𝑓

< 𝑡
0
+

𝑅
0
𝑞
1

−�̇�
0
− (1 − 𝑞

1
) 𝑉
𝑚𝑖𝑛

, 𝑖𝑓 𝑞
2
> 𝑞
1
,

𝑡
0
+

𝑅
0
𝑞
1

−�̇�
0
− (1 − 𝑞

1
) 𝑉
𝑚𝑖𝑛

< 𝑡
𝑑

𝑓

< 𝑡
0
+

𝑅
0
𝑞
2

−�̇�
0
− (1 − 𝑞

2
) 𝑉
𝑚𝑖𝑛

, 𝑖𝑓 𝑞
1
> 𝑞
2
,

(18)

𝑞
1
≥ 2, 𝑞

2
≥ 2, 𝑞

1
̸= 𝑞
2
, and |𝑉

0
cos (𝜆

0
− 𝛾
0
)/𝑉
𝑚𝑖𝑛

| < 1, then
the following conditions will be satisfied:

𝑅 (𝑡) > 0, ∀𝑡
0
≤ 𝑡 < 𝑡

𝑑

𝑓
,

𝑅 (𝑡
𝑑

𝑓
) = 0.

(19)

Proof. Differentiating (16) with respect to time yields

̇𝑠ISM = �̇�
2
+

𝑏 (𝑡
𝑑

𝑓
− 𝑡) 𝑧
2
+ 𝑐𝑧
1

𝑎 (𝑡
𝑑

𝑓
− 𝑡)

2
. (20)

Combining (15) with (20), we have

̇𝑠ISM = 𝑓 (𝑧) + 𝑔 (𝑧) 𝑢 +

𝑏 (𝑡
𝑑

𝑓
− 𝑡) 𝑧
2
+ 𝑐𝑧
1

𝑎 (𝑡
𝑑

𝑓
− 𝑡)

2
. (21)

Construct a Lyapunov function 𝑉
1
as

𝑉
1
=

1

2
𝑠
2

ISM. (22)

Differentiating (22) and then using (21) and (17) yield

�̇�
1
= 𝑠ISM ̇𝑠ISM

= 𝑠ISM (𝑓(𝑧) + 𝑔 (𝑧) 𝑢 +

𝑏 (𝑡
𝑑

𝑓
− 𝑡) 𝑧
2
+ 𝑐𝑧
1

𝑎 (𝑡
𝑑

𝑓
− 𝑡)

2
)

= −𝑠ISM (𝛽 sgn (𝑠ISM)) < 0, when 𝑠ISM ̸= 0.

(23)

Note that 𝑠ISM(𝑡
0
) = 0, and one can imply that

𝑠ISM (𝑡) = 0, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
. (24)

As 𝑠ISM(𝑡) remains as zero, we get

̇𝑠ISM (𝑡) = 0, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
. (25)

The following equation can be obtained by combining (20)
with (25):

𝑎 (𝑡
𝑑

𝑓
− 𝑡)
2

�̈�
1
+ 𝑏 (𝑡
𝑑

𝑓
− 𝑡) �̇�

1
+ 𝑐𝑧
1
= 0,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
.

(26)

Provided that 𝑞
1
and 𝑞
2
are the solutions to the equation 𝑎𝑞

2
−

(𝑎 + 𝑏)𝑞 + 𝑐 = 0, if 𝑞
1

̸= 𝑞
2
, 𝑞
1
≥ 2, and 𝑞

2
≥ 2, the solutions

to the differential equation (26) can be easily obtained as

𝑧
1
= 𝑐
1
(𝑡
𝑑

𝑓
− 𝑡)
𝑞1

+ 𝑐
2
(𝑡
𝑑

𝑓
− 𝑡)
𝑞2
, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
, (27)

�̇�
1
= −𝑐
1
𝑞
1
(𝑡
𝑑

𝑓
− 𝑡)
𝑞1−1

− 𝑐
2
𝑞
2
(𝑡
𝑑

𝑓
− 𝑡)
𝑞2−1

,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
,

(28)

where 𝑐
1
and 𝑐
2
are constant.

Substituting (13) into (27) and substituting (14) into (28)
yield

𝑅 − 𝑉min (𝑡
𝑑

𝑓
− 𝑡) = 𝑐

1
(𝑡
𝑑

𝑓
− 𝑡)
𝑞1

+ 𝑐
2
(𝑡
𝑑

𝑓
− 𝑡)
𝑞2
,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
,

(29)

�̇� + 𝑉min = −𝑐
1
𝑞
1
(𝑡
𝑑

𝑓
− 𝑡)
𝑞1−1

− 𝑐
2
𝑞
2
(𝑡
𝑑

𝑓
− 𝑡)
𝑞2−1

,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
.

(30)

Substituting the initial values 𝑅
0
and �̇�

0
into (29) and (30),

we get

𝑅
0
− 𝑉min (𝑡

𝑑

𝑓
− 𝑡
0
) = 𝑐
1
(𝑡
𝑑

𝑓
− 𝑡
0
)
𝑞1

+ 𝑐
2
(𝑡
𝑑

𝑓
− 𝑡
0
)
𝑞2
,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
,

(�̇�
0
+ 𝑉min) (𝑡

𝑑

𝑓
− 𝑡
0
) = −𝑐

1
𝑞
1
(𝑡
𝑑

𝑓
− 𝑡
0
)
𝑞1

− 𝑐
2
𝑞
2
(𝑡
𝑑

𝑓
− 𝑡
0
)
𝑞2
,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
.

(31)

From (31), we have

𝑐
1
=

(�̇�
0
+ 𝑉min (1 − 𝑞

2
)) (𝑡
𝑑

𝑓
− 𝑡
0
) + 𝑞
2
𝑅
0

(𝑞
2
− 𝑞
1
) (𝑡
𝑑

𝑓
− 𝑡
0
)

𝑞1
,

𝑐
2
=

(−�̇�
0
− 𝑉min (1 − 𝑞

1
)) (𝑡
𝑑

𝑓
− 𝑡
0
) − 𝑞
1
𝑅
0

(𝑞
2
− 𝑞
1
) (𝑡
𝑑

𝑓
− 𝑡
0
)

𝑞2
.

(32)

According to (18), |𝑉
0
cos (𝜆

0
− 𝛾
0
)/𝑉min| < 1, 𝑞

1
≥ 2, and

𝑞
2
≥ 2, we have

𝑐
1
< 0,

𝑐
2
< 0.

(33)
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From (32), (33), and 𝑡
𝑑

𝑓
− 𝑡
0
> 0, one can imply that

(�̇�
0
+ 𝑉min (1 − 𝑞

2
)) (𝑡
𝑑

𝑓
− 𝑡
0
) + 𝑞
2
𝑅
0

(𝑞
2
− 𝑞
1
)

< 0,

(−�̇�
0
− 𝑉min (1 − 𝑞

1
)) (𝑡
𝑑

𝑓
− 𝑡
0
) − 𝑞
1
𝑅
0

(𝑞
2
− 𝑞
1
)

< 0.

(34)

Substituting (32) into (29), we have

𝑅 − 𝑉min (𝑡
𝑑

𝑓
− 𝑡)

=

(�̇�
0
+ 𝑉min (1 − 𝑞

2
)) (𝑡
𝑑

𝑓
− 𝑡
0
) + 𝑞
2
𝑅
0

(𝑞
2
− 𝑞
1
)

⋅

(𝑡
𝑑

𝑓
− 𝑡)
𝑞1

(𝑡
𝑑

𝑓
− 𝑡
0
)

𝑞1

+

(−�̇�
0
− 𝑉min (1 − 𝑞

1
)) (𝑡
𝑑

𝑓
− 𝑡
0
) − 𝑞
1
𝑅
0

(𝑞
2
− 𝑞
1
)

⋅

(𝑡
𝑑

𝑓
− 𝑡)
𝑞2

(𝑡
𝑑

𝑓
− 𝑡
0
)

𝑞2
, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
.

(35)

Considering (34), 0 ≤ (𝑡
𝑑

𝑓
−𝑡)/(𝑡

𝑑

𝑓
−𝑡
0
) ≤ 1, 𝑞

1
≥ 2, and 𝑞

2
≥ 2,

we get (36) from (35). Consider

𝑅 − 𝑉min (𝑡
𝑑

𝑓
− 𝑡)

≥

(�̇�
0
+ (1 − 𝑞

2
) 𝑉min) (𝑡

𝑑

𝑓
− 𝑡
0
) + 𝑞
2
𝑅
0

(𝑞
2
− 𝑞
1
)

(𝑡
𝑑

𝑓
− 𝑡)

(𝑡
𝑑

𝑓
− 𝑡
0
)

+

(−�̇�
0
− (1 − 𝑞

1
) 𝑉min) (𝑡

𝑑

𝑓
− 𝑡
0
) − 𝑞
1
𝑅
0

(𝑞
2
− 𝑞
1
)

⋅

(𝑡
𝑑

𝑓
− 𝑡)

(𝑡
𝑑

𝑓
− 𝑡
0
)

= 𝑅
0

(𝑡
𝑑

𝑓
− 𝑡)

(𝑡
𝑑

𝑓
− 𝑡
0
)

− 𝑉min (𝑡
𝑑

𝑓
− 𝑡) ,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
.

(36)

Then, we get

𝑅 ≥ 𝑅
0

(𝑡
𝑑

𝑓
− 𝑡)

(𝑡
𝑑

𝑓
− 𝑡
0
)

> 0, ∀𝑡
0
≤ 𝑡 < 𝑡

𝑑

𝑓
. (37)

Moreover, according to (29), we get

𝑅 (𝑡
𝑑

𝑓
) = 0. (38)

The proof is finished.

Remark 2. From Theorem 1, it is clear that the proposed
guidance law (17) can guarantee eachmissile attacks the target
only when 𝑡 = 𝑡

𝑑

𝑓
.

Remark 3. Equation (17) shows that the control law contains
(𝑡
𝑑

𝑓
− 𝑡) in the denominator, which may bring the singularity

when 𝑡 = 𝑡
𝑑

𝑓
. Fortunately, the singularity can be eliminated;

combining (27) with (28) yields

𝑏 (𝑡
𝑑

𝑓
− 𝑡) �̇�

1
+ 𝑐𝑧
1

𝑎 (𝑡
𝑑

𝑓
− 𝑡)

2
= (

𝑐
1
𝑐

𝑎
−

𝑐
1
𝑞
1
𝑏

𝑎
) (𝑡
𝑑

𝑓
− 𝑡)
𝑞1−2

+ (
𝑐
2
𝑐

𝑎
−

𝑐
2
𝑞
2
𝑏

𝑎
) (𝑡
𝑑

𝑓
− 𝑡)
𝑞2−2

,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
.

(39)

From (39), we can know that the singularity brought by (𝑡𝑑
𝑓
−𝑡)

is eliminated as long as 𝑞
1
≥ 2 and 𝑞

2
≥ 2.

3.2. Nonsingular Impact-Time-Control Guidance Law. If
𝑔(𝑧) = 0, (17) shows that the guidance command 𝑢 → ∞,
which means it is impossible to realize the guidance law.
In what follows, Theorem 4 shows the condition which can
ensure 𝑔(𝑧) ̸= 0 during the guidance process.

Theorem 4. Consider system (15) with the guidance law (17).
Provided that 𝑞

1
and 𝑞
2
are the solutions to the equation 𝑎𝑞

2
−

(𝑎 + 𝑏)𝑞 + 𝑐 = 0, where 𝑎, 𝑏, and 𝑐 are the parameters in (17),
if 𝑡𝑑
𝑓
satisfies (18), 𝑞

1
≥ 2, 𝑞

2
≥ 2, 𝑞

1
̸= 𝑞
2
, sin (𝜆

0
− 𝛾
0
) ̸= 0,

and |𝑉
0
cos (𝜆

0
− 𝛾
0
)/𝑉
𝑚𝑖𝑛

| < 1 − 𝜓 < 1, then 𝑔(𝑧) satisfies the
following condition:


𝑔 (𝑧)


≥ 𝜃 > 0, ∀𝑡

0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀, (40)

where 𝜀 is a sufficiently small time and

𝜃 = min {√1 − 𝜓,

sin (𝜆

0
− 𝛾
0
)

} , (41)

𝜓 = max{(
𝑉
𝑚𝑖𝑛

𝑉

)

2

, (−1 + 𝜓)
2
} , (42)

where 𝑉 is the value of 𝑉 at time 𝑡 = 𝑡
𝑑

𝑓
− 𝜀.

Proof. From the demonstration ofTheorem 4, we known that
the guidance law (17) can ensure the state variables of system
(15) satisfy the following equations:

𝑧
1
= 𝑐
1
(𝑡
𝑑

𝑓
− 𝑡)
𝑞1

+ 𝑐
2
(𝑡
𝑑

𝑓
− 𝑡)
𝑞2
, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
, (43)

�̇�
1
= −𝑐
1
𝑞
1
(𝑡
𝑑

𝑓
− 𝑡)
𝑞1−1

− 𝑐
2
𝑞
2
(𝑡
𝑑

𝑓
− 𝑡)
𝑞2−1

,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
,

(44)

where 𝑐
1
and 𝑐
2
are constants and 𝑞

1
and 𝑞
2
are the solutions

to the equation 𝑎𝑞
2
− (𝑎 + 𝑏)𝑞 + 𝑐 = 0.
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Substituting (13) into (43) and substituting (14) into (44)
yield

𝑅 − 𝑉min (𝑡
𝑑

𝑓
− 𝑡) = 𝑐

1
(𝑡
𝑑

𝑓
− 𝑡)
𝑞1

+ 𝑐
2
(𝑡
𝑑

𝑓
− 𝑡)
𝑞2
,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
,

(45)

�̇� + 𝑉min = −𝑐
1
𝑞
1
(𝑡
𝑑

𝑓
− 𝑡)
𝑞1−1

− 𝑐
2
𝑞
2
(𝑡
𝑑

𝑓
− 𝑡)
𝑞2−1

,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
.

(46)

According to (18), 𝑞
1
≥ 2, and 𝑞

2
≥ 2, we can get the following

results from the demonstration of Theorem 4:

𝑐
1
< 0,

𝑐
2
< 0.

(47)

Combining (47) with (46) yields

�̇� + 𝑉min > 0, ∀𝑡
0
≤ 𝑡 < 𝑡

𝑑

𝑓
. (48)

Substituting (2) into (48) yields

cos (𝜆 − 𝛾) <
𝑉min
𝑉

, ∀𝑡
0
≤ 𝑡 < 𝑡

𝑑

𝑓
. (49)

Differentiating (44) gives

�̈�
1
= 𝑐
1
𝑞
1
(𝑞
1
− 1) (𝑡

𝑑

𝑓
− 𝑡)
(𝑞1−2)

+ 𝑐
2
𝑞
2
(𝑞
2
− 1) (𝑡

𝑑

𝑓
− 𝑡)
(𝑞2−2)

, ∀𝑡
0
≤ 𝑡 < 𝑡

𝑑

𝑓
.

(50)

Then, considering 𝑞
1
≥ 2, 𝑞

2
≥ 2, 𝑐
1
< 0, and 𝑐

2
< 0, we have

�̈�
1
< 0, ∀𝑡

0
≤ 𝑡 < 𝑡

𝑑

𝑓
. (51)

Equation (51) means that �̇�
1
reduces monotonically with

increasing 𝑡, and we get

�̇�
1
< �̇�
1
(𝑡
0
) , ∀𝑡

0
< 𝑡 < 𝑡

𝑑

𝑓
. (52)

From (52), we get

cos (𝜆 − 𝛾) >
𝑉
0
cos (𝜆

0
− 𝛾
0
)

𝑉
, ∀𝑡
0
< 𝑡 < 𝑡

𝑑

𝑓
. (53)

Combining (49) and (53) yields

𝑉
0
cos (𝜆

0
− 𝛾
0
)

𝑉
< cos (𝜆 − 𝛾) <

𝑉min
𝑉

,

∀𝑡
0
< 𝑡 < 𝑡

𝑑

𝑓
.

(54)

From (3), it can be known that �̇� < 0. Then, we have

𝑉min
𝑉

≤
𝑉min

𝑉

< 1, ∀𝑡
0
< 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀, (55)

where 𝑉 is the value of 𝑉 at time 𝑡 = 𝑡
𝑑

𝑓
− 𝜀.

Since 𝑉min/𝑉 ≤ 𝑉min/𝑉 < 1 and 𝑉
0
cos (𝜆

0
− 𝛾
0
)/𝑉 ≥

−|𝑉
0
cos (𝜆

0
− 𝛾
0
)/𝑉min| > −1 + 𝜓 > −1, we have

−1 + 𝜓 < cos (𝜆 − 𝛾) ≤
𝑉min

𝑉

, ∀𝑡
0
< 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀. (56)

Let 𝜓 = max {(𝑉min/𝑉)
2
, (−1 + 𝜓)

2
}, then we have

cos2 (𝜆 − 𝛾) ≤ 𝜓, ∀𝑡
0
< 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀. (57)

It is clear that 0 < 𝜓 < 1. Since | sin (𝜆 − 𝛾)| =

√1 − cos2 (𝜆 − 𝛾), we have


sin (𝜆 − 𝛾)


≥ √1 − 𝜓, ∀𝑡

0
< 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀. (58)

Let 𝜃 = min{√1 − 𝜓, | sin (𝜆
0
− 𝛾
0
)|}, we have


sin (𝜆 − 𝛾)


≥ 𝜃, ∀𝑡

0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀. (59)

Since | sin(𝜆
0
− 𝛾
0
)| > 0 and√1 − 𝜓 > 0, we have


sin (𝜆 − 𝛾)


≥ 𝜃 > 0, ∀𝑡

0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀. (60)

Then, we have

𝑔 (𝑧)


≥ 𝜃 > 0, ∀𝑡

0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀, (61)

where 𝜀 is a sufficiently small time. The proof is finished.

Remark 5. In the practical engineering, the available missile
acceleration is bounded:

|𝑢| ≤ 𝑢max, (62)

where 𝑢max is the maximum available acceleration of missile
and is determined by the performance of missile. Let 𝑢 =

−𝑔
−1
(𝑧)(𝑓(𝑧) + (𝑏(𝑡

𝑑

𝑓
− 𝑡)𝑧
2
+ 𝑐𝑧
1
)/𝑎(𝑡
𝑑

𝑓
− 𝑡)
2
+ 𝛽 sgn (𝑠ISM)).

To satisfy (62) in the practical engineering, the guidance law
(17) must be modified as

𝑢 =

{{{{

{{{{

{

𝑢max; if 𝑢 > 𝑢max

𝑢; if |𝑢| ≤ 𝑢max

−𝑢max; if 𝑢 < −𝑢max.

(63)

In the most ideal case (𝑢max = ∞), we can expect the relative
distance𝑅(𝑡𝑑

𝑓
) = 0. However, 𝑢max is bounded in engineering.

Fortunately, from [8], it can be known that the objective of
ITCG can be realized if the impact time error is smaller than
0.1 s.Thus, if the following conditions (63), (64), and (65) can
be satisfied simultaneously, the objective of ITCG also can be
obtained:

𝑅 > 0, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀, (64)


𝑅 (𝑡
𝑑

𝑓
− 𝜀)


≤ 𝑅set, (65)

|𝑢| ≤ 𝑢max, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀, (66)
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where 𝜀 is a sufficiently small time and 𝜀 < 0.1. 𝑅set is a small
distance that can guarantee the precision of attack (e.g., if
the target is ship, 𝑅set = 1m can guarantee the precision of
attack).

From (2), we have

�̇� =
−𝑉 sin (𝜆 − 𝛾)

𝑅
=

𝑉

𝑅
𝑔 (𝑧) . (67)

Substituting (39) into guidance law (17) and considering (67)
yield

𝑢 = −𝑔
−1

(𝑧) (𝑓 (𝑧) + (
𝑐
1
𝑐

𝑎
−

𝑐
1
𝑞
1
𝑏

𝑎
) (𝑡
𝑑

𝑓
− 𝑡)
𝑞1−2

+ (
𝑐
2
𝑐

𝑎
−

𝑐
2
𝑞
2
𝑏

𝑎
) (𝑡
𝑑

𝑓
− 𝑡)
𝑞2−2

+ 𝛽 sgn (𝑠ISM)) = −𝑔
−1

(𝑧)

⋅ (−�̇� cos (𝜆 − 𝛾) +
𝑉
2 sin (𝜆 − 𝛾) 𝑔 (𝑧)

𝑅
+ (

𝑐
1
𝑐

𝑎
−

𝑐
1
𝑞
1
𝑏

𝑎
) (𝑡
𝑑

𝑓
− 𝑡)
𝑞1−2

+ (
𝑐
2
𝑐

𝑎
−

𝑐
2
𝑞
2
𝑏

𝑎
) (𝑡
𝑑

𝑓
− 𝑡)
𝑞2−2

+ 𝛽 sgn (𝑠ISM)) =
�̇� cos (𝜆 − 𝛾)

𝑔 (𝑧)
− 𝑉
2
sin (𝜆 − 𝛾)

𝑅

−

((𝑐
1
𝑐/𝑎 − 𝑐

1
𝑞
1
𝑏/𝑎) (𝑡

𝑑

𝑓
− 𝑡)
𝑞1−2

+ (𝑐
2
𝑐/𝑎 − 𝑐

2
𝑞
2
𝑏/𝑎) (𝑡

𝑑

𝑓
− 𝑡)
𝑞2−2

+ 𝛽 sgn (𝑠ISM))

𝑔 (𝑧)
, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀.

(68)

From (68), we have

|𝑢| ≤



�̇� cos (𝜆 − 𝛾)

𝑔 (𝑧)



+


((𝑐
1
𝑐/𝑎 − 𝑐

1
𝑞
1
𝑏/𝑎) (𝑡

𝑑

𝑓
− 𝑡)
𝑞1−2

+ (𝑐
2
𝑐/𝑎 − 𝑐

2
𝑞
2
𝑏/𝑎) (𝑡

𝑑

𝑓
− 𝑡)
𝑞2−2

+ 𝛽 sgn (𝑠ISM))



𝑔 (𝑧)



+



𝑉
2
sin (𝜆 − 𝛾)

𝑅



, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀.

(69)

Combining (37), (61), and (69) yields

|𝑢| ≤



�̇� cos (𝜆 − 𝛾)

𝜃



+


(𝑐
1
𝑐/𝑎 − 𝑐

1
𝑞
1
𝑏/𝑎) (𝑡

𝑑

𝑓
− 𝑡)
𝑞1−2

+ (𝑐
2
𝑐/𝑎 − 𝑐

2
𝑞
2
𝑏/𝑎) (𝑡

𝑑

𝑓
− 𝑡)
𝑞2−2

+ 𝛽 sgn (𝑠ISM)



𝜃


+



𝑉
2 sin (𝜆 − 𝛾) (𝑡

𝑑

𝑓
− 𝑡
0
)

𝑅
0
⋅ (𝑡
𝑑

𝑓
− 𝑡)



≤

(

�̇� cos (𝜆 − 𝛾)


+

(𝑐
1
𝑐/𝑎 − 𝑐

1
𝑞
1
𝑏/𝑎)


(𝑡
𝑑

𝑓
− 𝑡)
𝑞1−2

+

𝑐
2
𝑐/𝑎 − 𝑐

2
𝑞
2
𝑏/𝑎


(𝑡
𝑑

𝑓
− 𝑡
0
)
𝑞2−2

+ 𝛽)


𝜃


+


𝑉
2 sin (𝜆 − 𝛾) (𝑡

𝑑

𝑓
− 𝑡
0
) /𝑅
0



|𝜀|
, ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀.

(70)
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Since 𝜃 > 0, 𝜀 > 0, 𝑞
1
≥ 2, and 𝑞

2
≥ 2, it is clear that 𝑢 is

boundedwhen 𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
−𝜀.Thus, if themaximum available

acceleration 𝑢max is large enough, then condition (66) can be
satisfied even if 𝜀 is very small. Since condition (66) can be
satisfied, we can know that

𝑢 = 𝑢 = −𝑔
−1

(𝑧)

⋅ (𝑓 (𝑧) +

𝑏 (𝑡
𝑑

𝑓
− 𝑡) 𝑧
2
+ 𝑐𝑧
1

𝑎 (𝑡
𝑑

𝑓
− 𝑡)

2
+ 𝛽 sgn (𝑠ISM)) ,

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀.

(71)

That is, the guidance law (17) is valid when 𝑡
0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀.

Thus the mathematical derivations from (12) to (61) are still
valid when 𝑡

0
≤ 𝑡 ≤ 𝑡

𝑑

𝑓
− 𝜀. From (37), it is clear that (64) is

satisfied. Substituting 𝑡 = 𝑡
𝑑

𝑓
− 𝜀 into (45) yields

𝑅 (𝑡
𝑑

𝑓
− 𝜀) = 𝑉min𝜀 + 𝑐

1
𝜀
𝑞1

+ 𝑐
2
𝜀
𝑞2
. (72)

From (72), it can be known that condition (65) can be satisfied
if 𝜀 is small enough.

In short, for the given small 𝜀 and𝑅set, (64), (65), and (66)
can be satisfied simultaneously if 𝑢max is large enough and
bounded. Actually, from the simulation result in Section 5
of this paper, it can be known that the modified guidance
law (63) can guarantee (64), (65), and (66) are satisfied
simultaneously in the case that 𝑅set = 0.1m, 𝜀 = 10

−3 s, and
𝑢max = 100m/s2 (from the results in [8–13, 18–20], it can
be known that 100m/s2 is a reasonable maximum available
acceleration for missile; and the objective of ITCG can be
accomplished when 𝑅set = 0.1m and 𝜀 = 10

−3 s).

3.3. The Permissible Set of the Desired Impact Times. In this
section, the permissible set of the desired impact times is
discussed. From the above Theorems 1 and 4, the desired
impact time and the guidance parameters must satisfy

𝑡
0
+

𝑅
0
𝑞max

−�̇�
0
− (1 − 𝑞max) 𝑉min

< 𝑡
𝑑

𝑓

< 𝑡
0
+

𝑅
0
𝑞min

−�̇�
0
− (1 − 𝑞min) 𝑉min

, 𝑞max > 𝑞min ≥ 2,

(73)

where 𝑞max is the maximum value of 𝑞
1
and 𝑞
2
and 𝑞min is the

minimum value of 𝑞
1
and 𝑞
2
.

From (73), the bound of 𝑡𝑑
𝑓
can be defined as

𝜉 = 𝑡
0
+

𝑅
0
𝑞

−�̇�
0
− (1 − 𝑞)𝑉min

, 𝑞 ≥ 2, (74)

where 𝑞 is variable. If 𝑞 = 𝑞max, 𝜉 is the lower bound. If
𝑞 = 𝑞min, 𝜉 is the upper bound, taking the following partial
differential operation as

𝜕 (𝜉)

𝜕𝑞
=

−𝑅
0
(�̇�
0
+ 𝑉min)

(−�̇�
0
− (1 − 𝑞)𝑉min)

2
, 𝑞 ≥ 2. (75)

Theorems 1 and 4 need the following condition:



�̇�
0

𝑉min



=



𝑉
0
cos (𝜆

0
− 𝛾
0
)

𝑉min



< 1. (76)

Combining (75) and (76) yields

𝜕 (𝜉)

𝜕𝑞
< 0, 𝑞 ≥ 2. (77)

From (75), we know that 𝜉 reduces monotonically with
increasing 𝑞. Then, we get the following.

(a) The lower bound of the permissible set of the desired
impact times 𝑡𝑑

𝑓
is 𝑡𝑑
𝑓min, which is described as

𝑡
𝑑

𝑓min = 𝑡
0
+

𝑅
0

𝑉min
. (78)

If 𝑞max → ∞, the lower bound can be achieved.
(b) The upper bound of the permissible set of the desired

impact times 𝑡𝑑
𝑓
is 𝑡𝑑
𝑓max, which is described as

𝑡
𝑑

𝑓max = 𝑡
0
+

2𝑅
0

(𝑉min − �̇�
0
)

. (79)

If 𝑞min = 2, we can get the upper bound.
From (a) and (b), the permissible set of the desired impact

times 𝑡𝑑
𝑓
can be given as

𝐹 = (𝑡
𝑑

𝑓min, 𝑡
𝑑

𝑓max] . (80)

If we select 𝑡𝑑
𝑓
∈ 𝐹 and assume that (𝑡𝑑

𝑓
− 𝑡
0
)𝑉min −𝑅

0
> 0,

to meet condition (73), the permissible sets of 𝑞max and 𝑞min
can be described as

𝑞max ∈ (

(𝑡
𝑑

𝑓
− 𝑡
0
) (𝑉min + �̇�

0
)

((𝑡
𝑑

𝑓
− 𝑡
0
)𝑉min − 𝑅

0
)

,∞) ∩ (𝑞min,∞) ,

𝑞min ∈ [2,∞) .

(81)

Because 𝑞max and 𝑞min are the solutions to the equation 𝑎𝑞
2
−

(𝑎 + 𝑏)𝑞 + 𝑐 = 0, the guidance parameters can be obtained as

𝑎 = 1,

𝑏 = 𝑞max + 𝑞min − 1,

𝑐 = 𝑞max𝑞min.

(82)

4. Salvo Attack

In this section, an algorithm will be designed based on the
proposed guidance law to realize the salvo attack. Consider
𝑛 missiles 𝑀

𝑖
(𝑖 = 1, . . . , 𝑛) engaged in a salvo attack against

a stationary target as shown in Figure 2. 𝜆
𝑖
denotes the LOS

angle, 𝑅
𝑖
denotes the relative distance between the missile𝑀

𝑖

and the target, 𝛾
𝑖
denotes the heading angle, 𝑎

𝑀𝑖
denotes the

missile acceleration, and 𝑉
𝑖
denotes the missile velocity.
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for each missile𝑀
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 do

Compute the permissible set 𝐹
𝑖
= (𝑡
𝑑

𝑓𝑖min, 𝑡
𝑑

𝑓𝑖max] from (83).
end for
Find the intersection set𝐻 = ∩

𝑛

𝑖=1
𝐹
𝑖
.

Select a 𝑡𝑑
𝑓
∈ 𝐻.

for each missile𝑀
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 do

Select 𝑞
𝑖max and 𝑞

𝑖min from (84) and obtain the
parameters 𝑎

𝑖
, 𝑏
𝑖
and 𝑐
𝑖
from (85).

end for
for each time step do
for each missile𝑀

𝑖
, 𝑖 = 1, 2, . . . , 𝑛 do

Use 𝑎
𝑖
, 𝑏
𝑖
and 𝑐
𝑖
to generate the guidance input 𝑢

𝑖
of (18).

end for
end for

Algorithm 1: Salvo attack algorithm.

O

y

x

Target

R1

V1

aM1M1

𝛾1
𝜆1

aMi

aMn

Mi

Mn
𝛾i

𝜆i
𝜆n

· · ·

Vi
· · ·

Ri Rn

𝛾n

Vn

Figure 2: Missile-target relative motion relationship.

The permissible set of the desired impact times 𝑡
𝑑

𝑓
for

missile 𝑀
𝑖
is 𝐹
𝑖

= (𝑡
𝑑

𝑓𝑖min, 𝑡
𝑑

𝑓𝑖max], and the intersection set
can be described as 𝐻 = ∩

𝑛

𝑖=1
𝐹
𝑖
. It is assumed that 𝐻 is not

a null set. Each missile can utilize the guidance law (17) to
achieve the desired impact time at each time step. Inspired
by the salvo attack strategy introduced in [24], the detailed
algorithm is given in Algorithm 1.

5. Simulation

In this section, to illustrate the effectiveness of the proposed
guidance law, the mathematical simulation is presented. To
remove the chattering, sgn (𝑥) is replaced by the sigmoid
function given as [20]

sgmf (𝑥) = 2 (
1

1 + exp−𝛼𝑥
− 1) , (83)

where 𝛼 is selected as 30. In addition, the maximum limit of
the missile acceleration command is selected as 100m/s2.

5.1. Performance of the Proposed Guidance Law. This sub-
section shows the performance of the proposed guidance
law. The simulation result for the missile with constant
velocity is shown in Case 1. And the simulation result for

the missile with time-varying velocity is provided in Case 2.
For the comparison, the traditional proportional navigation
guidance law (PNGL), the impact-time-control guidance law
(ITCGL) in [8], and the nonsingular sliding mode guidance
law (NSMGL) in [20] are also considered. The PNGL [8] is
defined as

𝑎PNGL = 𝑊𝑉�̇�. (84)

The parameter is chosen as𝑊 = 3. The ITCGL [8] is defined
as

𝑎ITCGL = 𝐻𝑉�̇�(
3

2
−

1

2

⋅ √1 +
240𝑉
5

(𝐻𝑉�̇�)
2

𝑅
3

(𝑡
𝑑

𝑓
− 𝑡 −

(1 + (𝛾 − 𝜆)
2
/10) 𝑅

𝑉
)) ,

(85)

where the parameter is chosen as𝐻 = 3. The NSMGL [20] is
defined as

𝑎NSMGL = 𝑎
eq
𝑀

+ 𝑎
𝑀con
𝑀

+ 𝑎
sw
𝑀
, (86)

where

𝑎
eq
𝑀

=
𝑉
2
(2𝑁 − 1)

𝑅

(cos 𝛾 − 1)

𝛾
+

0.5𝑉
2

𝑅
𝛾 cos 𝛾

+ 𝑉�̇�,

ℎ (𝛾) =

{{{{{

{{{{{

{

sgn (𝛾) 𝛾 if 
𝛾

< 𝜀
1

1 − 𝜀
1

𝜀
1
− 𝜀
2


𝛾

+

𝜀
1
(𝜀
2
− 1)

(𝜀
2
− 𝜀
1
)

if 𝜀
1
<

𝛾

< 𝜀
2

1 otherwise,

𝑎
𝑀con
𝑀

= −
ℎ (𝛾)

𝛾
𝑘𝑠
𝑁
,

𝑎
sw
𝑀

= −𝑀(𝑝 sgn (𝛾) + 1) sgn (𝑠
𝑁
) ,

𝑠
𝑁

=
𝑅

𝑉
(1 +

0.5

2𝑁 − 1
𝛾
2
) ,

(87)

where the parameters are chosen as 𝑘 = 50, 𝑀 = 10, 𝑝 = 2,
𝜀
1
= 0.001, 𝜀

2
= 0.015, and 𝑁 = 3. In this paper, the values

of𝑊,𝐻, 𝑘,𝑀, 𝑝, 𝜀
1
, 𝜀
2
, and𝑁 are the same as that in [8, 20]

and used here to ensure the fairness of comparison.

Case 1 (missile with constant velocity). In this case, we
consider that the missile velocity is constant; that is, �̇� = 0.
The initial conditions used in Case 1 are listed in Table 1.
From Table 1, the permissible set of the desired impact times
can be calculated as 𝐹 = (26.1008, 42.4381] by using (80).
Choose the desired impact time as 𝑡

𝑑

𝑓
= 37 s ∈ 𝐹. The

permissible set of 𝑞max and 𝑞min can be calculated from (81) as
𝑞max ∈ (2.6137,∞) ∩ (𝑞min,∞) and 𝑞min ∈ [2,∞). From the
permissible sets, 𝑞max and 𝑞min are selected as 𝑞max = 4 and
𝑞min = 2.5. Using 𝑞max and 𝑞min, the guidance parameters 𝑎, 𝑏,
and 𝑐 can be obtained from (82) as 𝑎 = 1, 𝑏 = 5.5, and 𝑐 = 10.



10 Mathematical Problems in Engineering

Table 1: Initial condition for Cases 1 and 2.

Parameters Case 1 (constant
velocity)

Case 2 (varying
velocity)

Initial missile position (−10000, −3000) m
Initial missile velocity 𝑉

0
400m/s

Initial missile heading
angle 𝛾

0

−60 deg

Target position (0, 0)m
Desired impact time 𝑡𝑑

𝑓
37 s

Missile mass𝑚 400 kg
Reference area 𝑆

𝑀
— 0.039m2

Air density 𝜌 — 1.293 kg/m3

Minimum speed 𝑉min 400m/s 350m/s

Table 2: Performance of guidance laws in Section 5.1.

Case Guidance law 𝑡
𝑓
− 𝑡
𝑑

𝑓
(s) Miss distance (m)

1

Proposed law 1.24 × 10
−4 0.07

NSMGL 1.45 × 10
−4 0.05

ITCGL 3.12 × 10
−2 0.33

PNGL −6.39 0.03

2

Proposed law 5.15 × 10
−4 0.15

NSMGL 0.57 0.06
ITCGL 0.49 0.47
PNGL −3.095 0.09

The simulation results of Case 1 are shown in Figures 3(a),
3(b), 3(c), and 3(d) and Table 2, respectively. From Figures
3(a) and 3(b) and Table 2, it can be seen that the proposed
law, NSMGL, and ITCGL all can guarantee that the impact
time errors are less than 4 × 10

−2 s and the miss distances are
less than 1m, which means that the impact time constraint
can be satisfied by using these laws when the missile velocity
is constant. The PNGL makes the missile have a large
impact time error −6.39 s, which means that the mission
of impact time constraint cannot be accomplished under
PNGL. Moreover, in order to control the impact time, it can
be seen from Figure 3(c) that the proposed law, NSMGL,
and ITCGL employ more control energy compared to
PNGL.

Case 2 (missile with time-varying velocity). In this case, we
consider that themissile velocity is varying.The aerodynamic
coefficients are given by

𝐶
𝑥
=

{

{

{

−0.37 𝑡 < 6

−0.112 𝑡 ≥ 6.

(88)

The initial conditions used in Case 1 are listed in Table 1.
From Table 1, the permissible set of the desired impact times
can be calculated as 𝐹 = (29.8294, 47.2385] by using (80).
Choose the desired impact time as 𝑡𝑑

𝑓
= 37 s ∈ 𝐹. Then, the

permissible set of 𝑞max and 𝑞min can be calculated from (81)
as 𝑞max ∈ (3.8033,∞) ∩ (𝑞min,∞) and 𝑞max ∈ [2,∞). From
the permissible sets, 𝑞max and 𝑞min are selected as 𝑞max = 4

and 𝑞min = 2.5. Using 𝑞max and 𝑞min, the guidance parameters

𝑎, 𝑏, and 𝑐 can be obtained from (82) as 𝑎 = 1, 𝑏 = 5.5, and
𝑐 = 10.

The simulation results of Case 2 are shown in Figures 4(a),
4(b), 4(c), and 4(d) and Table 2, respectively. From Figures
4(a) and 4(b) and Table 2, it can be seen that the proposed law
can guarantee that the impact time error is only 6×10

−4 s and
the miss distance is 0.2m, which means that the impact time
constraint (37 s) can be satisfied by using the proposed law.
However, for NSMGL and ITCGL, the impact time errors are
greater than 0.48 s. As mentioned before, this is because the
NSMGL and ITCGL are designed under the assumption that
the missile velocity is constant. Compared with the impact-
time-control guidance laws based on the assumption that the
missile velocity is constant, the proposed law can achieve
smaller impact time errors when the velocity is varying.

5.2. Application of Proposed Guidance Law to Salvo Attack
Scenario. This subsection is performed with the proposed
guidance law for a salvo attack.The air density is 1.293 kg/m3.
The aerodynamic coefficients for each missile are given by

Missile 1: 𝐶
𝑥
=

{

{

{

−0.37 𝑡 < 6

−0.112 𝑡 ≥ 6

Missile 2: 𝐶
𝑥
=

{

{

{

−0.47 𝑡 < 10

−0.325 𝑡 ≥ 10

Missile 3: 𝐶
𝑥
=

{

{

{

−0.57 𝑡 < 10

−0.5 𝑡 ≥ 10.

(89)

The initial conditions used in this subsection are listed in
Table 3.

From Table 3, the permissible sets of the desired impact
times for each missile can be calculated as

𝐹
1
= (29.8294, 47.2385] ,

𝐹
2
= (24.9885, 57.3847] ,

𝐹
3
= (20.6552, 72.9195] .

(90)

Choose the desired impact time as 𝑡𝑑
𝑓
= 37 s ∈ 𝐹

1
∩ 𝐹
2
∩ 𝐹
3
.

Then, the permissible set of 𝑞max and 𝑞min can be calculated
from (81) as

𝑞
1max ∈ (3.8033,∞) ∩ (𝑞

1min,∞) , 𝑞
1min ∈ [2,∞) ,

𝑞
2max ∈ (3.4780,∞) ∩ (𝑞

2min,∞) , 𝑞
2min ∈ [2,∞) ,

𝑞
3max ∈ (3.2450,∞) ∩ (𝑞

3min,∞) , 𝑞
3min ∈ [2,∞) .

(91)

From the permissible sets, we select that 𝑞
1max = 𝑞

2max =

𝑞
3max = 4 and 𝑞

1min = 𝑞
2min = 𝑞

3min = 2.5. Then, the
guidance parameters can be obtained from (82) as

𝑎
1
= 𝑎
2
= 𝑎
3
= 1,

𝑏
1
= 𝑏
2
= 𝑏
3
= 5.5,

𝑐
1
= 𝑐
2
= 𝑐
3
= 10.

(92)
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Table 3: Initial conditions for salvo attack.

Object 𝑥
0
/m 𝑦

0
/m 𝛾

0
/(deg) 𝑉

0
/(m/s) 𝑉min/(m/s) Mass/(kg) 𝑆

𝑀
/(m2)

Target 0 0 0 0 0 0 0
Missile 1 −10000 −3000 −60 400 350 400 0.039

Missile 2 −2000 −8000 −20 410 330 395 0.040

Missile 3 −5000 4000 70 420 310 410 0.041
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Figure 3: Responses in Case 1 (constant velocity).
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Figure 4: Responses in Case 2 (time-varying velocity).

Table 4: Performance of guidance law in Section 5.2.

Object 𝑡
𝑓
− 𝑡
𝑑

𝑓
(s) Miss distance (m)

Missile 1 3.13 × 10
−4 0.15

Missile 2 1.15 × 10
−4 0.45

Missile 3 0.89 × 10
−4 0.31

The simulation results are shown in Figures 4(a), 4(b),
4(c), and 4(d) and Table 4, respectively. From Figures 5(a),
5(b), 5(c), and 5(d) and Table 4, it is clear that the proposed
law can guarantee the miss distances are less than 0.5m,

and the impact time errors are less than 4 × 10
−4 s, which

means that the missiles can accomplish salvo attack even if
the missile velocities are time-varying.

6. Conclusions

In this paper, a novel ITCG law has been proposed for
the homing missile with time-varying velocity. The main
contribution here is that the proposed ITCG law relaxed the
constant velocity assumption which is needed for the existing
ITCG laws. Since most missiles have time-varying velocity,
the proposedmethod is more feasible than the existing ITCG
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Figure 5: Responses in the salvo attack scenario.

laws in engineering. In addition, the proposed law also exhib-
ited one attractive feature. The proposed guidance law was
derived based on the nonlinear engagement dynamic rather
than the linearized-engagement-dynamics used in many
traditional ITCG laws. A salvo attack algorithm has been
developed based on the proposed ITCG law. The theoretical
derivations and simulation results all demonstrated that the
proposed guidance law achieved a better performance than
the existing ITCG laws when the missile velocity is time-
varying and that the proposed salvo attack algorithm worked
well.
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