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This paper proposes a new combined model to predict the spindle deformation, which combines the grey models and the ANFIS
(adaptive neurofuzzy inference system) model. The grey models are used to preprocess the original data, and the ANFIS model is
used to adjust the combined model. The outputs of the grey models are used as the inputs of the ANFIS model to train the model.
To evaluate the performance of the combined model, an experiment is implemented. Three Pt100 thermal resistances are used
to monitor the spindle temperature and an inductive current sensor is used to obtain the spindle deformation. The experimental
results display that the combined model can better predict the spindle deformation compared to BP network, and it can greatly
improve the performance of the spindle.

1. Introduction

Accuracy of machined work pieces is one of the most critical
considerations for any manufacturer. In all components of
machine tools, the spindle is the most important component
because it provides cutting power and is part of the force
chain between the machine tool structure and the tool. It
directly affects the accuracy of work pieces and is one of the
main error sources in terms of its contribution to the total
heat generation and the resulting deformations [1].Hence, the
performance of the spindles directly determines the machine
tools entire performance [2].

The accuracy of machine tools depends on positioning
errors. In the overall position errors, thermal errors caused
by internal heat sources and environment are up to 70%
[3]. Thermal error is a time-varying and nonlinear pro-
cedure induced by nonuniform temperature variation. The
interactions between the thermal expansion of components,
heat sources, and heat conduction produce complex thermal
behavior. For machine tools, constructing a precise structure
model is extremely difficult, very costly, and time-consuming,

and much easier methods are to use error compensation [4].
With effective compensation, usingmedium precise machine
tools can manufacture work pieces with higher accuracy
[5]. Thermal error compensation has become a cost-effective
method to improve accuracy of machine tools, especially
with the increasing demand formachining accuracy in recent
years.

Since the two keynote papers, the first about thermal
effects from [6] and the second about error reduction and
compensation of machine tools from [1], a lot of research
in this area has been performed. For the error caused by
the heat deformation, compensation methods are divided
into direct and indirect compensation. Direct compensa-
tion directly measures the drift displacements between the
tool and the work piece to compensate positioning errors.
Indirect compensation uses mathematical or physical models
to find the relationship between auxiliary values (such as
temperature variables) and thermal deformation. The output
of the models is used to compensate positioning errors. In
many situations, direct compensation is often quite difficult
because the measurement of the drift is not always possible
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during themachining process. Hence, indirect compensation
is more convenient and easier. Researchers have developed
many indirect compensation methods, such as finite element
analysis [7–9], regression analysis [10–12], fuzzy logic [13, 14],
neural networks [15–17], and the combination of two or three
methods [18–20].

Currently, most current research focuses on using ANNs
(artificial neural networks) to build error compensation
models based on temperature variables. Compared with
other models, ANNs has the advantages of parallel pro-
cessing, information distribution saving, and self-learning
ability. In recent years, different types of ANNs have been
developed, including radial basis function (RBF) network
[15, 21], feed-forward neural networks [22], backpropagation
(BP) network [23], grey neural network [19], Elman network
[24], integrated recurrent neural network [25], and cerebel-
lar model articulation controller (CMAC) neural network
[26]. However, these neural-modelling methods have poor
generalization capability and are sensitive for external noise.
For the random initialized weights, the learning course may
trap in local minima, and some neurons may give rise to
saturation. So traditional ANNs is not fit for modelling the
time-varying and nonlinear procedure of thermal error.

Adaptive neurofuzzy inference system (ANFIS) used in
this paper is a neurofuzzy approach. It combines the fuzzy
logic qualitative characteristics and neural network adaptive
capabilities. Therefore, it is more flexible on structure, and it
can more effectively approximate a highly nonlinear surface
than traditional ANNs. As a neurofuzzy modelling method,
it has been widely used in different fields, such as prediction
[27, 28], knowledge discovery [29], control system [30, 31],
and spattern recognition [32].

In this paper, we propose a new combined model to pre-
dict the spindle deformation, which combines the greymodel
and theANFISmodel.Thegreymodels are used to preprocess
the original data, and the ANFIS model is used to adjust the
combined model. To evaluate the performance of the model,
the experiment for the spindle is implemented. The results
show that the combined model has high prediction accuracy,
and it has better performance than BP networks.

The paper is organized as follows. Section 2 presents our
proposed model combining the grey models and the ANFIS
model. Section 3 describes the experimental setup. Section 4
describes the experimental results and performs comparisons
of the combined model and BP network. Finally, conclusions
are presented in Section 5.

2. Building the Predictive Model

2.1. Data Preprocessing. In order to reduce the randomness of
the original data and the influence of unpredictable noises, we
use the greymodel to preprocess the original data, namely, the
measured data of the spindle. Grey system theory is a kind of
systematic and scientific theory developed originally byDeng
[33] in the 1980s.

Based on the original data of the spindle, we establish the
grey model GM(1,𝑁), which is a first-order grey model with
𝑁 variables. The following steps are performed.

Step 1. Create the original data sequence containing the
temperature and thermal deformation of the spindle and it
is expressed as follows:

𝑥
(0)

𝑖 = (𝑥
(0)

𝑖 (1) , 𝑥
(0)

𝑖 (2) , . . . , 𝑥
(0)

𝑖 (𝑛)) ,

𝑖 = 1, 2, . . . , 𝑁,
(1)

where 𝑥(0)1 is the thermal deformation data sequence, 𝑥(0)
𝑖

is
the temperature data sequence, and 𝑛 is the sample size of the
data.

Step 2. Using the accumulated generating operation (AGO),
we convert chaotic series 𝑥(0)

𝑖
into monotonously increasing

series 𝑥(1)
𝑖
, and it is given by

𝑥
(1)

𝑖 = (𝑥
(1)

𝑖 (1) , 𝑥
(1)

𝑖 (2) , . . . , 𝑥
(1)

𝑖 (𝑛)) , (2)

where 𝑥(1)
𝑖
(𝑘) is calculated by

𝑥
(1)

𝑖 (𝑘) =

𝑘

∑
𝑗=1

𝑥
(0)

𝑖 (𝑗) , 𝑘 = 1, 2, . . . , 𝑛. (3)

Step 3. With the following first-level mean generating opera-
tion (MGO), we create the background series 𝑧(1)1 from 𝑥

(1)
1 ,

and it is expressed as follows:

𝑧
(1)

𝑖 (𝑘) = 0.5𝑥
(1)

𝑖 (𝑘) + 0.5𝑥
(1)

𝑖 (𝑘 − 1) ,

𝑘 = 2, 3, . . . , 𝑛.
(4)

Step 4. Establish the grey differential equation of the grey
model GM(1,𝑁), and it is expressed as follows:

𝑥
(0)

1 (𝑘) + 𝑏1𝑧
(1)
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𝑁

∑
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(1)
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where the parameters [𝑏1, 𝑏2, . . . , 𝑏𝑁] can be obtained by using
the least-square method as follows:

𝑃 = [𝑏1, 𝑏2, . . . , 𝑏𝑁] = (𝐵
𝑇
𝐵)
−1
𝐵
𝑇
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(7)

Step 5. Set up the grey model GM(1,𝑁) as follows:
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Figure 1: Adaptive neurofuzzy inference system.

where 𝑥̂(1)1 (𝑘) is the prediction value at a time 𝑘. Using the
first-level inverse accumulated generating operation (IAGO),
we can obtain the output of the grey model GM(1,𝑁):

𝑥̂
(0)

1 (𝑘 + 1) = 𝑥̂
(1)

1 (𝑘 + 1) − 𝑥̂
(1)

1 (𝑘) . (9)

In the data preprocessing, we use the data sequence where
(𝑥
(0)

𝑖
(1), 𝑥
(0)

𝑖
(2), . . . , 𝑥

(0)

𝑖
(𝑘)) 𝑘 < 𝑛, to predict 𝑥̂(0)1 (𝑘 + 1),

namely, the thermal deformation of the spindle. We employ
three groups of grey models, which have different length 𝑘 of
the data sequence.The outputs of the grey models are used as
the inputs of our proposed ANFIS model, together with the
measured thermal deformation used as the output, to train
the ANFIS model.

2.2. Model Adjustment Using ANFIS. For getting better pre-
dictive effect, we use ANFIS to perform the adjustment of the
combined model. ANFIS is a fuzzy inference system (FIS)
implemented as a neural network, firstly proposed by Jang
[34] in 1993, and then has been widely used [35–37]. It is a five
layered feed-forward neural network structure and uses fuzzy
reasoning and neural network learning algorithms to map
inputs into an output. The ANFIS architecture used in this
paper is shown in Figure 1. It uses the first-order Sugeno fuzzy
model and has three inputs linked with three membership
functions (MFs), eight rules, and one output.

For the first-order Sugeno fuzzy model, the rule set with
eight fuzzy if-then rules can be expressed as follows:

Rule 1:

If 𝑥 is 𝐴1, 𝑦 is 𝐵1, and 𝑧 is 𝐶1,
then 𝑓1,1,1 = 𝑝1,1,1𝑥 + 𝑞1,1,1𝑦 + 𝑟1,1,1𝑧 + 𝑚1,1,1.

Rule 2:

If 𝑥 is 𝐴1, 𝑦 is 𝐵1, and 𝑧 is 𝐶2,
then 𝑓1,1,2 = 𝑝1,1,2𝑥 + 𝑞1,1,2𝑦 + 𝑟1,1,2𝑧 + 𝑚1,1,2.

Rule 3:

If 𝑥 is 𝐴1, 𝑦 is 𝐵2, and 𝑧 is 𝐶1,
then 𝑓1,2,1 = 𝑝1,2,1𝑥 + 𝑞1,2,1𝑦 + 𝑟1,2,1𝑧 + 𝑚1,2,1.

Rule 4:

If 𝑥 is 𝐴1, 𝑦 is 𝐵2, and 𝑧 is 𝐶2,
then 𝑓1,2,2 = 𝑝1,2,2𝑥 + 𝑞1,2,2𝑦 + 𝑟1,2,2𝑧 + 𝑚1,2,2.

Rule 5:

If 𝑥 is 𝐴2, 𝑦 is 𝐵1, and 𝑧 is 𝐶1,
then 𝑓2,1,1 = 𝑝2,1,1𝑥 + 𝑞2,1,1𝑦 + 𝑟2,1,1𝑧 + 𝑚2,1,1.

Rule 6:

If 𝑥 is 𝐴2, 𝑦 is 𝐵1, and 𝑧 is 𝐶2,
then 𝑓2,1,2 = 𝑝2,1,2𝑥 + 𝑞2,1,2𝑦 + 𝑟2,1,2𝑧 + 𝑚2,1,2.

Rule 7:

If 𝑥 is 𝐴2, 𝑦 is 𝐵2, and 𝑧 is 𝐶1,
then 𝑓2,2,1 = 𝑝2,2,1𝑥 + 𝑞2,2,1𝑦 + 𝑟2,2,1𝑧 + 𝑚2,2,1.

Rule 8:

If 𝑥 is 𝐴2, 𝑦 is 𝐵2, and 𝑧 is 𝐶2,
then 𝑓2,2,2 = 𝑝2,2,2𝑥 + 𝑞2,2,2𝑦 + 𝑟2,2,2𝑧 + 𝑚2,2,2.

where 𝑥, 𝑦, and 𝑧 are the inputs, 𝐴1 (or 𝐴2), 𝐵1 (or 𝐵2), and
𝐶1 (or 𝐶2) are the fuzzy sets, 𝑓𝑖,𝑗,𝑘 (𝑖, 𝑗, 𝑘 = 1, 2) are crisp
functions in the consequent, and 𝑝𝑖,𝑗,𝑘, 𝑞𝑖,𝑗,𝑘, 𝑟𝑖,𝑗,𝑘, and 𝑚𝑖,𝑗,𝑘
are consequent parameters determined during the training
process.

The ANFIS has five layers, where nodes of the same layer
have the similar function. We define the output of the node
of the layer 𝑙 as 𝑂𝑙𝑛, where 𝑛 (𝑛 = 1, . . . , 8) denotes the node
position in the vertical direction. It is detailed as follows.
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Layer 1. In this layer, all nodes are adaptive nodes and use
square nodes to represent the membership function. The
outputs 𝑂1𝑛 of this layer are the fuzzy membership grade of
the input 𝑥 (or 𝑦, 𝑧), which is defined by

𝑂
1

𝑛 = 𝜇𝐴𝑖 (𝑥) , for 𝑖 = 1, 2, 𝑛 = 1, 2,

𝑂
1

𝑛 = 𝜇𝐵𝑗 (𝑦) , for 𝑗 = 1, 2, 𝑛 = 3, 4,

𝑂
1

𝑛 = 𝜇𝐶𝑘 (𝑧) , for 𝑗 = 1, 2, 𝑛 = 5, 6,

(10)

where 𝑥 (or 𝑦, 𝑧) is the crisp input to nodes and 𝐴 𝑖 (or 𝐵𝑗,
𝐶𝑘) is a fuzzy set linked with this node, characterized by the
shape of MFs, and MFs can be any continuous and piecewise
differentiable functions, such as Gaussian, generalized bell
shaped, trapezoidal shaped, and triangular shaped functions.
We employ generalized bell functions as MFs, which are
defined by

𝜇𝐴
𝑖
(𝑥) = bell (𝑥; 𝑎𝑖, 𝑏𝑖, 𝑐𝑖) =

1

1 + ((𝑥 − 𝑐𝑖) /𝑎𝑖)
2𝑏
𝑖

,

for 𝑖 = 1, 2,

𝜇𝐵
𝑗
(𝑥) = bell (𝑥; 𝑎𝑗, 𝑏𝑗, 𝑐𝑗) =

1

1 + ((𝑥 − 𝑐𝑗) /𝑎𝑗)
2𝑏
𝑗

,

for 𝑗 = 1, 2,

𝜇𝐶
𝑘
(𝑥) = bell (𝑥; 𝑎𝑘, 𝑏𝑘, 𝑐𝑘) =

1

1 + ((𝑥 − 𝑐𝑘) /𝑎𝑘)
2𝑏
𝑘

,

for 𝑘 = 1, 2,

(11)

where (𝑎𝑖, 𝑏𝑖, 𝑐𝑖), (𝑎𝑗, 𝑏𝑗, 𝑐𝑗), and (𝑎𝑘, 𝑏𝑘, 𝑐𝑘) are premise param-
eters, governing generalized bell MFs accordingly.

Layer 2. This layer is the rule layer using circle nodes to
represent fixed nodes. Each node in this layer is labelled as
∏, indicating that they perform as a simple multiplier. The
outputs of this layer are represented as follows:

𝑂
2

𝑛 = 𝑤𝑖,𝑗,𝑘 = 𝜇𝐴𝑖 (𝑥) 𝜇𝐵𝑗 (𝑦) 𝜇𝐶𝑘 (𝑧) ,

for 𝑖, 𝑗, 𝑘 = 1, 2.
(12)

The outputs denote the firing strength of rules and is the
weight degree of if-then rules in the antecedent.

Layer 3. Thenodes are also fixed nodes labelled N, indicating
that they play a normalization role to the firing strengths from
the previous layer. The outputs of this layer are expressed as
follows:

𝑂
3

𝑛 = 𝑤𝑖,𝑗,𝑘 =
𝑤𝑖,𝑗,𝑘

∑𝑖,𝑗,𝑘=1,2 𝑤𝑖,𝑗,𝑘
, for 𝑖, 𝑗, 𝑘 = 1, 2 (13)

which are the so-called normalized firing strengths.

Layer 4. This layer is the consequent layer using square
adaptive nodes. The output of each node is simply the
product of the normalized firing strength 𝑤𝑖,𝑗,𝑘 and a first-
order polynomial based on the first-order Sugenomodel.The
outputs of this layer are given by

𝑂
4

𝑛 = 𝑤𝑖,𝑗,𝑘𝑓𝑖,𝑗,𝑘

= 𝑤𝑖,𝑗,𝑘 (𝑝𝑖,𝑗,𝑘𝑥 + 𝑞𝑖,𝑗,𝑘𝑦 + 𝑟𝑖,𝑗,𝑘𝑧 + 𝑚𝑖,𝑗,𝑘) ,

for 𝑖, 𝑗, 𝑘 = 1, 2.

(14)

Parameters in this layer are referred to as consequent param-
eters.

Layer 5. This layer is only single fixed node labelled with ∑.
This node performs the summation of all incoming signals.
Hence, the overall output of the model is given by

𝑂
5

𝑛 =

2

∑
𝑖=1

2

∑
𝑗=1

2

∑
𝑘=1

𝑤𝑖,𝑗,𝑘𝑓𝑖,𝑗,𝑘

=

2

∑
𝑖=1

2

∑
𝑗=1

2

∑
𝑘=1

𝑤𝑖,𝑗,𝑘 (𝑝𝑖,𝑗,𝑘𝑥 + 𝑞𝑖,𝑗,𝑘𝑦 + 𝑟𝑖,𝑗,𝑘𝑧 + 𝑚𝑖,𝑗,𝑘) .

(15)

2.3. Hybrid Algorithm. The task of the learning algorithm
for the ANFIS model is to tune all the fitting parameters,
namely, premise parameters and consequent parameters,
and make the ANFIS model achieve a desired input/output
mapping.

As shown in Figure 1, there are two adaptive layers in
the ANFIS model, namely, Layers 1 and 4. They have fitting
parameters {𝑎𝑖, 𝑏𝑖, 𝑐𝑖}, {𝑎𝑗, 𝑏𝑗, 𝑐𝑗}, {𝑎𝑘, 𝑏𝑘, 𝑐𝑘}, and {𝑝𝑖,𝑗,𝑘, 𝑞𝑖,𝑗,𝑘,
𝑟𝑖,𝑗,𝑘, 𝑚𝑖,𝑗,𝑘}.The number of fitting parameters is 50, including
18 premise parameters {𝑎𝑖, 𝑏𝑖, 𝑐𝑖}, {𝑎𝑗, 𝑏𝑗, 𝑐𝑗}, and {𝑎𝑘, 𝑏𝑘, 𝑐𝑘} and
32 consequent parameters {𝑝𝑖,𝑗,𝑘, 𝑞𝑖,𝑗,𝑘, 𝑟𝑖,𝑗,𝑘, 𝑚𝑖,𝑗,𝑘}.

The learning algorithm for the ANFISmodel is the hybrid
algorithm combining the gradient descent and least-squares
method, which contains the forward pass and backward pass.
In the forward pass, fixing premise parameters, it uses the
least-squares method to optimize consequent parameters.
When the consequent optimal parameters are found, the
backward pass begins. In the backward pass, fixing conse-
quent parameters, it uses the gradient descent method to
optimize premise parameters.

Forward Pass. Fixing premise parameters, the output of the
ANFIS model can be expressed as follows:

𝑓 =

2

∑
𝑖=1

2

∑
𝑗=1

2

∑
𝑘=1

𝑤𝑖,𝑗,𝑘𝑓𝑖,𝑗,𝑘. (16)

Substituting the fuzzy if-then rules into (16), it becomes

𝑓 =

2

∑
𝑖=1

2

∑
𝑗=1

2

∑
𝑘=1

𝑤𝑖,𝑗,𝑘 (𝑝𝑖,𝑗,𝑘𝑥 + 𝑞𝑖,𝑗,𝑘𝑦 + 𝑟𝑖,𝑗,𝑘𝑧 + 𝑚𝑖,𝑗,𝑘) . (17)
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After rearrangement, the output can be written as follows:

𝑓 =

2

∑
𝑖=1

2

∑
𝑗=1

2

∑
𝑘=1

[(𝑤𝑖,𝑗,𝑘𝑥) 𝑝𝑖,𝑗,𝑘 + (𝑤𝑖,𝑗,𝑘𝑦) 𝑞𝑖,𝑗,𝑘 + (𝑤𝑖,𝑗,𝑘𝑧) 𝑟𝑖,𝑗,𝑘 + (𝑤𝑖,𝑗,𝑘)𝑚𝑖,𝑗,𝑘] (18)

which is a linear combination of the fitting consequent
parameters {𝑝𝑖,𝑗,𝑘, 𝑞𝑖,𝑗,𝑘, 𝑟𝑖,𝑗,𝑘, 𝑚𝑖,𝑗,𝑘}.The least-squaresmethod
is used to identify the optimal parameters. Once the conse-
quent optimal parameters are found, the backward pass starts
immediately.

Backward Pass. Fixing consequent parameters, it uses the
gradient descent method to optimize the premise parameters
corresponding to the fuzzy sets in the input domain. The
output of the ANFIS model is calculated by using the
consequent parameters found in the forward pass.The output
error is controlled to optimize the premise parameters by
means of a standard backpropagation algorithm. It has been
proven that the algorithm is highly efficient in the training
process [34].

3. Experiment Setup

The experiment was implemented on a vertical machining
center to verify the effectiveness of our proposed method.
Figure 2 shows that the experimental setup is equipped with
a spindle driven by a built-in AC motor through a precision
gear box, maximum spindle speed 6000 rpm, high-speed tool
holders using standard HSK, and a standard ceramic ball
is installed to the tool holder of the spindle. An inductive
current sensor fixed on theworktable, togetherwith an analog
data acquisition system, was used to measure the spindle
deformation along 𝑧-axis. Analyzing the spindle structure,
we know that it has three heat sources directly affecting
the effective length of the spindle: the first is the front
bearing of the spindle, the second is the driving box located
in the back of the spindle housing, and the third is the
AC motor providing the power for the spindle. The sensor
placement strategy is as close as possible to heat sources, and
it facilitates to monitor the temperature fluctuation of heat
sources. Therefore, three Pt100 thermal resistances 𝑇1, 𝑇2, 𝑇3
are attached on the housing surface of the spindle close to heat
sources.

As shown in Figure 2, the data process system was
composed of data acquisition card PXI-4351, data acquisition
system PXI-9230, and a personal computer (PC). The data
from sensors were obtained by PXI-4351. Using software
Labview, we wrote the data process program that runs on
PXI-9230. The data were analyzed by the program, and the
results are output on the PC monitor. The entire process was
controlled by the PC.

In order to enhance the robustness of our proposed
model, the training dataset should spread throughout the
entire running stage, including the warming-up stage,

machine tool pause, and the thermal equilibrium stage. The
thermal deformation and temperature data were recorded at
a sampling interval of 1min, and it had 300 groups covering
300min.They were divided into two groups used for training
and testing the model. The spindle speed, temperature pro-
files from three Pt100 thermal resistances, and the thermal
deformation of the spindle are illustrated in Figures 4 and 6.

4. Results and Discussion

4.1. Training andValidating the CombinedModel. In training,
we use the training dataset to train the combined model.
Using the grey models, we preprocess the original data,
namely, the temperature data and the thermal deformation
of the spindle. The outputs of the grey models, together with
the measured thermal deformation of the spindle, are used
to train the ANFIS model. For the training process of the
ANFIS model, we choose the initial step size 𝜅 as 0.01 and
the error of the convergent criterion 𝜀 as 0.1 𝜇m. Using the
hybrid algorithm, we can obtain the optimal parameters for
the ANFIS model. Figure 3 shows the initial and final MFs
before and after training. We can see from the figure that it
has big changes for initial MFs. The comparison between the
output of the combined model and the measured data of the
spindle deformation is illustrated in Figure 4(c).

In testing, we use the testing dataset to validate the effec-
tiveness of the combined model. The comparison between
the output of the combined model and the measured data
of the spindle deformation is shown in Figure 6(c). We can
see from the figure that the residual error of the spindle
deformation along 𝑧-axis can be greatly reduced from 45 𝜇m
to less than 6 𝜇m. It shows that the combined model has a
good adaptability, even if under different conditions.

4.2. Comparisons with BP Network. For the comparisons
between different models, we built the backpropagation (BP)
network that has the topology structure of 3-7-1. As illustrated
in Figure 5, it is composed of input layer, hidden layer, and
output layer. Three input neurons receive temperature data
from three Pt100 thermal resistances, seven hidden neurons
deal with the data by Sigmoid functions, and one output
neuron predicts the spindle deformation along 𝑧-axis.

In order to compare the performance of the combined
model and BP network, we use the following evaluation
standard.

Root mean squared error (RMSE):

RMSE = √ 1

𝑁

𝑁

∑
𝑖=1

(𝐴 𝑖 − 𝑃𝑖)
2
, (19)
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Figure 4: Training dataset: (a) the spindle speed; (b) the temperature of the ACmotor and the driving box and the spindle; (c) the prediction
of the combined model; (d) the prediction of BP network.
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where 𝐴 𝑖 denotes the actual deformation, 𝑃𝑖 denotes the
predicted deformation, and 𝑁 denotes the number of the
dataset.

Mean absolute percentage error (MAPE):

MAPE = 1

𝑁

𝑁

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐴 𝑖 − 𝑃𝑖

𝐴 𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
× 100%. (20)

Correlation coefficient (𝑅):

𝑅 =
∑
𝑁

𝑖=1 (𝐴 𝑖 − 𝐴) (𝑃𝑖 − 𝑃)

√∑
𝑁

𝑖=1 (𝐴 𝑖 − 𝐴)
2
∑
𝑁

𝑖=1 (𝑃𝑖 − 𝑃)
2

, (21)
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Figure 6: Testing dataset: (a) the spindle speed; (b) the temperature of the AC motor and the driving box and the spindle; (c) the prediction
of the combined model; (d) the prediction of BP network.

where 𝐴 = ∑
𝑁

𝑖=1 𝐴 𝑖/𝑁 and 𝑃 = ∑
𝑁

𝑖=1 𝑃𝑖. We can see from the
three evaluation standards that when RMSE and MAPE are
smaller, larger 𝑅 have better performance.

As shown in Table 1, the performance of BP network and
the combinedmodel are listed.We can know fromTable 1 that
the combined model has smaller RMSE/MAPE and bigger 𝑅
than BP network.

Using BP network to predict the spindle deformation
along 𝑧-axis, the results of training and testing are shown
in Figures 4(d) and 6(d), respectively. We can see from
these figures that BP network have larger deviation for the
actual spindle deformation during the warming-up stage.
Only when the temperature smoothly increases and the heat
equilibrium of the spindle reaches a stable status, BP network
has a good effect.

Due to the change of the spindle speed, the fluctuation of
the spindle deformation in these intervals [20, 40], [60, 90],

Table 1: Comparisons of BP network and the combined model.

Model Training dataset
RMSE MAPE (%) 𝑅

BP network 1.33 3.22 0.9973
Combined model 0.66 0.49 0.9992

Model Testing dataset
RMSE MAPE (%) 𝑅

BP network 1.64 3.45 0.9964
Combined model 0.79 0.58 0.9989

and [90, 120] is much bigger. In contrast with other intervals,
the curve in the above intervals becomes more steep, as
illustrated in Figure 6(c). In these intervals, we can see that
the combined models have more quick response speed than
BP network; thus, it has smaller residual error.
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5. Conclusions

This paper presents a new combined model to predict the
spindle deformation along 𝑧-axis. In the combinedmodel, the
greymodels are employed to preprocess the original data, and
the ANFIS model is used to adjust the combined model. The
following conclusions are drawn:

(a) Using the grey model to preprocess the original data,
it can reduce the randomness of the original data and
the influence of unpredictable noises.

(b) Experimental validation was carried out. It can be
known from the experimental results that the com-
bined model could improve the thermal performance
of the spindle and precisely predict the spindle defor-
mation. Under the new spindle speed, the residual
error of the spindle can be decreased from 45𝜇m to
less than 6𝜇m.

(c) Comparing the results of the combined model and
BP network, it shows the superiority of the combined
model in the aspect of the prediction of the spindle
deformation. Under the new spindle speed, MAPE of
the combined model are less than 0.6%, and MAPE
of BP network are greater than 3%, and the combined
model can more quickly respond than BP network,
and it can receive smaller residual error.

(d) In nature, BP network is a black box, and the rela-
tionships between inputs and outputs are difficult to
interpret, but ANFIS is transparent, and the if-then
rules are easy to understand and interpret.
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