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The paper presents a novel method for automatic segmentation of folk music field recordings. The method is based on a distance
measure that uses dynamic time warping to cope with tempo variations and a dynamic programming approach to handle pitch
drifting for finding similarities and estimating the length of repeating segment. A probabilistic framework based on HMM is used
to find segment boundaries, searching for optimal match between the expected segment length, between-segment similarities, and
likely locations of segment beginnings. Evaluation of several current state-of-the-art approaches for segmentation of commercial
music is presented and their weaknesses when dealing with folk music are exposed, such as intolerance to pitch drift and variable
tempo. The proposed method is evaluated and its performance analyzed on a collection of 206 folk songs of different ensemble
types: solo, two- and three-voiced, choir, instrumental, and instrumental with singing. It outperforms current commercial music
segmentation methods for noninstrumental music and is on a par with the best for instrumental recordings. The method is also
comparable to a more specialized method for segmentation of solo singing folk music recordings.

1. Introduction

Structure is an inherent part of most music we listen to. It is
what we recognize as repeating patterns of different musical
modalities such as beat, rhythm, melody, harmony, or lyrics.
Our appreciation of music is correlated with the ability to
understand its underlying structure and predict what will
occur next.

On the highest level, structure enables listeners to divide a
piece ofmusic into a set of segments. Two such segmentations
are shown in Figure 1: a hierarchical structure (a) and a
typical popular music structure (b).While understanding the
structure of a piece ofmusic is an integral part of our listening
experience and is (at least formodern genres) not hard for lis-
teners, accurate algorithms for automatic discovery of struc-
ture from audio recordings of various genres have yet to be
developed.

Automatic discovery of structure from music recordings
plays an important role in machine understanding of music
and researchers have done extensive work in the past [1] to
develop new segmentation algorithms. New approaches are
evaluated annually within the Music Information Retrieval
Evaluation eXchange (MIREX) [2], where in 2015 the best

systems achieved accuracy of approx. 70% on a set of popular
music recordings.

A large number of approaches are based on the concept of
self-similarity matrices, describing within-song similarities
according to a chosen set of features. One of the first such
approaches was presented by Foote [3, 4], where segmenta-
tion was derived from a novelty measure calculated from a
self-similarity matrix of mel-frequency cepstral coefficients
(MFCCs). A similar approach where authors used chroma
vectors instead of MFCCs was presented in [5] and an
approach with both features combined was proposed in [6].
Jensen presented an approachwhere similarity was calculated
in three separate domains: timbre, rhythm, and harmony [7],
while Goto introduced time-lag matrices instead of self-
similarity matrices for segmentation [8].

Recently, nonnegative matrix factorization (NMF) is
often used to discover musical structure. In [9], the authors
use NMF to search for acoustically similar frames in self-
similarity matrices, while in [10] the authors use NMF for
searching repeating patterns in beat-synchronous chroma-
grams. A novel adapted matrix factorization technique was
presented by the authors in [11], who use convex constraints
in the factorization process to decompose the similarity
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Figure 1: Examples of musical structures: (a) a hierarchical structure with repetitions on different levels and (b) typical structure of popular
songs with alternating verse and chorus parts.

matrix in a way that individual centroids can be interpreted
as different sections of musical piece.

A graph based musical structure analysis method is pre-
sented in [12], where a graph is constructed from a sparse rep-
resentation of feature vectors.The segmentation of audio fea-
tures is obtained by applying spectral clustering to the graph.
The approach was tested on popular music with promising
results.

A general approach for boundary detection in time series
was presented in [13, 14]. The method was also applied to
audio recordings for detection of repeating parts. It mimics
short-term memory by encapsulating the most recent parts
of a signal, assesses homogeneities and repetitions by pairwise
comparison, and computes structure features and differences
of these features, which yield a novelty measure, whose peaks
indicate boundary estimates.Thismethodwas also combined
with a chorus detection method [8] by [15].

Authors of [16] presented a novel approach that does not
rely on self-similarity matrices for segmentation but uses the
spectral graph theory. It produces low-dimensional encoding
of the repetition structure and exposes hierarchical relation-
ships among individual structural components. The same
authors presented a different approach [17] to music segmen-
tation that relies on an ordinal linear discriminant analysis
method for learning feature projections to improve time-
series clustering. They also propose latent structural repeti-
tion features, which provide a fixed-dimensional representa-
tion of global song structure and facilitate modeling across
multiple songs.

The use of 2D-Fourier transform for clustering is pre-
sented in [18]. The magnitude coefficients computed from
chroma features simplify the clustering problem since they
are key and phase shift invariant. Authors explore various
strategies to obtain segment boundaries and apply 𝑘-means
clustering for labeling them.

The presented approaches were all developed for segmen-
tation of popular or classical music. They thus assume that
music is professionally recorded, with minimal noise and by
professional musicians who deliver accurate performances.
Many also rely on additional constraints, such as the presence
of strong beats (for computing beat-synchronous features) or
nearly constant tempo.

As we show in this paper, performance suffers when these
assumptions are broken. We specifically study segmentation

of folk music field recordings. Collections of folk music
are being digitized rapidly, also due to increased funding
for preservation of cultural heritage, so methods for their
automatic annotation are sorely needed. These new methods
should be reliable, adaptive, and robust to folkmusic specifics.
Folk music recordings contain a number of challenges for
automatic processing: they are typically noisy, as they are
recorded in the field in everyday conditions. They are also
usually performed by amateur singers and musicians, so
performances may contain inaccurate singing, pitch drifting,
forgotten lyrics, interruptions, large tempo deviations, and so
forth. Ensembles in folk music are diverse, ranging from solo
and choir singing to instrumental recordings with a variety of
instrument families. On the other hand, the structure of folk
music is not complex and usually consists of repetitions of the
same melodic pattern, which is beneficial for automatic
segmentation.

One of the first approaches that dealt specifically with seg-
mentation of folk music recordings was presented by Müller
et al. [19]. It requires a symbolic representation of a single
repeating part as prior knowledge and bases the segmentation
around a distance function computed with the dynamic time
warping algorithm (DTW). The algorithm aligns the sym-
bolic representation with 𝐹0-enhanced Chroma Energy Nor-
malized Statistics (CENS) audio features, tolerating tempo
deviations, while cyclic shifting of chroma features enables
robustness to pitch drifting. An extension of the method
that does not require prior knowledge was presented in [20],
where authors introduce a novel fitnessmeasure that can cope
with strong variations in tempo, instrumentation, and mod-
ulation within and across the related segments of the music.
Another adaptation of the method, also removing the need
for prior knowledge, was presented by authors in [21].

A novel segmentation method was presented in [22]. The
approach uses enhanced self-similarity matrices and a novel
dynamic programming based fitnessmeasure to find themost
representative segment in a recording and its repetitions.The
approach tolerates changes in transposition and tempo and
was evaluated on popular and classical music, as well as folk
songs. Its application to audio thumbnailing is presented in
[23].

Authors have previously presented a probabilistic
approach [24] for segmenting long ethnomusicological field
recording consisting of different content, such as speech,
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Table 1: Test collection details.

Type Number of
songs

Duration
(min)

Solo singing (OGL) 47 156
Solo singing (EthnoMuse) 31 72
Two and three voices (EthnoMuse) 30 80
Choir (EthnoMuse) 35 92
Instrumental (EthnoMuse) 33 74
Instrumental and singing (EthnoMuse) 30 60
Total 206 534

multiple songs from different performers, and even bell
chiming in single recording, into individual units according
to their content type and their labeling. The presented model
is designed to segment and label recordings on larger scale.
Some obtained individual units (e.g., songs) can be consid-
ered as input into the approach presented in this paper.

In this paper, we present a novelmethod for segmentation
of folkmusic field recordings, which include individual songs.
We designed the method to be tolerant to field recording
specifics, such as high levels of noise, inaccurate singing, pitch
drifting, and tempo variations. We present an evaluation of
our method on a collection of 206 folk music recordings and
show that it performs well for a variety of ensemble types. It
outperforms several state-of-the-art algorithms for segmen-
tation of popularmusic and performs comparably to state-of-
the-art methods for segmentation of solo singing folk song
performances.

The paper is organized as follows. We first evaluate
several state-of-the-art methods for segmentation of popular
music on a collection of folk music recordings in Section 2.
In Section 3, we present our method and in Section 4 its
evaluation, analysis, and discussion. We conclude the paper
and describe future work in Section 5.

2. Evaluating the State of the Art

In this section, we present an evaluation of several state-of-
the-art algorithms for music segmentation and structure dis-
covery on a collection of folkmusic recordings.The collection
consists of 206 recordings of different types, as presented in
Table 1,mostly taken from theEthnoMuse archive [25], aswell
as from Onder de Groene Linde (OGL) [26]. The collection
contains approximately 9 hours of recordings with manually
annotated segment boundaries. Annotations were made by
the authors who analyzed the songs and manually annotated
the segment boundaries with an accuracy of ±100ms.

To analyze the performance of algorithms on our folk
music dataset, we gathered several publicly available imple-
mentation scenarios of segmentation algorithms: Seg-
mentino [27], MSAF-Foote [4], MSAF-SCluster [16], MSAF-
SF [13], MSAF-CNMF3 [11], and MSAF-SI-PLCA [28]. All
except Segmentino are available within the Music Structure
Analysis Framework (MSAF) and they were tested with
three different feature types: MFCCs, HPCP chromagrams,
and tonal centroid features, Tonnetz. Figure 2 shows

Segmentino
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Figure 2: Comparison of segmentation methods with indication of
significant differences in 𝐹1 measures.

the comparison of the methods according to 𝐹1 measure,
with indicated confidence intervals. An estimated segment
boundary was taken as correct (true positive) if it was located
within a ±3-second window around an annotated boundary
(the same window size is also used in MIREX evaluations).
We analyze results of several best performing methods in the
following subsections, which are also presented in Table 2 in
the Evaluation. More detailed results as well as the data used
in the research can be obtained at http://lgm.fri.uni-lj.si/ciril/
mpie-bohak-2016/.

2.1. Segmentino. Segmentino [27] is a segmentation algo-
rithm that was originally used for improving the results of
a transcription algorithm. It is based on finding paths in
a self-similarity matrix calculated from beat-synchronous
chroma features. Its performance varies a lot with regard to
the type of ensemble. It outperforms all other approaches
for instrumental music with mean 𝐹1 measure of 0.61, with
higher recall and lower precision (oversegmentation). On
the other hand, for solo singing, it is the worst performer
with 𝐹1 score of 0.3, with high precision but very low recall
(undersegmentation).

The main reason for such behavior is that the method
uses beat-synchronous features to calculate the self-similarity
matrix. Beat-synchronous features are a standard approach to
amend tempo variations in a song; however, they are based on
the assumption that the beat can be reliably estimated. While
this is easier for instrumental music and thus the method’s
performance is good for this type of recording, beat tracking
is very difficult for singing, where there are no strong onsets,
pauses between stanzas may be long, and tempo may vary
a lot. If beat tracking fails, segmentation will also be poor.
In addition, the method uses several fixed constraints when
searching for repetitions (e.g., beginnings can start at multi-
ples of four beats; repetitions can be of certain lengths), which
do not hold for folk music in the same manner as for popular
music. It also does not tolerate pitch drifting, which is com-
mon in singing.

2.2. MSAF-MFCC-Foote. Foote [4] presented one of the first
methods for music segmentation, which is surprisingly the
best performing method on our collection. It is based on a
novelty measure calculated from a self-similarity matrix of
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Table 2: Evaluation results, where precision (𝑃), recall (𝑅), and 𝐹1 measure (𝐹1) are calculated as an average value of measures calculated
per individual song.

Approach Segmentino MSAF-MFCC-Foote MSAF-HPCP-SCluster MSAF-MFCC-SF The proposed method

Solo (OGL)
𝑃 0.86 0.38 0.41 0.36 0.84
𝑅 0.17 0.76 0.51 0.42 0.85
𝐹 0.25 0.51 0.46 0.39 0.85

Two-Three
𝑃 0.82 0.48 0.44 0.52 0.84
𝑅 0.27 0.85 0.5 0.6 0.89
𝐹 0.33 0.61 0.47 0.55 0.84

Instrumental
𝑃 0.55 0.31 0.38 0.33 0.69
𝑅 0.82 0.97 0.87 0.8 0.63
𝐹 0.62 0.47 0.53 0.47 0.6

Instr. singing
𝑃 0.55 0.37 0.35 0.42 0.74
𝑅 0.72 0.86 0.64 0.76 0.62
𝐹 0.59 0.52 0.46 0.54 0.61

Solo
𝑃 0.92 0.46 0.45 0.46 0.87
𝑅 0.26 0.78 0.64 0.49 0.87
𝐹 0.36 0.57 0.53 0.48 0.86

Choir
𝑃 0.74 0.31 0.4 0.4 0.73
𝑅 0.36 0.76 0.61 0.64 0.9
𝐹 0.41 0.44 0.48 0.5 0.78

Overall
𝑃 0.74 0.39 0.41 0.41 78
𝑅 0.4 0.81 0.59 0.56 0.8
𝐹 0.4 0.52 0.48 0.47 0.76

MFCC features. Its performance on different types of music
is relatively constant, ranging from 𝐹1 measure of 0.44 for
choirs to 0.61 on two- to three-voice ensembles. It tends to
oversegment all types of music.

The main reason for incorrectly placed boundaries is the
fact that MFCCs do not represent harmonic properties but
rather timbral properties of sound. As timbremay not change
significantly in folk music, this leads to high self-similarity
values throughout a song, making the discovery of segment
boundaries difficult. Emphasis is also given on distinctions
between vocal sounds (e.g., between “A” and “O”), which are
not relevant as lyrics are mostly not repeated in folk songs. In
addition, the method is very sensitive to the size of the kernel
used for calculating the novelty measure, which is difficult to
estimate.

2.3. MSAF-HPCP-SCluster. Themethod [16] uses techniques
from spectral graph theory to make hierarchical segmenta-
tion based on a recurrence matrix calculated from MFCC
and HPCP features. It yields very stable results with 𝐹1

measure around 0.5 for all ensemble types. It has balanced
precision and recall on noninstrumental recordings, but high
oversegmentation on instrumental music.

We can give three main reasons for the method’s per-
formance: (1) it tolerates only moderate tempo changes, so
larger changesmay interfere with spectral clustering and thus
resulting segmentation, (2) it does not tolerate pitch drifting,
and (3) high oversegmentation of instrumental recordings
may indicate either improper balancing of local and global

connectivity within the segmentation graph or improper
selection of final boundaries from hierarchical segmentation.

2.4. MSAF-MFCC-SF. Serrà’s approach for segmenting the
time series [13] is based on segment features calculated from
a filtered time-lag matrix. The method performs comparably
to the MSAF-HPCP-SCluster method with an overall 𝐹1

measure of 0.47. Over- or undersegmentation does not occur
much on noninstrumental recordings but is more prominent
on instrumental music.

The method is designed to cope with small tempo
deviations but does not perform well with larger deviations
found mostly in sung materials. This affects two steps of the
method: first, the use of blocks of features (delay coordinates)
for calculating the recurrence plots yields poor similarity
estimates and thus poor segmentation, as tempo may be
quite different in repeated segments. Also, the calculation of
similarity features is affected, so features and consequently
the novelty curve will be smeared in time. The method also
does not copewith pitch drifting, as it uses anEuclidean norm
to calculate the recurrence plot.

2.5. Discussion. By analyzing the 10% of songs where meth-
ods yielded the worst performance, we found that not many
songs were common to all methods. For methods that
use MFCCs (MSAF-MFCC-Foote and MSAF-MFCC-SF),
there are 4 common songs in the bottom 10% (20 songs).
There are only 3 mutual songs for MSAF-MFCC-Foote and
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Figure 3: Outline of the proposed method.

MSAF-HPCP-SCluster combination and 6 songs for MSAF-
MFCC-SF andMSAF-HPCP-SCluster combination.All three
methods only have a single common song in the bottom 10%.
This shows that the reason why methods perform poorly is
not due to several “difficult” songs but that each method fails
for different reasons presented in the previous sections.

Based on shortcomings of existing methods, we decided
to consider the following folk music specifics when designing
our segmentation method: (1) tolerance to tempo deviations
in calculation of between-segment similarities, (2) tolerance
to pitch drifting in calculation of between-segment similar-
ities, (3) tolerance to noise and performer errors that may
occur at different locations in a song, (4) songs that are struc-
tured as repetitions of one melodic or harmonic pattern, and
(5) focus on segmentation of noninstrumental music, which
represents a greater challenge for current methods than
instrumental recordings.

3. The Proposed Method

Our proposed method processes an input audio recording
in several phases and calculates a list of segment boundaries
as a result. The process is illustrated in Figure 3. The input
audio signal is first converted to a chroma representation,
which is subsequently used to calculate tempo and pitch drift
invariant distance curves indicating distances between differ-
ent parts of the signal. Because we assume that songs contain
repetitions of one pattern, the length of a typical segment is
then calculated. Finally, a probabilistic approach is taken to
calculate segment boundaries.

3.1. Feature Extraction. An input audio recording is first
averaged to a single channel and normalized. To represent the
content of the audio signal, we use harmonic chroma features,
as they best capture melodic and harmonic between-segment
similarities. Chroma features come in several flavors, and
after some experiments, we decided to useHPCP features cal-
culated with the Essentia library [29]. Similar to the findings
of Serrà et al. [30], we found that increased resolution is ben-
eficial for segmentation, so we used a 24-bin representation
(2 bins per semitone) instead of the more standard 12 chroma
bins (one per semitone).

3.2. Finding Similarities. Choosing an appropriate similarity
measure is the key to successful segmentation. Most current
approaches use local similarity measures that compare short-
term features such as chromas or MFCCs across the signal,
resulting in a self-similarity matrix or recurrence plot. An
exception is Serrà’s approach [13], who compared sequences
of features, so each similarity value already represented the
similarity of two (short) sequences of features. In these
approaches, variations in tempo had to be processed in

subsequent segmentation phases; however as our results
show, large tempo variations are not handled well.

We therefore decided to consider tempo variations
already in calculation of similarity values.The idea was taken
fromMüller et al. [19], who proposed the use of dynamic time
warping (DTW) to calculate similarity between two song
parts. DTW is a standard technique for measuring similarity
between two temporal sequences which may vary in time or
speed.

We denote 𝑋
(𝑁)
1 to be a sequence of 𝑁 HPCP feature

vectors x𝑖, starting at time 1, representing the entire analyzed
audio signal. We also define a local cost measure 𝑐(x𝑖, x𝑗) as
the distance between feature vectors x𝑖 and x𝑗. We use the
correlation distance (one minus correlation) as our local cost
measure, as it compares favorably to other distance functions
(the same was also demonstrated by Serrà et al. [30]). To cal-
culate the distance 𝑑𝑖𝑗 between two sequences of feature vec-
tors𝑋

(𝐿)

𝑖
and𝑋

(𝐿)

𝑗
, we calculate the optimal timewarping path

between the two sequences by minimizing the total cost as

𝑑𝑖𝑗 = min 1

|𝑤|
∑

(𝑚,𝑛)∈𝑤

𝑐 (x𝑚, x𝑛) , (1)

where 𝑤 represents a time warping path starting at the
beginning of both sequences (𝑖, 𝑗) and ending at (𝑖 + 𝐿 − 1, 𝑗 +

𝐿−1).The problem can be solvedwith dynamic programming
in 𝑂(𝑛

2
).

The distance curve 𝐷𝑖 = (𝑑𝑖1, 𝑑𝑖2, . . . , 𝑑𝑖𝑁) represents the
distance of a song segment𝑋

(𝐿)

𝑖
to all other segments of length

𝐿 in a song. Ideally, if 𝑖 represented the beginning of a seg-
ment, and 𝐿 the length of a segment, dips in 𝐷𝑖 would reflect
all repetitions of the segment in a song (tempo variations are
already considered in distance calculation). However, several
problems still remain. First, we have no information on
location of segment boundaries to set the value of 𝑖. It would
be tempting to set 𝑖 to the beginning of the song (as we did
in [21]); however, the first stanza often contains mistakes,
speech and other artifacts, when singers forget how a song
should be performed. In these cases, 𝐷𝑖 would be noisy and
segmentation poor. We solve this problem by calculating
several distance curves on randomly chosen locations 𝑇 =

(𝑡1, 𝑡2, . . . , 𝑡𝑀) distributed over the entire length of a song (see
Figure 4(b)). The rationale is that we will thus increase the
probability of choosing several song locations 𝑡𝑖 which are
repeated in a song and will yield valid distance curves 𝐷𝑡𝑖

.
Thenumber of locations𝑀 can be arbitrary; however, too fre-
quent sampling only increases computational costs and does
not improve the accuracy of segmentation. In practice, we
decided to calculate approximately two curves per segment,
so the locations𝑇 are set to be approximately 10 seconds apart
(average segment length in our collection is 20 seconds). We
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Figure 4: Segmentation steps: (a) cumulative pitch drift, (b) distance curves, (c) distance curves with self-similarity removed, (d) aligned
distance curves, (e) mean distance curve, and (f) autocorrelation with estimated segment length.

also set theDTWlength𝐿 to 10 seconds, which is long enough
to yield meaningful DTW distances.

Finally, we need to consider pitch drifting, which often
occurs when intonation of performers changes upwards or
downwards over the course of a song. Not taking drifting into
consideration would lead to inaccurate distance curves and
thus poor segmentation.We solve this problem by calculating
a series of distance curves 𝐷

𝑝

𝑖
, which represent the distance

between the song and segment 𝑋
(𝐿)

𝑖
circularly shifted by 𝑝

bins. As chroma features are octave invariant, their circular
shift by 𝑝 bins is akin to a pitch change of 𝑝 bins. A similar
approachwas already introduced in [19]; however, calculation
of similarity in [19] involves the selection of optimal shift for
every DTW calculation 𝑑𝑖𝑗. Such approach is not completely
realistic, as it does not consider the notion that intonation
does not change rapidly over time, but rather gradually.

Instead, we propose to estimate the pitch drift (repre-
sented as a sequence of shift values (𝑝1, 𝑝2, . . . , 𝑝𝑁)) by min-
imizing a cost function that balances between unconstrained
minimization of distances (as in [19]) and gradual drifting
through time:

min
𝑝𝑗∈[−𝜁⋅⋅⋅𝜁]

𝑁

∑

𝑗=1

𝑑
𝑝𝑗

𝑖𝑗
+ 𝐶𝑝𝛿 (𝑝𝑗 − 𝑝𝑗−1) , (2)

where 𝜁 is the maximum allowed drift and 𝐶𝑝 is the cost
of pitch change. Optimization can be solved with dynamic
programming and results in a set of pitch drift values which
change gradually over time. An example of upward drift is
shown in Figure 4(a).

The described procedure results in a set of distance curves
𝐷
󸀠
𝑖 = (𝑑

𝑝1
𝑖1

, 𝑑
𝑝2
𝑖2

, . . . , 𝑑
𝑝𝑁
𝑖𝑁

), 𝑖 ∈ 𝑇, describing distances between
segments starting at times 𝑇 and the whole song, considering
variances in tempo and intonation. Such set of curves is
shown in Figure 4(b). In the final step, the self-similar parts of
the curves are removed, as they carry no useful information
for further segmentation; the result is shown in Figure 4(c).
Self-similar parts of the curves are visible as large dips in dis-
tance curves in Figure 4(b), where we compare the segment
to itself. We remove these dips and in further calculations
replace them with the average curve value.

3.3. Calculating the Segment Length. We assume that a song
consists of several repetitions of a segment. We can therefore
estimate the length of a typical segment, which enables faster
and more accurate search for segment boundaries. First, we
align all of the distance curves to a reference curve.Alignment
is needed, because curves were calculated by comparing the
entire song to segments at random time locations, 𝑇, and are
thus not aligned (this can also be observed in Figure 4(c)).
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The reference curve is chosen as the distance curve that
has the highest correlation to all other curves. The rationale
is that the segment this curve was calculated from is very rep-
resentative of the entire song; otherwise, its curve would be
poorly correlated to others. Alignment is performed by time-
shifting each curve according to the distance of its closest val-
ley (representing a similar segment) to the segment time the
reference curve was calculated from. An example of align-
ment can be seen in Figure 4(d).

After the curves are aligned, we calculate the average dis-
tance curve 𝐷𝑎 by averaging all aligned curves (Figure 4(e)).
Autocorrelation of the average distance curve yields segment
periodicities. We choose the highest autocorrelation peak as
the length of a typical segment 𝑙 (see Figure 4(f)).

3.4. Segmentation. We cast the segmentation problem into a
probabilistic framework similar to hidden Markov models.
We first define a set of states {𝑠𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁}, which corre-
spond to all time instances in the signal and thus represent
the set of all possible segment boundaries. We search for
an optimal sequence of states 𝑆1:𝑄 given state probabilities
𝑃(𝑆𝑡) and transition probabilities 𝑃(𝑆𝑡 | 𝑆𝑡−1), maximizing

𝑃 (𝑆1:𝑄) = 𝑃 (𝑆1)

𝑄

∏

𝑡=2

𝑃 (𝑆𝑡 | 𝑆𝑡−1) 𝑃 (𝑆𝑡) . (3)

State probabilities are calculated from the audio signal
and are proportional to lengths of low-magnitude regions in
the signal, while transition probabilities reflect the estimated
segment lengths and between-segment similarities. Both
calculations are explained in more detail in the following
subsections.

3.4.1. Calculating State Probabilities. State probabilities
𝑃(𝑆𝑡 = 𝑠𝑖) are proportional to the likelihood of placing
a segment boundary at time 𝑖. We follow the rationale
that this likelihood is larger if the boundary is preceded
by a low-amplitude signal region: for singing, this often
corresponds to breathing pauses before stanza beginnings,
while for instrumental parts, this may also correspond to
phrase endings. The longer the low-amplitude region, the
higher the probability of a segment boundary. To calculate
state probabilities, we first calculate the amplitude envelope
of the music signal 𝐴𝑒. We then low-pass-filter 𝐴𝑒 to obtain
an adaptive estimate of the average signal amplitude over
time (𝐴𝑎). Setting a threshold 𝐴 𝑡 that will define the regions
of low amplitude (𝐴𝑒 < 𝐴𝑎 + 𝐴 𝑡) is not trivial, as recordings
may contain high levels of background noise. We therefore
set this threshold adaptively, as the minimal value larger than
or equal to −10 dB where low-amplitude regions will cover
at least 10% of the entire signal length. These values were
chosen so that they prevent sparse distribution of nonzero
state probabilities, which would lead to undersegmentation.
Finally, the state probability 𝑠𝑖 is set to be proportional to the
size of the low-amplitude region immediately preceding 𝑖,
if such region exists and the region ends at 𝑖. To reduce the
effect of very long regions, we place an upper bound on this
value at 1 second, so regions larger than that have the same
effect as a 1-second region. If no such region exists, the state
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Figure 5:The figure shows the amplitude envelope of song 𝐴 𝑒 (light
blue with red sections under the threshold), average amplitude 𝐴𝑎

(black), selected threshold 𝐴𝑎 + 𝐴 𝑡 (green), and state probabilities
(dark blue with scale on the right side).

probability is set to a constant value 𝜏. Probability of the first
state (which has no prior regions) is set to 0.5 and the last
state to 1, as we want the segmentation to end at the last state.
The process is illustrated in Figure 5, which shows the
amplitude envelope of a song, its average, the threshold, and
calculated state probabilities.

3.4.2. Calculating Transition Probabilities. Transition proba-
bility 𝑃(𝑆𝑡 = 𝑠𝑖 | 𝑆𝑡−1 = 𝑠𝑗) is the probability of placing
a segment boundary at time 𝑖 if the previous was located at
time 𝑗. We incorporate three constraints into calculation of
transition probabilities: (a) two segments beginning at 𝑖 and
𝑗 should be similar (𝑠𝑖 is a repetition of 𝑠𝑗), (b) the segments
should be separated by approximately the estimated segment
length 𝑙, and (c) only forward transitions are allowed:

𝑃 (𝑆𝑡 = 𝑠𝑖 | 𝑆𝑡−1 = 𝑠𝑗) ∝ sim (𝑠𝑗, 𝑠𝑖)N (𝑙, 𝜎) ,

𝑃 (𝑆𝑡 = 𝑠𝑖 | 𝑆𝑡−1 = 𝑠𝑗) = 0,

if 𝑖 ≤ 𝑗.

(4)

N is the normal distribution with mean 𝑙 and standard
deviation 𝜎 that models the expected segment duration and
sim is a similarity function. The similarity function is calcu-
lated from the average distance curve 𝐷𝑎, which is inverted
(subtracted from 1) and scaled to fit the [0, 1] interval. As the
resulting curve has no absolute time, similarity between 𝑠𝑗
and 𝑠𝑖 is obtained by finding a peak nearest to 𝑗 and looking
up the value at (𝑖 − 𝑗) offset from the peak. Peaks represent
repetitions, so we thus model the similarity of the segment
starting at 𝑗 to the segment at 𝑖.

We can use the Viterbi algorithm to find the optimal
sequence of states, whereby we allow the starting state to
occur within the first 𝜂 seconds, and enforce the ending in the
last state. As states are directly mapped to time, the resulting
sequence of states represents the set of found segment
boundaries.

4. Evaluation

We evaluated our segmentation algorithm on the folk music
collection described in Section 2. Table 2 shows average
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Figure 6: The figure shows statistically significant differences between methods on individual ensemble types, as well as overall values.
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Figure 7: A distance curve, where repetitions are clearly visible as valleys.
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(b) Ground truth (green) versus calculated beginnings

Figure 8: An example of phase shifting: (a) the mean distance curve and (b) estimated boundaries (red) versus ground truth (green).

precision, recall, and 𝐹1 measure per song for each ensemble
type, as well as for the entire collection. An estimated segment
boundary was counted as correct (true positive) if it was
located within a ±3-second window around an annotated
boundary (the same window size is also used in MIREX
evaluations). For comparison, results obtained by methods
described in Section 2 are also shown.

For evaluation of the proposed approach, the following
parameter values were used: the allowed pitch drift 𝜁 was set
to 2 semitones, the minimal state probability 𝜏 = 0.01, the
width of the normal distribution penalizing for deviations
from expected segment duration 𝜎 = 𝑙/4, and the allowed
set of initial states 𝜂 = 6 seconds. The values were chosen
according to experience and were not optimized specifically
for the collection. Additional tests showed that the method is
not very sensitive to changes in these values.

Overall, the proposed approach significantly outperforms
others for noninstrumental recordings, while for instrumen-
tal, its performance is comparable to the best performer,
Segmentino (see Figure 6). As we focused the design of our
method on noninstrumental recordings, such results were
expected. Our approach also yields the most balanced results
in terms of precision and recall, which means that it does not
significantly over- or undersegment the recordings.

The results of our method are comparable with results
of current state-of-the-art methods for folk music segmen-
tation. We can compare our method to results presented by
Müller et al. [23], which tested their segmentation approach
on the corpus Onder de Groene Linde (Solo OGL), also made
available to us by the authors. Their results are slightly better
(𝐹1measure of 0.872 for Solo OGL); however, we should note

that the method is based on 𝐹0-enhanced CENS features,
specifically tuned for solo singing, so we cannot estimate how
it would perform for other ensemble types.

Analysis of results for each song revealed that perfect
precision and recall (1.0) were obtained for 86 songs, while
segmentation for 6 songs was completely false (0.0). When
the mean distance curve is correctly estimated, the segmen-
tation very likely succeeds. An example is shown in Figure 7,
where repetitions are clearly visible as valleys in the distance
curve.

Analysis of errors revealed three major causes. In several
cases, the distance curve and segment length are correctly
estimated; however, the final segmentation produces segment
boundaries which are out of phase (time-shifted) with the
actual beginnings. This type of error was already pointed out
by Müller et al. [26] and may occur when performers make
mistakes at beginnings of one or several stanzas. This can
result in segment boundaries that are placed at points where
the performance runs smoothly in all stanzas. An example
is shown in Figure 8 where in (a) the mean distance curve
does not reveal any peculiarities; however, as shown in (b),
the found boundaries (red) are shifted in comparison with
the ground truth (green).

Correct segmentation is also dependent on the correctly
estimated segment length. In several cases, incorrect length
was chosen. When stanzas consist of two similar parts, the
estimated length (based on autocorrelation of the distance
curve) may be half the true length, which results in over-
segmentation by a factor of 2. Additionally, when similarities
within individual segments are high (mostly in instrumen-
tal recordings), the distance curve does not capture the
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Figure 9: Figures display two examples where our method fails.Themean distance curve does not have prominent dips (a) and consequently
autocorrelation fails to find the correct segment length (b).There are too many prominent dips in mean distance curve of the second example
(c) and consequently autocorrelation finds segment length, which is too short, resulting in 2-time oversegmentation (d).

repetitions well, which results in an incorrectly estimated
segment length and poor transition probabilities and final
segmentation. Two such examples are shown in Figure 9.

5. Conclusions

Due to rapid digitization of folk music collections, devel-
opment of dedicated methods for extraction of high-level
descriptors from such recordings is needed. Our paper intro-
duces a novel method for segmentation of folk music field
recordings. We first analyze why state-of-the-art approaches
for segmentation of commercial recordings fail for folkmusic
and then outline a segmentation method which incorporates
mechanisms for coping with specifics of folk music. We show
that the method significantly outperforms current state-of-
the-art approaches and performs at least as well as a state-of-
the-art method for segmentation of solo singing folk music.

Future work will be dedicated to improvement of the
method, especially for segmentation of instrumental music.
We also plan to enlarge the evaluation database and further
specialize the method for individual ensemble types, by
first automatically determining the ensemble type and then
choosing themethodparameters accordingly.We also plan to
extend the method for discovery of hierarchical music struc-
ture.
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[30] J. Serrà, E. Gómez, P. Herrera, and X. Serra, “Chroma binary
similarity and local alignment applied to cover song identi-
fication,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 16, no. 6, pp. 1138–1151, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


