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The stratified rock of Jurassic strata is widely distributed in Three Gorges Reservoir Region. The limit equilibrium method is
generally utilized in the stability analysis of rock slope with single failure plane. However, the stratified rock slope cannot be
accurately estimated by this method because of different bedding planes and their variable shear strength parameters. Based on
the idealized model of rock slope with bedding planes, a modified limiting equilibrium method is presented to determine the
potential sliding surface and the factor of safety for the stratified rock slope. In this method, the S-curve model is established to
define the spatial variations of the shear strength parameters 𝑐 and 𝜑 of bedding plane and the tensile strength of rock mass. This
method was applied in the stability evaluation of typical stratified rock slope in Three Gorges Reservoir Region, China. The result
shows that the factor of safety of the case study is 0.973, the critical sliding surface for the potential slip surface appears at bedding
plane C, and the tension-controlled failure occurs at 10.5m to the slope face.

1. Introduction

The analysis for the estimation of rock slope stability has
been a challenging task for engineers in civil and mining
engineering [1, 2]. Rock masses constituting the slopes often
have discontinuities (jointing and bedding patterns) and
free space/excavation surfaces in various forms, resulting in
different types of slope failures [3, 4]. Planar failure is one of
the most common rock slope failure modes that happened in
stratified rock masses [5–7]. The stratified structure of a rock
mass is typically acquired during sedimentary deposition,
and planar structures such as foliation or schistosity can
also be produced by metamorphism. This process can cause
differences in material composition, particle size, and fabric
or mineral orientation that result in rock stratification [8, 9].
The dips and mechanical parameters of the bedding planes
in naturally stratified rock masses have stronger influences
on rock mass strength and stability. Therefore, the appraisal
of slope stability in stratified rock masses is complicated
because dominant discontinuities lead to a highly anisotropic
behavior [10]. The potential sliding surfaces in stratified rock

masses should be considered in determining the critical
sliding surface and the stability of rock slope. However, the
previous studies on planar failure were mainly focused on the
stability of rock slopes with a single failure plane, and they are
not capable of analyzing the rock slope with various bedding
planes.

The limit equilibrium method for the estimation of the
factor of safety (FS) of the rock slope against plane failure
has been widely accepted by the engineers, mainly because
of its validity and simplicity. Hoek and Bray [11] presented an
analytical solution for the plane failure mode in rock slopes,
in which the upper slope surface and tension crack were
assumed to be horizontal and vertical, respectively. Based on
this research, Sharma et al. [12] extended the plane failure
analysis to incorporate an inclined upper slope and a nonver-
tical tension crack. Kroeger [13] illustrated the plane failure
analyses of compound slopes by limit equilibrium approach
and proposed new equations for determining tension cracks.
Jiang et al. [14] proposed different limiting equilibrium
approaches for computing the stability of the planar failure
rock slope. Ahmadi and Eslami [15] explored the effects of
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the forces due to water pressure on discontinuity surface
in plane failure rock slope. However, these methods are
restricted by the requirement that single valued parameters
describe the slope characteristics [16]. In actuality, the shear
strength of a rock mass is spatially variable due to the
factors like climate, carbonation, geology, relief, vegetation
cover, or human activities. For instance, some slopes may be
composed of rocks which have been extensively and deeply
weathered in situ over long periods [17]. The strength of
rock mass near the slope surface and upper slope surface
is easily affected by these factors, but less influence on the
deeper inside of the rock mass. Obviously, we cannot neglect
the strength variations along the sliding surface which may
affect the accuracy of slope stability calculations by the limit
equilibrium method. However, this inherent variability of
shear strength has often been portrayed in an oversimplified
way in earlier researches on rock slope instability.

The objectives of this paper are (1) to present amathemat-
ical model for describing the spatial variations of the shear
strength rock discontinuities and tension strength of rock
mass, (2) to propose calculation procedure for determining
the critical sliding surface and tension crack, and (3) to
introduce amethod for evaluating the stability of the stratified
rock slope. Furthermore, this modified limiting equilibrium
method was applied to the stability assessment of the case
study, Jiaxiao Slope, in Three Gorges Reservoir Region,
China.

2. Calculation Method and Model

2.1. Geomechanical Model. Planar rock slope failure occurs
when a rockmass in a slope slides down and along a relatively
planar failure surface. These failure surfaces are usually
structural discontinuities, such as bedding planes, faults,
joints, or the interface between bedrock and an overlying
layer of weathered rock. Stability condition occurs if the
critical joint dip is less than the slope angle, and mobilized
joint shear strength is not enough to assure the stability of
the slope.

Theplanar failuremode provides insightful knowledge on
the behavior of rock slopes, in which the material above this
surface is regard as a “free body.”The disturbing and resisting
forces are estimated enabling the formulation of equations
concerning force or moment equilibrium (or both) of the
potential sliding mass. FS is defined as the ratio of resisting
forces to driving forces.

Let us consider a slope of inclination 𝑖, height 𝐻, and a
potential failure plane of inclination 𝛽 (Figure 1). According
to the geometric properties in Figure 1, the weight of the rigid
block ABC is calculated by

ℎ =

𝐻

sin 𝑖
sin (𝑖 − 𝛽) ,

𝐿 =

𝐻

sin𝛽
,

𝐺 =

1

2

𝜌𝑔ℎ𝐿 =

𝜌𝑔𝐻
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Figure 1: A rock slope in plane failure.

where 𝜌 is the average density of the rock mass; 𝑔 is the
gravitational acceleration (9.8m/s2); 𝐿 is the length of the
failure plane AC. It is easy to obtain the driving force 𝐹

𝑟
and

resisting force 𝐹
𝑠
by the force analysis of the rigid block ABC,

𝐹
𝑠
= 𝐺 cos𝛽 tan𝜑 + 𝑐𝐿,

𝐹
𝑟
= 𝐺 sin𝛽,

(2)

where 𝜑 and 𝑐 are the effective internal friction angle and
cohesion of failure plane. The factor of safety (FS) can be
obtained by the force equilibrium equation as follows:

FS =
𝐹
𝑠

𝐹
𝑟

=

𝐺 cos𝛽 tan𝜑 + 𝑐𝐿
𝐺 sin𝛽

=

2𝑐 sin 𝑖
𝜌𝑔𝐻 sin (𝑖 − 𝛽) sin𝛽

+

tan𝜑
tan𝛽

.

(3)

This model is widely used in planar rock slope failure
analysis, which offers considerable insights into the behavior
of real slopes. However, it failed to be utilized for the stability
analyzing of the stratified rock slope with series of bedding
planes. Then, the shear strength parameters 𝜑 and 𝑐 along
the failure plane were treated as constant values, which failed
to reflect the strength variations along the sliding surface.
Furthermore, the potential failure rock mass was commonly
assumed as a rigid block, so the potential tensile failure
cannot be considered in the planar rock slope failure analysis.

The sliding mass of stratified rock slope can be divided
into several plane segments by rock bedding surfaces (Fig-
ure 2). However, it is hard to find the slip surface from these
bedding surfaces, geological discontinuities, and surfaces
of weakness. The limit equilibrium analysis method was
extended for determining the critical position in all the
potential slip surfaces. Here, the exposed length of each layer
𝑖 on the upper ground surface is labeled by 𝐿

𝑎𝑖
. The exposed

length on the slope face is denoted as 𝐿
𝑏𝑖
. The potential

tension crack appears on the upper slope surface, and its
horizontal distance to slope face is 𝐿

𝑐
. The tensile strength

of sliding mass is considered in this idealized model, because
the rock mass may have a tensile failure and create the tensile
crack in some conditions (e.g., the shear strength of most of
the sliding surface is very low but reaches high value near
upper slope surface). Furthermore, the field investigations



Mathematical Problems in Engineering 3

Potential cracking surface

A

C

Upper slope surface

Bedding surface i

Slope face

B

𝛼

Bedding surface i − 1

Lc

hc

La1 La2 La3 Lai

𝛽iL
b
i

L
b1

L
b3
L
b2

· · ·

· ·
·

Figure 2: Idealized model of rock slope with bedding planes.

indicate that the cohesion 𝑐 and friction angle 𝜑 of bedding
surfaces are variable at different slip surfaces. As common
sense, the shear strength of the rock discontinuities near to
slope surface is usually lower than that in the deep place. Due
to the anisotropy of shear strength, it is no longer reasonable
to simplify the bedding rock slope failure by the planar rock
slope mode in Figure 1.

Furthermore, in the idealized model of stratified rock
slope, the locations of the bedding planes are determined
based on the exposed length 𝐿

𝑎𝑖
of each layer on the upper

ground surface and the exposed length 𝐿
𝑏𝑖
on the slope face.

However, there is a challenge in the pairing up of the daylight
locations for a potential slip plane on the top boundary and
slope face, because sometimes the exposed length 𝐿

𝑏𝑖
on

the slope face is difficult to measure, especially for those
slopes with large slope angles. In rock engineering practices,
the geotechnical drilling is suggested to be implemented at
different positions on the upper surface of rock slope. Based
on the core samples from drilling tubes, the dip angles of
the bedding planes can be obtained via measuring the dip
angles of the bedding planes. Generally, the potential failure
surface is assumed to be planar in planar rock slope failure
analysis. Then, the corresponding exposed length 𝐿

𝑏𝑖
on the

slope surface can be calculated through daylight location on
the top boundary and dip angle of the bedding plane.

2.2. Basic Assumptions. Comparing the single planar failure
model with the idealized model of bedding rock slope, it is
necessary to make a few assumptions for the stability assess-
ment. The main assumptions are summarized as follows:

(1) It is assumed that the slope face, upper slope surface,
failure plane, and the tension crack are parallel or
nearly parallel. The rock slope has a vertical tension
crack, and the upper surface of the slope is horizontal.

(2) The assumed failure mode is translational-crack-slip
and the sliding block is assumed to have a unit
thickness in the planar failure analysis.

(3) Release or free surfaces are present, parallel to the
cross section of the analysis, which provides negligible
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Figure 3: Relationship between strength parameters and distance to
slope surface.

or no resistance to sliding at the lateral boundaries of
the failure.

(4) The tensile strength 𝜎 of the rock mass and shear
strength parameters 𝑐 and 𝜑 of rock discontinuities
are assumed to be anisotropic, and the spatial vari-
ation model of strength parameters is provided in
Section 2.3.

(5) The above assumptions represent rock block slid-
ing along a single joint which is the potential slip
surface in the rock mass, and there is no relative
sliding between different bedding planes above the
slip surface. The shear force over the slip surface is
determined by Mohr-Coulomb criterion here.

2.3. Spatial Variation Model for Rock Mass and Rock Dis-
continuities. The spatial variability of rock discontinuities
shear strength parameters 𝑐 and 𝜑 and the rock mass tensile
strength 𝜎 is considered in this idealized model of bedding
rock slope. S-curve model belongs to multiple variable anal-
ysis methods and mainly appears in logit model or logistic
regression model. It is widely used in the statistical and
empirical analysis in fields like sociology, biostatistics, clinical
medicine, marketing management, and so forth. S-curve
model has the basic features for describing the progressive
transition from one value to another which increases non-
linearly and continuously, whose variation trend is shaped
like “S” (Figure 3). In previous studies, the S-curve model has
been used successfully in describing the spatial variations of
the shear strength parameters of the bedding plane [8, 18, 19].
There are real data supporting the validity of the S-curve
model and this model has been successfully used to describe
the spatial variations of the shear strength parameters caused
by the weakening effects. Based on the S-curve model, some
suggested methods were proposed for analyzing the stability
of rock slope with bedding surfaces. Here, it is appropriate
to illustrate the variations of the strength, including shear
strength parameters 𝑐 and𝜑 of rock discontinuities and the
rock mass tensile strength 𝜎.
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According to S-curve model, the strength can be
expressed as follows:

𝑆 (𝑥) =

𝐴

1 + 𝑒
−𝑐
󸀠
(𝑥−𝑏)

+ 𝐻
󸀠
, (4)

where 𝑆(𝑥) denotes the strength of rock mass or rock
discontinuities; 𝑥 is the distance to the slope surface; 𝐻󸀠 is
the lowest strength of rock mass or rock discontinuities. The
strength of rock mass or rock discontinuities deep inside
the rock slope is barely affected by the factors mentioned
above, so it gets the largest value. 𝐴 is the difference between
the lowest and the largest strength. The comparison between
curves (a) and (d) in Figure 3 shows that the variation of
lowest and largest value in S-curve model is determined by
coefficients 𝐴 and 𝐻󸀠; 𝑏 and 𝑐󸀠 are the shape controlling
factors of S-curve model. Then 𝑏 represents the distance to
the slope surface when the strength is equal to themean value
of the lowest and the highest strength, and 𝑐󸀠 is positively
correlated with the inverse of 𝑏.

In the present study, the S-curve model is established to
define the spatial variations of the shear strength parameters
of bedding plane and the tensile strength of rock mass. For
the shear strength parameters, 𝐻󸀠 is the shear strength of
highly weathered rock discontinuities near slope surface;
𝐴 is the difference between the shear strength value of
the highly weathered rock discontinuities and the highest
shear strength value of discontinuities which are the least
affected by weathering effect; 𝑏 and 𝑐󸀠 are obtained by curve-
fitting of the shear strength of the rock discontinuities and
the locations of rock joint specimens. For tensile strength
parameters,𝐻󸀠 is the tensile strength of rock specimens near
slope surface; 𝐴 is acquired by calculating the difference
between𝐻󸀠 and the tensile strength of intact rock specimen;
based on the variable tensile strength and the depth of rock
specimens, 𝑏 and 𝑐󸀠 values are acquired through the S-curve
model fitting.

It is assumed that the shear strength parameters are
associated with the distance to slope surface. The distances
between upper slope surface and slope face have the same
influence on the shear strength parameters. A set of equations
for describing shear strength parameters 𝑐 and 𝜑 along the
bedding surface are illustrated as follows:

𝜑 (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

𝐴
𝜑

1 + 𝑒
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(5)

where 𝐻
𝜑
and 𝐻

𝑐
are the shear strength of rock discon-

tinuities near slope surface, and they are the lowest shear
strength parameters; the shear strengths of new and complete
rock discontinuities reach the largest value; 𝐴

𝜑
and 𝐴

𝑐
are

the differences between the lowest and largest shear strength
parameters; 𝑏

𝜑
, 𝑏
𝑐
, 𝑐
𝜑
, and 𝑐

𝑐
are the shape controlling coeffi-

cients of equation set. These coefficients can be obtained by
direct shear tests on the specimens taken from different parts
of bedding surface. In Figure 4, 𝐿

𝑖
is the length of bedding

surface, and 𝑠
𝑖
is the length of the potential sliding surface

which is controlled by the cracking surface.
Similarly, tensile strength based on the S-curvemodel can

be expressed as

𝜎 (ℎ) =

𝐴
𝜎

1 + 𝑒
−𝑐
𝜎
(ℎ−𝑏
𝜎
)
+ 𝐻
𝜎
, (6)

where 𝐻
𝜎
is the lowest tensile strength of rock mass on the

slope surface; 𝐴
𝜎
is the difference between the lowest and

largest tensile strength; 𝑏
𝜎
and 𝑐
𝜎
are the shape controlling

coefficients of tensile strength change function; ℎ is the depth
from the upper slope surface to the intersection of bedding
surface and cracking surface (Figure 5). In this study, the
potential vertical tensile cracks are assumed to appear when
the sliding happens. The influence on the distributions of the
cohesion and frictional angle in tensile crack developing was
not considered here.

2.4. Modified Limiting Equilibrium Equations. The rock mass
above the failure surface is regarded as an entire sliding body,
and the back geometric boundary is the potential cracking
surface (Figure 6). Here, the bedding surface 𝑖 is the failure
surface.

The length of bedding surface 𝑖 can be described by

𝐿
𝑖

= √[(

𝑖

∑

𝑘=1

𝑙
𝑏𝑘
) ⋅ cos𝛼 + (

𝑖

∑

𝑘=1

𝑙
𝑎𝑘
)]

2

+ [(

𝑖

∑

𝑘=1

𝑙
𝑏𝑘
) ⋅ sin𝛼]

2

.

(7)

The failure plane dip is

𝛽
𝑖
= arcsin(

∑
𝑖

𝑘=1
𝑙
𝑏𝑘
⋅ sin𝛼

√[(∑
𝑖

𝑘=1
𝑙
𝑏𝑘
) ⋅ cos𝛼 + (∑𝑖

𝑘=1
𝑙
𝑎𝑘
)]

2

+ [(∑
𝑖

𝑘=1
𝑙
𝑏𝑘
) ⋅ sin𝛼]

2

). (8)
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Figure 4: Relationships between shear strength 𝑆 of bedding surface and distance 𝑥 to slope surface: (a) long bedding plane without cracking
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The length of potential cracking surface can be expressed
as

ℎ
𝑐
=

[(∑
𝑘

𝑖=0
𝑙
𝑎𝑖
) − 𝑙
𝑐
] ⋅ (∑

𝑘

𝑖=0
𝑙
𝑏𝑖
) ⋅ sin𝛼

(∑
𝑘

𝑖=0
𝑙
𝑎𝑖
) + (∑

𝑘

𝑖=0
𝑙
𝑏𝑖
) ⋅ cos𝛼

. (9)

The length of failure surface is

𝑠
𝑖
= (1 −

(∑
𝑖

𝑘=1
𝑙
𝑎𝑘
) − 𝑙
𝑐

(∑
𝑖

𝑘=1
𝑙
𝑎𝑘
) + (∑

𝑖

𝑘=1
𝑙
𝑏𝑘
) ⋅ cos𝛼

)

⋅ √[(

𝑖

∑

𝑘=1

𝑙
𝑏𝑘
) ⋅ cos𝛼 + (

𝑖

∑

𝑘=1

𝑙
𝑎𝑘
)]

2

+ [(

𝑖

∑

𝑘=1

𝑙
𝑏𝑘
) ⋅ sin𝛼]

2

.

(10)

The weight of sliding mass is

𝐺
𝑖
= 𝜌 ⋅ 𝑔 ⋅ [

1

2

(

𝑖

∑

𝑘=1

𝑙
𝑎𝑘
) ⋅ (

𝑖

∑

𝑘=1

𝑙
𝑏𝑘
) ⋅ sin (𝛼) − 1

2

ℎ
𝑐

⋅ ((

𝑖

∑

𝑘=1

𝑙
𝑎𝑘
) − 𝐿

𝑐
)] .

(11)

The resistance supplied by the tensile strength of rock
mass can be written as

𝑇
𝑖
= ∫

ℎ
𝑐

0

𝑤 (𝜎
𝑡
) 𝑑ℎ. (12)

The normal force on the failure surface can be obtained
by

𝑁
𝑖
= 𝐺
𝑖
⋅ cos𝛽

𝑖
+ 𝑇
𝑖
⋅ sin𝛽

𝑖
. (13)

The resistance supplied by the cohesion of the bedding
surface is

𝑃 (𝑥) = ∫

𝐿
𝑖
/2

0

(

𝐴
𝑐

1 + 𝑒
−𝑐
𝑐
(𝑥−𝑏
𝑐
)
+ 𝐻
𝑐
)𝑑𝑥

+ ∫

𝑠
𝑖

𝐿
𝑖
/2

(

𝐴
𝑐

1 + 𝑒
−𝑐
𝑐
(𝐿
𝑖
−𝑥−𝑏
𝑐
)
+ 𝐻
𝑐
)𝑑𝑥.

(14)

The average friction coefficient of the bedding surface is

𝑓 (𝑥) =

1

𝑠
𝑖

[∫

𝐿
𝑖
/2

0

tan(
𝐴
𝜑

1 + 𝑒
−𝑐
𝜑
(𝑥−𝑏
𝜑
)
+ 𝐻
𝜑
)𝑑𝑥

+ ∫

𝑠
𝑖

𝐿
𝑖
/2

tan(
𝐴
𝜑

1 + 𝑒
−𝑐
𝜑
(𝐿
𝑖
−𝑥−𝑏
𝜑
)
+ 𝐻
𝜑
)𝑑𝑥] .

(15)

The factor of safety 𝜂 can be obtained by

𝜂 =

𝐹
𝑠𝑖

𝐹
𝑟𝑖

=

𝑁
𝑖
⋅ 𝑓 (𝑥) + 𝑃 (𝑥)

𝐺
𝑖
⋅ sin𝛽

𝑖
− 𝑇
𝑖
⋅ cos𝛽

𝑖

, (16)

where 𝐹
𝑠𝑖
is the resisting force and 𝐹

𝑟𝑖
is the driving force of

this bedding plane.
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The critical sliding surface can be determined by finding
the potential sliding surface which has theminimum factor of
safety. The stability analysis was taken by performing series
of iterations on various combinations of potential sliding
surface and tensile crack. The flow chart for evaluating the
stability of the stratified rock slope is shown in Figure 7.

3. A Case Study by Modified Limiting
Equilibrium Method

3.1. Introduction of the Jiaxiao Slope. Jiaxiao Slope is a typical
bedding rock slope in Triassic Strata, which is situated at
Jingmen City, Hubei Province, China. The slope is mainly
composed of weathered sandstone. There are three bedding
surfaces, namely, bedding plane A, bedding plane B, and
bedding plane C (Figure 8). The dip of bedding plane is
approximately 22∘. The upper slope surface is nearly hori-
zontal, and the slope height is about 12m. The sandstone
crushing degree is controlled by the depth to slope surface,
which severely influences the strength of rock mass and
discontinuities.

A geotechnical investigation was carried out in June 2013
which included the drilling of six geotechnical drill holes on
the upper surface of Jiaxiao Slope. Then, based on the drill
cores, we obtained six rock samples for the tensile strength
test and nine rock joint samples for the shear strength test.

The tensile specimens are disc-shaped with a diameter 𝐷 =

50mm and a thickness 𝑡 = 25mm and the sizes of the rock
joint samples are about 80mm × 80mm. Here, the Brazilian
test was performed to determine the indirect tensile strength
according to ISRM (1978) [20]. The test result shows that
the tensile strength of highly weathered rock specimens near
slope surface is 0.3MPa, and the tensile strength of intact rock
specimen is 4.8MPa. Thus, it is obvious that 𝐻

𝜎
= 0.3MPa

and 𝐴
𝜎
= 4.5MPa in the S-curve model (Figure 9), and the

S-curve model for the tensile strength can be written as

𝜎 (ℎ) =

4.5

1 + 𝑒
−𝑐
𝜎
(ℎ−𝑏
𝜎
)
+ 0.3. (17)

Similarly, based on the direct shear test for joint spec-
imens, the friction angle and cohesion of highly weath-
ered rock discontinuities near slope surface are 11.00∘ and
0.19MPa.The friction angle and cohesion of the unweathered
rock discontinuities are 18.70∘ and 0.28MPa.According to the
S-curve model fitting result (Figure 10), the S-curve models
for shear strength in (5) can be written as

𝜑 (𝑥)

=

{
{
{

{
{
{

{

7.70

1 + 𝑒
−14.40(𝑥−0.10)

+ 11, (𝑥 ≤

𝐿
𝑖

2

) ,

7.70

1 + 𝑒
−14.40(𝐿

𝑖
−𝑥−0.10)

+ 11, (

𝐿
𝑖

2

≤ 𝑥 ≤ 𝑠
𝑖
) ,

𝑐 (𝑥)

=

{
{
{

{
{
{

{

0.09

1 + 𝑒
−23.00(𝑥−0.1)

+ 0.19, (𝑥 ≤

𝐿
𝑖

2

) ,

0.09

1 + 𝑒
−23.00(𝐿

𝑖
−𝑥−0.1)

+ 0.19, (

𝐿
𝑖

2

≤ 𝑥 ≤ 𝑠
𝑖
) .

(18)

The strength coefficients of bedding plane and rock mass
are tabulated in Table 1. Moreover, the shear strength of
bedding rock joints was obtained by the direct shear test. The
average unit weight 𝛾 is 28 kN/m3.

3.2. Stability Analyses on the Case Study. The stability of this
bedding rock slope was calculated by the modified limiting
equilibrium method presented above. The distributions of
safety factor 𝜂 of three bedding planes are illustrated in
Figure 11. The 𝜂 values of each bedding plane decline first
and tend to be stable later. However, in the stable section,
each bedding plane’s 𝜂 firstly decrease and then increase a
little bit. Most of the safety factors of bedding plane B are
larger than those of bedding plane A and bedding plane C.
Moreover, the safety factor of bedding A is larger than the
safety factor of bedding C when 𝐿

𝑐
is shorter than 3m. The

minimum 𝜂 of bedding plane A is 1.012, the minimum 𝜂 of
bedding plane B is 1.071, and theminimum 𝜂 of bedding plane
C is 0.973. Therefore, the critical sliding surface is bedding
plane C, which has the minimum 𝜂 of the bedding rock
slope. Moreover, the result shows that the potential tension-
controlled failure would be most likely to occur at 10.5m to
the slope face.
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Table 1: Strength coefficients of bedding plane and rock mass (MPa).

Coefficient of strength function Bedding plane Rock mass
Friction angle (∘) Cohesion (MPa) Tensile strength

𝐻 11.00 0.19 0.30
𝐴 7.70 0.09 4.50
𝑐 14.40 23.00 4.18
𝑏 0.10 0.10 3.30

Start

Assume the potential sliding
happens in layer i

No

No

End

Input the analysis data
① Density: 𝜌
② Geometric parameters: 𝛼, La , Lb

③ Strength function: 𝜑(x), c(x), 𝜎(h)

Assume the distance between
the slope surface and crack

potential crack is Lc

Failure plane
dip 𝛽i

Failure plane
length Li

Failure surface
length si

Weight
Gi

Tensile force Ti

slip surface
Normal force Ni on the

Resisting force Fsi

Driving force Fri

Safety factor 𝜂

If 𝜂 = 𝜂
min

𝜂
min

= 𝜂i

If 𝜂i = 𝜂
min

𝜂 = 𝜂
min

Yes

Figure 7: Flow chart of stability calculation for bedding rock slope.

4. Discussion

The spatial variationmodel of the rockmass and rock discon-
tinuities discussed in this paper is based on S-curve model.
It is appropriate for indicating the spatial variability of rock
discontinuities shear strength parameters 𝑐 and 𝜑 and the
rock mass tensile strength 𝜎 under the high weathering and
excavation unloading. The strength of rock discontinuities
near the upper slope surface is lower than deep inside part.
If the resistance supplied by the tensile strength of rock mass
is constant, the most unstable sliding surface is the bedding
plane. However, the tensile strength and the length of the
potential cracking surface are constantly changing, which

makes the stability of rock slope more complicated. If this
resistance force is lower than the sliding force, the safety
factor along the bedding plane is consistently decreasing.
With the tensile strength and the length of potential cracking
surface increasing, the resistance force may make the safety
factor decrease first and then increase.

In the modified limiting equilibrium equations, the spa-
tial variations of the strength of rock discontinuities and
rock mass are introduced in this method. If we set resistance
supplied by the tensile strength of rock mass to zero, this
calculation model will degenerate into an idealized model
of planar failure. Note that this strength parameters model
of the rock mass and rock discontinuities sometimes cannot
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Figure 8: Analysis model of the case study.

Tensile strength data point
Fitting curve

Depth h (m)
54.543.532.521.510.5

0

1

2

3

4

5

Te
ns

ile
 st

re
ng

th
 𝜎

 (M
Pa

)

𝜎(h) =
4.5

1 + e−c𝜎 (h−b𝜎)
+ 0.3

c𝜎 = 4.18
b𝜎 = 3.30

R2 = 0.98

Figure 9: S-curve model for the tensile strength.

describe the spatial variability of strength parameters exactly.
Nevertheless, the main idea for calculating the safety factor
of stratified rock slope is still valid and needs to change the
expression of strength parameters.

The sliding surface in a slopemay consist of a single plane
continuous over the full area of the surface or a complex sur-
face made up of both discontinuities and fractures through
intact rock [21]. Here, the sliding surface is composed of
the bedding surface and vertical potential cracking surface.
It is different from the failure mode caused by propagating
cracks which are extended and coalesced with neighboring
joints. The suggested method in this paper is appropriate for
analyzing the stability of stratified rock slope whose joint
crack is undeveloped.

5. Conclusions

The plane failure is one of the rock slope failure modes in
field situations, and the limit equilibrium approach for the
estimation of the factor of safety of the rock slope against
plane failure has been well accepted by the engineers. In
sedimentary rock mass, the stratified rock slope usually
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Figure 10: S-curve model for the friction angle and cohesion of the
rock discontinuities.

has several bedding planes whose dips and mechanical
parameters have significant effects on rock mass strength
and stability. However, previous limit equilibrium approaches
were mainly about the plane failure mode with single sliding
surface and failed to predict the stability of the rock slope
with various bedding planes.This paper presented amodified
limit equilibrium method for predicting the stability of the
sedimentary rock slope with flat bedding planes. In this
method, the spatial variations of shear strength parameters
𝑐 and 𝜑 of bedding plane and the tensile strength 𝜎 of rock
mass were considered and they are expressed by the S-
curve model. The potential tensile at the top of rock mass
can also be considered in plane failure mode, incorporating
various combinations of potential sliding surface and tensile
crack. The critical sliding surface and the tensile crack were
determined by finding the potential sliding surfacewhich had
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theminimum factor of safety.Thismethod was utilized in the
stability analysis of a case study, in Three Gorges Reservoir
Region, China. The factors of safety were different between
the bedding planes, and they were affected by the resistance
supplied by the tensile strength of rock mass. The factor of
safety of the case study was 0.973, the critical sliding surface
appears at bedding planeC, and the tension-controlled failure
occurs at 10.5m to the slope face. On the basis of generalized
analytical expressions for the factor of safety, the example
was provided to show the effectiveness of the modified limit
equilibrium method in the stability analysis of stratified rock
slopes.
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