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The computational methods for solving buckling loads of thin-walled members with open sections are not unique when different
concerns are emphasized. In this paper, the buckling loads of thin-walled members in linear-elastic, geometrically nonlinear-elastic,
and nonlinear-inelastic behaviors are investigated from the views of mathematical formulation, experiment, and numerical solution.
The differential equations and their solutions of linear-elastic and geometrically nonlinear-elastic buckling of thin-walled members
with various constraints are derived. Taking structural angle as an example, numerical analysis of elastic and inelastic buckling is
carried out via ANSYS. Elastic analyses for linearized buckling and nonlinear buckling are realized using finite elements of beam
and shell and are compared with the theoretical results. The effect of modeling of constraints on numerical results is studied when
shell element is applied. The factors that influence the inelastic buckling load in numerical solution, such as modeling of constraint,
loading pattern, adding rib, scale factor of initial defect, and yield strength of material, are studied. The noteworthy problems and

their solutions in numerically buckling analysis of thin-walled member with open section are pointed out.

1. Introduction

Thin-walled members with open section are widely used in
structures for their high ratio of strength to weight. The
loading capacity of these structures is closely related to the
overall and local stability of thin-walled members, leading
to the investigation of the elastic and inelastic buckling
analysis of these members. In engineering practice, the failure
modes of compressive thin-walled members are generally
analyzed according to the type of stresses developed within
the member at the time of failure. For most long-slender
members, the failure of buckling is dominantly referred to as
elastic instability since the compressive stress remains elastic.
For intermediate compressive members, inelastic buckling
generally occurs as a result of the compressive stresses inside
the members being greater than the materials’ yield strength.
By contrast, short-length compressive members, also known
as stocky members, do not become unstable; rather the
material simply yields or fractures.

The computational methods of buckling for elastic and
inelastic instability of thin-walled compressive member are

discussed in this paper. Problems for linearized, geomet-
rically and physically nonlinear buckling are investigated
based on mathematical formulation and numerical solutions.
In the classical theory of elastic buckling, the coupling
terms of translational displacements and axial rotation are
ignored in the regime of small deformation [1-3]. Mohri
et al. derived governing equations of post flexural-torsional
buckling of thin-walled compressive member with open
section supported by pins at two ends considering large
deformation and coupling terms of displacement [4]. As to
the inelastic buckling problem, Finite Element Method is the
most effective way to obtain the buckling loads as well as
the primary and secondary equilibrium paths of members
with material and geometrical nonlinear behavior. Models
of beam and shell elements are generally used to solve the
higher order nonlinear problems in instability analysis. The
buckling load of overall instability can be determined by
adopting beam element, and both local and overall instability
can be simulated via shell element. By taking structural
angles with equal legs as an example in this paper, elastic
analyses including linear buckling and nonlinear buckling are



FIGURE 1: Model of a thin-walled member with open section.

realized using the elements of beam and shell. The effects
of modeling of constraints on numerical results are studied
when shell elements are applied. Analysis of linearized buck-
ling analysis and nonlinearized buckling analysis of material
and geometrical nonlinearity are conducted and compared
with experimental and theoretical results. The factors that
affect the inelastic buckling loads in numerical analysis, such
as modeling of constraints, scale factors of initial defects,
adding rib and loading modes, are discussed. The noteworthy
problems and their solutions in numerical buckling analysis
of thin-walled member with open section are pointed out.

2. Mathematical Formulation

A thin-walled compressive member with an arbitrary open
section is shown in Figure 1, where point O is the centroid of
the section and point C(y,, z.) is the shear center. Oxyz is the
centroidal principal axis.

2.1. Equations of Classical Linear-Elastic Buckling. The equa-
tions of classical stability for a thin-walled member are a
set of fourth-order linear differential equations with constant
coeflicients [1]:

ELv?Y + Py + P20 =0,

(4) " "
El,w™ +Pw" - Py, =0,

Pz - Pycw" + Elweff) + (PI, - GJ) Gi =0, M
(I +1 )
y Tz 2, 2
10 =’ 4 yc + ZC’

where E and G are the elastic constants. P is an axially
compressive force applied at the centroid. The displacements
of shear center in y and z directions are denoted by v
and w, respectively. The rotation of the cross section is
represented by 0. ] is free torsional moment of inertia, and I,
denotes the principal warping moment of inertia. The critical
load is determined through solving the eigenvalue problems,
yielding

P-P 0 -Pz,
0 P,-P Py [=0 )
-Pz, Py, P,I,-PI,
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in which P, = EILA% P, = EI A%, and P, = (EI,A* + G])/I,.
A = nn/L for member pinned at two ends where n =
1,2,3,..., and L denotes the length of the member. A =
2nm/L for two fixed ends. For a member fixed at one end
and free at the other end, A = n7r/(2L). For a member fixed at
one end and pinned at the other end, A = 4.493/L.

2.2. Formulation of Geometrically Nonlinear-Elastic-Buckling.
On the basis of literature [4], the transversal displacements
vy and wy, of any point M on the cross section when the
member is twisted at an angle 0, are expressed by

vy =v—(z-2zc)sinf, — (y — yo) (1 —cosb,),

3)
wy =w+(y—yc)sinb, — (z —z¢) (1 - cosb,).
The axial displacement u, is expressed by
Upy=U—Y (v' cosf, +w' sin@x)
(4)

! /. !
—z(w cosf, —v sm@x) +wb,,

where u, v, and w are the displacements of shear center in x,
y, and z directions.

The Green strain tensor that incorporates large displace-
ments is defined by

1(0u; Ou; Ouy duy
A <axj Ox;  Ox; 0x; ©)
Hence, the strains of point M can be expressed through
e, =u -y (v" cos@, +w' sin Gx)
-z (w” cos@, — v sin GX) + !
+ ! (v'z +w'” + Rzef)
2
~ yo. (w' cosf, — v sin Gx) ©6)
+ 20, (v' cosf, +w'sin 0x) ,
1 ow
=7, (Z_zc_ a_>9;’
1
£r: = 5<y—yc+ a—)@'p
where
R = (y-yc) + (z- zc) )
Based on the principle of virtual work, one obtains
S(U-W)=0, (8)
where
5U = J J (0,86, + 20,82, + 20,.0¢,. ) dA dx,
LJa
)

SW = j (qu0u +q,0v+ q,0w +m,00,) dx.
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Consequently, the governing equations considering large
deformation and coupling terms are derived as follows:

N=-P, (10)

(4)
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where
O S YR Y S

Equations (11) through (13) can be precisely solved using the
backward difference formulation [5]. For simply supported
member under free warping, the displacement functions in
bending and torsion are defined by sinusoidal function:

v w0, | 7x
— —= =sin —, 15
ve w, B L 15

where v, w,, and 6, are the associated displacement ampli-
tudes. Substituting (15) into (10) through (13) and employing
Galerkin’s approximation method yield

tz 3 4 2
P, (Vo + §v0> - P<v0 +2z.0,+ g%%)

+ (PZ -P ) (%woef, - 21/093) =0,

£ 3 4
Py (wo + gwo) - P(wo - yCQO + gzceo)
8 2.3 o
+ (PZ - Py) <§V090 + Zw000> =0,
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z 80
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(16)

where t = /L, P, = n’EL,/L? P, = n’EL/L? and Py =
(EL,m* + GJ)/1,L*.

Equations (16) are high order nonlinear algebraic equa-
tions of four unknowns P, v,, w,, and 6. Different from
the Newton-Raphson method used by Mohri et al. [4],
the homotopy continuation method is adopted to solve the
equations in this paper. Through setting a series of 6, in the
software HOMA4PS in literature [6], the corresponding load-
displacement curves can be obtained, and the critical loads
can be figured out.

Members with other boundary conditions have been
analyzed similarly, and the derived mathematical formulation
is as below.

For the member with two fixed ends, the approximate
displacement function is defined by

0 27
LA A L 17)
ve w, 6, L

For the member fixed at one end and free at the other end,
the approximate displacement function is written as

v w0, X
— =1-cos —. 18
ve w, 6 2L 18)

However, for the member fixed at one end and pinned at the
other end, the approximate displacement function is defined
as

voow % _ sin (4.49x/L) cos 4.49x . L- x 19)
6, 449 L L

2.3. Nonlinearly Inelastic Buckling. The analytic solution of
nonlinearly inelastic buckling load is difficult to be derived
because elastic and plastic zones of sections are variable
along longitudinal axis of compressive member. Location of
shear center of each cross section is not constant in this
case. Generally, the approximate solution is given by the
theory of tangential modulus of elasticity. Finite Element
Method is believed to be the most effective method for finding
eigenvalue buckling load and nonlinearly inelastic buckling
load (2, 3].
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FIGURE 2: Profile of the angle.

3. Experimental Analysis

Experiment for investigating nonlinear-inelastic buckling
loads and buckling modes of axially compressive thin-walled
equilateral angles with pinned and fixed ends was carried
out. The angles are made of cold rolled sheet of S235 steel
with material properties of E = 206GPa, v = 0.3, and
o, = 360MPa, respectively. The compressive member is
180 mm long with angle section as shown in Figure 2. For
the occurrence of inelastic buckling, the slenderness of the
member is A = 1804/3.1717, where y is the effective length
factor. Under the coordinate axes y and z and shear point C
(0, =5.478 mm) shown in Figure 2, geometric parameters are
determined; namely, I , =2183 mm?*, I, = 869.3 mm?, A =

21.7mm?, I, = 80.12mm?, I, = 0mm®, J = 3.57 mm*, and
I, = 111345 mm®, respectively. Strain gauges were mounted
on the surface of each edge at the position of L/4, L/2, and
3L/4 to the bottom, where L is the length of the member. The
axial load is measured by sensor of TGZ-100 at support, and
deflections in the middle span are recorded by dial indicator.

In the experiment, the angle only bent in one direction
without torsion when it is pinned at two ends. The primary
failure mode is flexural-torsional inelastic buckling as shown
in Figure 3. The local buckling caused by torsion occurred
first in the lower part of the member, and then overall
buckling happened. From the slenderness ratio of 56.75, it
also can be predicted that inelastic buckling would happen
for the specimen. The critical buckling loads and the load-
displacement curves of the specimen are obtained as shown
in Figure 4.

4. Finite Element Analysis

Buckling load and buckling mode can be identified by finite
element software through either eigenvalue buckling analysis
or nonlinear buckling analysis. The eigenvalue buckling
analysis is applicable to determine the buckling strength of
an ideally linear-elastic structure where nonlinear terms of
material and geometry are linearized to keep the stiffness
matrix unchanged during load progressing. Buckling of thin-
walled compressive members is usually analyzed by using
beam and shell elements. Mohri [7, 8] has developed the 3D-
beam element with two nodes and seven degrees of freedom
per node to analyze the linear and nonlinear-elastic buckling
behavior of thin-walled beams with arbitrary cross sections
and verified the accuracy by the model of shell element. Study
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Load (kN)

Displacement (mm)

—— Two pinned ends
- -~ Two fixed ends

FIGURE 4: Load-displacement curves of the specimen.

by Zhang and Tong [9, 10] showed that the Wagner effect
of bending could not precisely calculated by beam elements
used in ANSYS and ABAQUS, and a proposed thin shell
element model is superior to the beam element for flexural-
torsional buckling analysis of thin-walled beams and beam-
columns of monosymmetric section and tapered section.

4.1. Nonlinearly Elastic Buckling Analysis. The specimen used
in the experiment is of 180 mm length with small slenderness;
therefore, the inelastic buckling occurs. In this section, for
investigating the numerical solution of elastic buckling, the
length of the computational model of the angle is deliberately
assigned to be 1000 mm. Elements of Beam189 and Shell93 in
ANSYS are used to solve elastic buckling load as below.

4.1.1. Beam Model. According to the analytical solution: the
foregoing linear-elastic equation (2) and nonlinear-elastic
equations (16), the P-0, curves of the angles with four
different constraints are obtained as shown in Figures 5-8.
It can be seen that the postbuckling behavior can be revealed
by the nonlinear analytical solution, and the buckling loads
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FIGURE 5: P-6, curve of member with fixed and free ends.
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FIGURE 6: P-0, curve of member with two pinned ends.

in the extreme point instability are different from the first-
order eigenvalue in linear solution and numerical solution
with beam element.

In the buckling analysis with Beam189 in ANSYS, it is
default that the centroid of the section is the coordinate ori-
gin. Axially compressive load is applied along the longitudinal
centroidal axis. Constraint is applied at the centroid of each
end.

The numerical buckling loads of the angles with different
end-constraints are compared with the analytic values and
listed in Table 1. It can be seen that the first-order eigenvalues
from numerical analysis with beam element are close to
the linear analytical results, and the buckling loads con-
sidering geometrically nonlinear instability are larger than
those obtained from the classical eigenvalue buckling analysis
since the translation/rotation coupling, higher order terms of
displacements in governing equations, and the shorter effect
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FIGURE 7: P-8,, curve of member with fixed and pinned ends.
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FIGURE 8: P-8, curve of member with two fixed ends.

are all counted. It also can be found that the elastic buckling
loads of the member with 1000 mm length listed in Table 1
are much smaller than the inelastic buckling loads obtained
in the experiment, where the length of the member is 180 mm.

4.1.2. Shell Model. 'When the compressive angle is discretized
with Shell93 element, the axial load cannot be placed directly
at the centroid for it is out of the material of the cross section.
In this case, an evenly distributed load equivalent to axial load
is applied on the end section to avoid stress concentration.
For the member with angle section, the boundary con-
dition is achieved by fixing transverse displacements of the
centroid [11, 12], the corner points, or the entire cluster
of nodes on the end sections [13]. When the transverse
displacement of the centroid is constrained, an auxiliary plate
has to be added at the end cross section for transfer of the
load. A hard point with fixed transverse displacements should
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TaBLE 1: Comparison of buckling loads obtained from analytical and numerical solution (kN).
Constraints Analytical results Numerical results with beam elements (NB) Error
Linear (TL) Nonlinear (TN) (NB/TL) (NB/TN)
Fixed and free ends 0.1109 0.1111 0.1109 0 -0.18%
Two pinned ends 0.4438 0.4457 0.4436 -0.05% -0.47%
Fixed and pinned ends 0.9080 0.9594 0.9068 -0.13% —-5.48%
Two fixed ends 1.7753 2.1649 1.7714 -0.22% -18.18%
TaBLE 2: Buckling loads from shell model with different boundary treatments.
Constraints Beam elements Centroid constrained Error Corner constrained  Error  All nodes constrained  Error
Fixed and free ends 0.1109 0.1183 6.67% 0.1183 6.67% 0.1183 6.67%
Two pinned ends 0.4436 0.473 6.63% 0.472 6.40% 0.965 117.54%
Fixed and pinned ends ~ 0.9068 0.966 6.53% 0.966 6.53% 0.965 6.42%
Two fixed ends 17714 1771 -0.02% 1.092 ~38.85% 1.092 —~38.85%
4.0 4 since the actual inelastic buckling occurred. Shell element is
usually applied when geometrically and physically nonlinear-
~ inelastic buckling is analyzed. Effects of scale factor of initial
g defect, yield strength, loading mode, treatment of constraint,
3 3.5 and rib on numerically buckling analysis are studied as well.
5 //4/4/4/4 In the environment of ANSYS solution control, the option
& of large deformation is specified. Initial defects are imposed
g 304 through the command UPGEOM. The first-order buckling
"g mode of displacement obtained from eigenvalue buckling
= analysis is multiplied by a scale factor and is imposed on
the nonlinear model afterwards. The arc-length method is
2.5 1 applied in the solution [14].
200 300 400 200 4.2.1. Effects of Yield Stress Limit and Scale Factor. Inelastic
Yield limit (MPa) buckling load is affected by yield strength of material. The

—=— Fixed and free ends
—e— Two pinned ends

—— Fixed and pinned ends
—v— Two fixed ends

FIGURE 9: Effect of yield stress on buckling load.

be created at the position of the centroid on the plate. If the
member is fixed at ends, the rotational angles of the hard
point should be further restricted.

The nonlinearly elastic buckling loads obtained with these
three treatments of boundary conditions are presented and
compared with those from the beam model, as shown in
Table 2. It is found that the critical loads determined from
the model of centroid constrained are bigger than those from
the beam model since the rigidity of the member is improved
by adding plates at the ends. If all nodes on the two ends
of the angle are pinned constraints, the stronger boundary
treatment results in higher buckling load. The critical loads
obtained from fixed centroid and fixed corner points are
close, though the former treatment of boundary is more
ideal than the latter. Therefore, it is suggested that restriction
of the centroid with auxiliary end plates should be used in
nonlinearly elastic buckling analysis.

4.2. Inelastic Buckling Analysis. The angles tested in the
experiment are modeled in the inelastic buckling analysis

buckling load improves with the increase of yield strength,
as shown in Figure 9. For comparison of the numerical and
experimental results, the constitutive model of material is
selected to be bilinear isotropic hardening with yield strength
of 360 MPa in the following computation.

The influence of the scale factor on the buckling load
is analyzed and illustrated in Figure 10. It is noted that the
buckling load decreases with the increase of scale factor but
is not remarkable. Based on the current codes for design
of steel structures, an equivalent length of the member as
the initial geometrical defect is considered when the overall
stability of compressive steel member is designed [15]. In the
corresponding Chinese Code, it is suggested that the initial
geometrical defect is given in the shape of the first-order
modal of elastic buckling, where we let the initial deflection,
namely, the production of the scale factor with the maximum
deflection under the first-order modal, be equal to L/1000
[16]. The maximum deflections are different for the members
with different end-constraints, but the buckling loads are little
affected by the small value of scale factor, which is about 0.008
in the discussed problem.

4.2.2. Effects of Other Factors. As previously mentioned, the
boundary condition of the compressive angle can be treated
by constraining the centroid, corner nodes or the entire
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FIGURE 10: Effect of scale factor on buckling load.

FIGURE 11: The pinned constraint in computation.

nodes on the end section when shell element is applied. In
the inelastic buckling analysis, it is found that the buckling
load of 3.479kN is greater than the theoretical 3.172kN,
and serious stress concentration occurs as the centroid of
the added plate is constrained. When the corner nodes are
constrained, the buckling load of 1.482 kN is much smaller
than the theoretical value, which indicates that the treatment
of boundary condition is too weak to represent the real
pinned support. Through trial calculations, the buckling load
is the closest to the theoretical value and the one with the
beam model when nine uniform nodes are constrained as
shown in Figure 11.

A convenient measure preventing local buckling is to add
a transverse rib in the longitudinal direction of the angle.
Zhang proposed modeling the rib separately from the angle,
and the transverse degrees of freedom at joint were coupled to
avoid increasing stiffness of the structure [10]. To investigate
the overall instability, one rib is added in the same way at
the middle of the member as shown in Figure 12 based on
the slenderness ratio of the angle. The computational results

Jan 25, 2015
14:44:31

X

FIGURE 12: Angle with a rib in the middle.

reveal that there is neither obvious change in buckling load
nor occurrence of locally large deformation.

The computational buckling load is also affected by the
ways of loadings. The nodal forces on the end section are
not uniform when certain displacement is assigned to a
specific node; the descending segment of load-displacement
curve can be generated. By contrast, there is no obvious
descending segment of load-displacement curve when a
uniformly distributed force is applied on each node. The
inflection point on the curve of load-displacement can be
found whose ordinate gives the ultimate load of overall
buckling.

4.2.3. Discussion of Numerical Results. Based on the fore-
going investigation, the inelastic critical loads of the tested
angle are obtained via nonlinear buckling analysis of shell
element in ANSYS, as shown in Table 3. The theoretical
nonlinear-elastic results, the loads of eigenvalue buckling
determined using beam and shell models are presented as
well for comparison. The following can be found.

(1) The tested buckling loads are bigger than the eigen-
value buckling loads determined by shell model, close
to beam model, due to the pinned support with
torsional and flexural restriction in the experiment.
The theoretical elastic buckling loads are smaller
than the first-order eigenvalue buckling loads since
the nonlinear coupling terms are ignored in the
theoretical analysis, even though the two methods are
similar.

(2) Shell element is appropriate for analyzing overall
stability of thin-walled member from the point of
geometric similarity. The eigenvalue buckling loads
through shell model are smaller than those of beam
model since the Wanger’s effect in moment of thin-
walled member cannot be admitted into beam model,
leading the numerical results bigger than the real,
which is not suitable for buckling analysis for a
member with monosymmetric section.

(3) The buckling load determined through nonlinear
buckling analysis is different from eigenvalue anal-
ysis via shell model. Load-displacement curves of
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TaBLE 3: Nonlinear buckling load obtained by different methodologies (kN).
Constraints Test  Analytic results Beam element (eigenvalue)  Shell elements (eigenvalue)  Shell elements (nonlinear)
Fixed and free ends 2.157 3.1844 2.998 2.852
Two pinned ends 313 3.172 3.447 3.283 3.093
Fixed and pinned ends 3.359 3.581 3.323 3.231
Two fixed ends 3.40 3.444 3.63 3.528 3.733

0.00 0.05 0.10
Displacement (mm)

--- Two fixed ends -—-- Fixed and free ends
—— Two pinned ends -+ Fixed and pinned ends

FIGURE 13: Load-displacement curve of nonlinearized inelastic
buckling.

the angles with various constraints in nonlinear-
inelastic buckling analysis are obtained as shown in
Figure 13. This shows that the stability of the angles
improves with the strengthening of constraints. The
nonlinearized inelastic buckling loads may be bigger
or smaller than those of eigenvalue buckling loads
for the members with different constraints and scale
factors; see the last column in Table 3, which gives the
similar tendency as [17].

5. Conclusion

The computational methods of buckling loads of thin-walled
members with open sections have been carried out in this
paper. From the analysis of nonlinearly elastic and inelastic
buckling load computation, the following is found.

Nonlinearly elastic buckling loads determined from
mathematical formula and beam model are close and pos-
sess high precision. Mathematical solution of higher order
differential equations is complicated. So for the member with
simple deflection, the method in this paper is acceptable;
otherwise, difference method is generally applied. When shell
model is used in the computation, the restriction of the
centroid with auxiliary end plates is more ideal than other
treatments of boundary conditions.

Numerical solution is the most effective method for the
nonlinearly inelastic overall buckling analysis. The effects of
loading mode, treatment of boundary condition, adding rib,

initial defect, and yield strength on computational results
should be noted when shell element is applied. It has been
found that the eigenvalue buckling analysis through shell
model possesses high precision from the study of this paper.
The nonlinear buckling load calculated by shell element may
be bigger or smaller than eigenvalue buckling load, which
is influenced by the yield strength of the material and scale
factor of initial defect.

Nomenclature

A: Cross section area

E: Young’s modulus

G: Shear modulus

Iy: Polar moment of inertia about shear center

Ip: Fourth moment of inertia about shear
center

I: Higher order shortening constant

I, 1;: Principle moment of inertia about y and z

axes

Warping constant

St-Vant torsion constant

Member length

Compression axial load

Stress energy

Work of conservative loads

Shear displacement component of shear

center C in x, y and z axes

Upp Vap Wyt Displacement components of M in x, y
and z axes

FEC IO

v, w:

Vo> Wt Displacement amplitudes of v and w in
numerical analysis

X, ¥, 2t Principal coordinate of M in global
reference

Vo 2¢ Shear coordinate of Oyz reference

€4 €xy» €0 Axial and shear strain components

e Effective length factor

w: Warping coordinate

0y Torsion angle

0,: Torsion amplitude in numerical analysis.
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