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A hierarchical controller design based on nonlinear 𝐻
∞

theory and backstepping technique is developed for a nonlinear and
coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive
features of𝐻

∞
optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding

phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-off and
landing (VTOL) aerial robot prototype known as the quadrotor aircraft.

1. Introduction

Control of aerial robots is highly complex and has been the
subject of many research papers. The research on Mobile
Robots with high degree of autonomy becomes possible, due
to the development and reduction of costs on computer,
electronic, and mechanic systems [1]. Euler-angle based and
conventional quaternion based methods have been exten-
sively employed for spacecraft attitude control. However,
the first method suffers from singularity that prohibits large
orientation maneuvers, while the second exhibits ambigu-
ity and unwinding phenomena; hence the advantage of a
four-parameter attitude representation such as quaternions
is the avoidance of singular points in the representation,
together with better numerical properties. The attitude con-
trol problem of a rigid body has been investigated by several
researchers and a wide class of controllers has been devel-
oped. In this context Fortuna et al. [2] propose an approach
based on two parallel controllers derived in quaternion alge-
bra; a PD (proportional and derivative) feedback controller
and a feedforward controller implemented by means of a
hypercomplex multilayer perceptron neural network. The
proposed controller in [3] is based upon the compensation

of the Coriolis and gyroscopic torques and the use of a
PD2 feedback structure, where the proportional action is
in terms of the vector quaternion and the two derivative
actions are in terms of the airframe angular velocity and
the vector quaternion velocity. Wang et al. in [4] treat how
to improve attitude control performances of roll and pitch
channels under both small and large amplitude manoeuvre
flight conditions. Zhao et al. in [5] discuss trajectory tracking
control for vertical take-off and landing (VTOL) Unmanned
Aerial Vehicles (UAVs) using the command filtered back-
stepping technique and a second-order quaternion filter
are developed to filter the quaternion and automatically
compute its derivative, which determines the commanded
angular rate vector. In Fresk and Nikolakopoulos approach
in [6] both the quadrotor’s attitude model and the proposed
nonlinear proportional squared (P2) control algorithm have
been implemented in the quaternion space, without any
transformations and calculations in Euler’s angle space or
Direct Cosine Matrix. Moreover Honglei et al. [7] derive a
backstepping-based inverse optimal attitude controller which
has the property of a maximum convergence rate in the sense
of a control Lyapunov function under input torque limitation
and the inverse optimal approach is employed to circumvent
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the difficulty of solving the Hamilton-Jacobi-Bellman (HJB)
equation. Likun and Qingchao in [8] construct a Lyapunov
function based on attitude tracking errors and angular rates.
The stabilizing feedback control law is deduced via Lie
derivation of the Lyapunov function. A virtual controller
and some command references are introduced by Sun et al.
in [9] to asymptotically stabilize the system of the tracking
error dynamics. Then, the actual controller and command
references are derived by solving a system of linear algebraic
equations, such as attitude stabilization, and [10] develops a
control law that uses both optimal control and finite-time
control techniques which can globally stabilize the attitude
of spacecraft system to a set of equilibria. A solution for
robust spacecraft attitude control using a nonlinear 𝐻

∞

control law to stabilize the maneuver in the presence of
external disturbance is investigated by [11]. Moreover, a
nonlinear 𝐻

∞
output feedback controller is proposed and

coupled to a high-order sliding mode estimator to regulate
a UAV (Unmanned Aerial Vehicle) in the presence of the
unmatched perturbations [12]. Many searchers like [13] used
the globally non-singular unit quaternion representation in
a Lyapunov function candidate. Guilherme et al. perform
a control structure through a nonlinear 𝐻

∞
controller to

stabilize the rotationalmovements and a control law based on
backstepping approach to track the reference trajectory [14].

Combining the backstepping technique with 𝐻
∞

tech-
nique and using the conventional quaternion based methods
to stabilize the attitude of spacecraft system to a set of
equilibria is the goal of this work. The control strategy must
overcome some difficulties such as the highly nonlinear and
coupled dynamics more over the dynamic, complex, and
unstructured environments which may cause unpredictable
disturbances to the control system. So dealing with some
states in each step will reduce difficulties and make them
restrained.Using the optimal condition of Pontryagin and the
optimal control approach to design a robust control law for
attitude motion control it has been shown that the resulting
control law has excellent performance, as demonstrated by
simulations.The paper is outlined as follows.The formulation
of the problem is developed in Section 2. Optimal attitude
control 𝐻

∞
/backstepping with some mathematical prelimi-

naries are developed in Section 3. Simulation results applied
for the quadrotor are discussed in Section 4. Finally, Section 5
presents some conclusions.

2. Problem Formulation

Let 𝑄 be the quaternion and the dynamic attitude system
represented as

𝑄̇ (𝑡) =
1

2
𝑄 (𝑡) ⊗ Ω (𝑡) ,

𝐽Ω̇ (𝑡) = −Ω (𝑡) × 𝐽Ω (𝑡) + 𝑢 (𝑡) + 𝑑 (𝑡) ,

(1)

where 𝐽 ∈ 𝑅3×3 denotes the inertia matrix of the body and
satisfies 𝐽 = 𝐽𝑇 > 0, Ω = (0,Ω), and Ω ∈ 𝑅

3 is the angular
velocity vector of the body in the body-fixed frame, 𝑢(𝑡) ∈ 𝑅3
is the control torque vector, and 𝑑(𝑡) ∈ 𝑅

3 is the external

disturbance vector. The attitude quaternion 𝑄(𝑡) ∈ 𝑅
4 is

defined by 𝑄(𝑡) = (𝑞
0
(𝑡), 𝑞
1
(𝑡), 𝑞
2
(𝑡), 𝑞
3
(𝑡))
𝑇

= (𝑞
0
(𝑡), 𝑞V(𝑡))

𝑇

and the Euclidean norm ‖𝑄(𝑡)‖
2
= 1, ∀𝑡 ≥ 0. If 𝑄

𝑑
is the

desired quaternion written in dynamic form as

𝑄̇
𝑑
(𝑡) =

1

2
𝑄
𝑑
(𝑡) ⊗ Ω

𝑑
(𝑡) (2)

with Ω
𝑑
= (0, Ω

𝑑
), Ω
𝑑
∈ 𝑅
3 is the desired angular velocity.

The quaternion error in multiplicative form is

𝑄
𝑒
(𝑡) = 𝑄

−1

𝑑
(𝑡) ⊗ 𝑄 (𝑡) (3)

or

𝑄
𝑑
(𝑡) ⊗ 𝑄

𝑒
(𝑡) = 𝑄 (𝑡) . (4)

Then the derivative of the above equation gives

𝑄̇
𝑑
(𝑡) ⊗ 𝑄

𝑒
(𝑡) + 𝑄

𝑑
(𝑡) ⊗ 𝑄̇

𝑒
(𝑡) = 𝑄̇ (𝑡) , (5)

which leads to

𝑄̇
𝑑
(𝑡) ⊗ 𝑄

𝑒
(𝑡) + 𝑄

𝑑
(𝑡) ⊗ 𝑄̇

𝑒
(𝑡) =

1

2
𝑄 (𝑡) ⊗ Ω (𝑡) ,

𝑄̇
𝑒
(𝑡)

=
1

2
(𝑄
−1

𝑑
(𝑡) ⊗ 𝑄 (𝑡) ⊗ Ω (𝑡)) − 𝑄

−1

𝑑
(𝑡) ⊗ 𝑄̇

𝑑
(𝑡)

⊗ 𝑄
𝑒
(𝑡) ,

𝑄̇
𝑒
(𝑡) =

1

2
(𝑄
𝑒
(𝑡) ⊗ Ω (𝑡) − Ω

𝑑
(𝑡) ⊗ 𝑄

𝑒
(𝑡)) ;

(6)

then,

𝑄̇
𝑒
(𝑡) =

1

2
𝑄
𝑒
(𝑡) ⊗ (Ω (𝑡) − 𝑄

−1

𝑒
(𝑡) ⊗ Ω

𝑑
(𝑡) ⊗ 𝑄

𝑒
(𝑡)) . (7)

Let

𝑄
−1

𝑒
(𝑡) ⊗ Ω

𝑑
(𝑡) ⊗ 𝑄

𝑒
(𝑡) = Ω

∗

𝑑
(𝑡) (8)

with

Ω
∗

𝑑
(𝑡) = 𝑅

𝑇

(𝑄
𝑒
(𝑡))Ω

𝑑
(𝑡) . (9)

Using Rodriguez formula one can define the rotation matrix
in quaternion representation [15, 16]:

𝑅
𝑇

(𝑄
𝑒
(𝑡)) = 𝐼 + 2𝑆 (𝑄

𝑒
(𝑡)) + 2𝑆

2

(𝑄
𝑒
(𝑡)) . (10)

Let an auxiliary angular velocity be defined as

Ωaux (𝑡) = Ω (𝑡) − Ω
∗

𝑑
(𝑡) ,

Ω̇aux (𝑡) = Ω̇ (𝑡) − Ω̇
∗

𝑑
(𝑡) ,

(11)

so the system in quaternion error can be represented as

𝑄̇
𝑒
(𝑡) =

1

2
𝑄
𝑒
(𝑡) ⊗ Ωaux (𝑡) ; (12)
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from (9) one can write

Ω̇
∗

𝑑
(𝑡) = 𝑅̇

𝑇

(𝑄
𝑒
(𝑡))Ω

𝑑
(𝑡) + 𝑅

𝑇

(𝑄
𝑒
(𝑡)) Ω̇

𝑑
(𝑡) ,

Ω̇
∗

𝑑
= 𝑆
𝑇

(Ω (𝑡)) 𝑅
𝑇

(𝑄
𝑒
(𝑡))Ω

𝑑
(𝑡)

+ 𝑅
𝑇

(𝑄
𝑒
(𝑡)) Ω̇

𝑑
(𝑡) .

(13)

𝑆 is skew-symmetric which satisfies the condition −𝑆 = 𝑆𝑇.
From (11) we get

𝐽Ω̇aux (𝑡) = 𝐽Ω̇ (𝑡) − 𝐽Ω̇
∗

𝑑
(𝑡) ,

𝐽Ω̇aux (𝑡) = −Ω (𝑡) × 𝐽Ω (𝑡) + 𝑢 (𝑡) + 𝑑 (𝑡) − 𝐽Ω̇
∗

𝑑
(𝑡) ,

𝐽Ω̇aux (𝑡) = − (Ωaux (𝑡) + Ω
∗

𝑑
(𝑡))

× 𝐽 (Ωaux (𝑡) + Ω
∗

𝑑
(𝑡)) + 𝑢 (𝑡) + 𝑑 (𝑡)

− 𝐽Ω̇
∗

𝑑
(𝑡) ;

(14)

× is the cross product. Finally

Ω̇aux (𝑡) = −𝐽
−1

Ωaux (𝑡) × 𝐽Ωaux (𝑡) − 𝐽
−1

Ωaux (𝑡)

× 𝐽Ω
∗

𝑑
(𝑡) − 𝐽

−1

Ω
∗

𝑑
(𝑡) × 𝐽Ωaux (𝑡)

− 𝐽
−1

Ω
∗

𝑑
(𝑡) × 𝐽Ω

∗

𝑑
(𝑡)

− 𝑆
𝑇

(Ω (𝑡)) 𝑅
𝑇

(𝑄
𝑒
(𝑡))Ω

𝑑
(𝑡)

− 𝑅
𝑇

(𝑄
𝑒
(𝑡)) Ω̇

𝑑
(𝑡) + 𝐽

−1

𝑢 (𝑡) + 𝐽
−1

𝑑 (𝑡) ;

(15)

using the skew matrix we obtain

Ω̇aux (𝑡) = −𝐽
−1

𝑆 (Ωaux (𝑡)) 𝐽Ωaux (𝑡)

− 𝐽
−1

𝑆 (Ωaux (𝑡)) 𝐽Ω
∗

𝑑
(𝑡)

− 𝐽
−1

𝑆 (Ω
∗

𝑑
(𝑡)) 𝐽Ωaux (𝑡)

− 𝐽
−1

𝑆 (Ω
∗

𝑑
(𝑡)) 𝐽Ω

∗

𝑑
(𝑡)

− 𝑆
𝑇

(Ω (𝑡)) 𝑅
𝑇

(𝑄
𝑒
(𝑡))Ω

𝑑
(𝑡)

− 𝑅
𝑇

(𝑄
𝑒
(𝑡)) Ω̇

𝑑
(𝑡) + 𝐽

−1

𝑢 (𝑡) + 𝐽
−1

𝑑 (𝑡) .

(16)

Let

V (𝑡) = 𝑢 (𝑡) − 𝑆 (Ωaux (𝑡)) 𝐽Ω
∗

𝑑
(𝑡) − 𝑆 (Ω

∗

𝑑
(𝑡)) 𝐽Ω

∗

𝑑
(𝑡)

− 𝐽𝑆
𝑇

(Ω (𝑡)) 𝑅
𝑇

(𝑄
𝑒
(𝑡))Ω

𝑑
(𝑡)

− 𝐽𝑅
𝑇

(𝑄
𝑒
(𝑡)) Ω̇

𝑑
(𝑡) ;

(17)

then (16) can be written as

Ω̇aux (𝑡)

= −𝐽
−1

𝑆 (Ωaux (𝑡)) 𝐽Ωaux (𝑡)

− 𝐽
−1

𝑆 (Ω
∗

𝑑
(𝑡)) 𝐽Ωaux (𝑡) + 𝐽

−1V (𝑡) + 𝐽−1𝑑 (𝑡) ,

Ω̇aux (𝑡)

= [−𝐽
−1

𝑆 (Ωaux (𝑡)) 𝐽 − 𝐽
−1

𝑆 (Ω
∗

𝑑
(𝑡)) 𝐽]Ωaux (𝑡)

+ 𝐽V (𝑡) + 𝐽−1𝑑 (𝑡) .

(18)

In that case (18) can be written as

Ω̇aux (𝑡) = 𝐴2 (𝑡) Ωaux (𝑡) + 𝐵2V (𝑡) + 𝐺2 (𝑡) 𝑤 (𝑡) (19)

with

𝐴
2
(𝑡) = −𝐽

−1

𝑆 (Ωaux (𝑡)) 𝐽 − 𝐽
−1

𝑆 (Ω
∗

𝑑
(𝑡)) 𝐽,

𝐵
2
(𝑡) = 𝐽

−1

;

𝐺
2
(𝑡) = 𝐽

−1

;

𝑤 (𝑡) = 𝑑 (𝑡) ;

(20)

taking 𝑄
𝑒
(𝑡) = (𝑞

𝑒0
(𝑡), 𝑞
𝑒V(𝑡))
𝑇, the development of (12) will

lead to the kinematic equation of the rigid body motion
described in terms of the attitude quaternion:

𝑄̇
𝑒
(𝑡) = (

𝑞̇
𝑒0
(𝑡)

𝑞̇
𝑒V (𝑡)

) =
1

2
𝐸 (𝑄
𝑒
(𝑡))Ωaux (𝑡) . (21)

𝐸(𝑄
𝑒
(𝑡)) is the kinematics Jacobian matrix (see [17]) defined

as

𝐸 (𝑄
𝑒
) = (

−𝑞
𝑇

𝑒V (𝑡)

−𝑆 (𝑞
𝑒V (𝑡)) + 𝑞𝑒0 (𝑡) 𝐼3×3

) (22)

and the matrix 𝑆(𝑞
𝑒V(𝑡)) ∈ 𝑅

3×3 denotes a skew-symmetric
matrix given by

𝑆 (𝑞
𝑒V) =

[
[

[

0 𝑞
𝑒V (3) −𝑞

𝑒V (2)

−𝑞
𝑒V (3) 0 𝑞

𝑒V (1)

𝑞
𝑒V (2) −𝑞

𝑒V (1) 0

]
]

]

. (23)

Let

𝑥
1
(𝑡) = 𝑞

𝑒V (𝑡) ,

𝑥
2
(𝑡) = Ωaux (𝑡) ,

(24)

with

𝑄
𝑒
(𝑡) = 𝑄

−1

𝑑
(𝑡) ⊗ 𝑄 (𝑡) = [𝑞

𝑒0
(𝑡) , 𝑞
𝑒V (𝑡)]
𝑇

,

𝐵
1
(𝑡) =

1

2
𝐸
1
(𝑥
1
(𝑡)) .

(25)
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So the system in hierarchical form based on (22) and (20)
will be presented as

𝑥̇
1
(𝑡) =

1

2
(−𝑆 (𝑞

𝑒V (𝑡)) + 𝑞𝑒0 (𝑡) 𝐼3×3) 𝑥2 (𝑡)

=
1

2
𝐸
1
(𝑥
1
(𝑡)) 𝑥
2
(𝑡) = 𝐵

1
(𝑡) 𝑥
2
(𝑡) ,

𝑥̇
2
(𝑡) = 𝐴

2
(𝑡) 𝑥
2
(𝑡) + 𝐵

2
(𝑡) V (𝑡) + 𝐺

2
(𝑡) 𝑤
2
(𝑡) .

(26)

The performance specification in steady statemust lead to the
equilibrium point

𝑥
𝑑
(𝑡) = [±1, 0, 0, 0, 0, 0, 0]

𝑇

. (27)

This section is a necessary introduction for the following
section which deals with the optimal backstepping technique
based on themodel presented in (26), leading to an optimiza-
tion problem with constraints and a backstepping controller.
The Hamiltonian equation and Riccati formula solution is
developed meanwhile.

3. Optimal Attitude Control

In this section we are interested in optimal control of sys-
tems modeled by differential equations, in finite dimension,
defined as follows:

𝑥̇ = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) , (28)

where 𝑥 ∈ R𝑛1 is the state vector, 𝑡 ∈ R is the time variable,
and 𝑢 ∈ R𝑛2 is the control input. For such systems, the goal is
to determine a controller to bring the system from an initial
set to a final set, by minimizing criterion called the cost. In
this case, we define the optimal control problem, as

min 𝐽 (𝑥, 𝑢)

𝑥̇ = 𝑓 (𝑥, 𝑢)

𝑥 (𝑡
0
) = 𝑥
0
.

(29)

Let the cost function with constraint be presented as

𝐽 (𝑥, 𝑢, 𝜆) = 𝐽 (𝑥, 𝑢) + ∫

𝑡
2

𝑡
1

𝜆
𝑇

(𝑓 (𝑥, 𝑢, 𝑡) − 𝑥̇) (𝑡) 𝑑𝑡. (30)

With

𝑋 × 𝑈 ∋ (𝑥, 𝑢) 󳨀→

𝐽 (𝑥, 𝑢) = Φ (𝑥 (𝑡
2
) , 𝑡
2
) + ∫

𝑡
2

𝑡
1

𝐿 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) 𝑑𝑡,

(31)

where 𝑋 × 𝑈 ∋ (𝑥, 𝑢) 󳨃→ 𝐽(𝑥, 𝑢) ∈ R, 𝑋 × 𝑈 is a normed
space. Here, 𝑋 is the space of continuous functions with
continuous derivatives R ⊃ [𝑡

0
, 𝑡
𝑓
] → R𝑛1 and 𝑈 is the

space of continuous functions defined on [𝑡
0
, 𝑡
𝑓
] → R𝑛2 . We

consider a new function 𝐽,𝑋×𝑈×𝑀 ∋ (𝑥, 𝑢, 𝜆) 󳨃→ 𝐽(𝑥, 𝑢, 𝜆),
where𝑀 is the space of differentiable functionsR→ R𝑛1 and
the vector 𝜆 is known as the costate vector.This new function

allows us tomove from solving an optimization problemwith
constraints to an optimization problem without constraints.
Consider the cost function of the form

𝐽 (𝑥, 𝑢, 𝜆) = 𝐽 (𝑥, 𝑢) + ∫

𝑡
𝑓

𝑡
0

𝜆 (𝑡)
𝑇

(𝑓 (𝑥, 𝑢) − 𝑥̇ (𝑡)) 𝑑𝑡. (32)

We note the Hamiltonian function as follows:

𝐻(𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) = 𝐿 (𝑥, 𝑢) + 𝜆 (𝑡)
𝑇

𝑓 (𝑥, 𝑢) . (33)

The key point of this theory is the Pontryagin Maximum
principle formulated in 1956, according to which the optimal
control minimizes the function 𝐽with the following optimal-
ity condition:

𝜆̇ (𝑡)
𝑇

= −
𝜕𝐻

𝜕𝑥
(𝑥, 𝑢, 𝜆) ,

𝜆
𝑇

(𝑡
𝑓
) =

𝜕Φ (𝑥 (𝑡
𝑓
) , 𝑡
𝑓
)

𝜕𝑥 (𝑡
𝑓
)

,

𝜕𝐻

𝜕𝑢
= 0,

𝑥 (𝑡
0
) = 𝑥
0

.

(34)

The principle goal in designing an optimal control law is
to make the steady state converge to the closer equilibrium.
The controller is established into two steps (as classical back-
stepping) passing through a virtual controller and a matrix
𝑃
𝑖
positive definite computed through Riccati equation. The

local stabilizability and detectability are then ensured by
the existence of a proper solution of the algebraic Riccati
equations. Assuming that system (26) is stabilizable, then the
following theorem is established.

Theorem 1. Consider the hierarchical system (26) with the
assumption that pair (𝐴

𝑖
, 𝐵
𝑖
) has to be stabilizable; then there

exists a virtual control V
𝑖
and a positive semidefinite matrix 𝑃

𝑖

such that the subsystem can be represented in the form

𝑧̇
𝑖
(𝑡) = 𝐴

𝑖
(𝑡) 𝑧
𝑖
(𝑡) − 𝐴

𝑖
(𝑡) V
𝑖−1
(𝑡) + V̇

𝑖−1
(𝑡)

− 𝐵
𝑖
(𝑡) V
𝑖
(𝑡) − 𝐵

𝑖𝑖
(𝑡) 𝑤
𝑖
(𝑡) ,

(35)

𝑖 = 1 to 𝑛. 𝑛 is the degree of differentiability of the system (𝑖 =
1, 2; 𝑛 = 2 in our case), with the new variable 𝑧 defined as

𝑧
𝑖
(𝑡) = V

𝑖−1
(𝑡) − 𝜙

𝑖−1
(𝑡) (36)

and the virtual backstepping controller V

𝐵
𝑖
(𝑡) V
𝑖
(𝑡) = 𝐵

𝑖
(𝑡) 𝑅
−1

𝑖
𝐵
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝑧
𝑖
(𝑡) + V̇

𝑖−1
(𝑡)

− 𝐴
𝑖
(𝑡) V
𝑖−1
(𝑡) + 𝑃

−1

𝑖
𝐵
𝑇

𝑖
(𝑡) 𝑃
𝑖−1
𝑧
𝑖−1
(𝑡)

(37)

which asymptotically stabilizes the disturbance free system

Proof. In backstepping controller each step will be treated
as a submodel. The link between different submodels is
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made using backstepping technique. So let model (26) be
represented in error form as

𝑧
𝑖
= V
𝑖−1
− 𝜙
𝑖−1
; (38)

differentiating (38) gives

𝑧̇
𝑖
= V̇
𝑖−1
− 𝜙̇
𝑖−1

(39)

and 𝜙
𝑖−1
= 𝑥
𝑖
for every 𝐴

𝑖
= 0, and then

𝑧̇
𝑖
= V̇
𝑖−1
− 𝐴
𝑖
𝑥
𝑖
− 𝐵
𝑖
V
𝑖
− 𝐺
𝑖
𝑤
𝑖
,

𝑧̇
𝑖
= V̇
𝑖−1
− 𝐴
𝑖
(V
𝑖−1
− 𝑧
𝑖
) − 𝐵
𝑖
V
𝑖
− 𝐺
𝑖
𝑤
𝑖
,

𝑧̇
𝑖
= 𝐴
𝑖
𝑧
𝑖
− 𝐴
𝑖
V
𝑖−1
+ V̇
𝑖−1
− 𝐵
𝑖
V
𝑖
− 𝐺
𝑖
𝑤
𝑖
.

(40)

Since the variable of differential 𝑧
𝑖
depends essentially on

the variable V
𝑖
(actual virtual control) and V

𝑖−1
(past virtual

control), then one can introduce by analogy the variable 𝑧
𝑖−1

in model (40). Let the model with the new variable control

𝑧̇
𝑖
= 𝐴
𝑖
𝑧
𝑖
+ 𝐵
𝑖
𝜉
𝑖
− 𝛼
𝑖−1
𝑧
𝑖−1

(41)

with 𝜉
𝑖
the new variable control defined as

𝐵
𝑖
𝜉
𝑖
= −𝐴

𝑖
V
𝑖−1
− 𝐵
𝑖
V
𝑖
+ V̇
𝑖−1
+ 𝛼
𝑖−1
𝑧
𝑖−1
− 𝐺
𝑖
𝑤
𝑖

𝜉
𝑖
= −V
𝑖
+ (𝐵
𝑖
)
−1

(V̇
𝑖−1
− 𝐴
𝑖
V
𝑖−1
+ 𝛼
𝑖−1
𝑧
𝑖−1
− 𝐺
𝑖
𝑤
𝑖
) .

(42)

Chosing 𝐿
𝑘
as

𝐿
𝑘
=

𝑘

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑄
𝑖
𝑧
𝑖
+
1

2
𝜉
𝑇

𝑘
𝑅
𝑘
𝜉
𝑘
+

𝑘−1

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖

− 𝛾
2

𝑘
𝑤
𝑇

𝑘
𝑤
𝑘
,

Φ
𝑘
=

𝑘

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖

(43)

with 𝑘 represents the step number. The 𝑧̇
𝑖
for 𝑖 = 1 ⋅ ⋅ ⋅ 𝑘 −

1 will be computed by using recurrence formula; hence the
Hamiltonian function will be defined as

𝐻
𝑘
=

𝑘

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑄
𝑖
𝑧
𝑖
+
1

2
𝜉
𝑇

𝑘
𝑅
𝑘
𝜉
𝑘
+

𝑘−1

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖

− 𝛾
2

𝑘
𝑤
𝑇

𝑘
𝑤
𝑘
+

𝑘−1

∑

𝑖=1

𝜆
𝑇

𝑖
𝑧̇
𝑖
+ 𝜆
𝑇

𝑘
𝑧̇
𝑘
;

(44)

replacing 𝑧̇
𝑘
from (41) gives

𝐻
𝑘
=

𝑘

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑄
𝑖
𝑧
𝑖
+
1

2
𝜉
𝑇

𝑘
𝑅
𝑘
𝜉
𝑘
+

𝑘−1

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖

− 𝛾
2

𝑘
𝑤
𝑇

𝑘
𝑤
𝑘
+

𝑘−1

∑

𝑖=1

𝜆
𝑇

𝑖
𝑧̇
𝑖

+ 𝜆
𝑇

𝑘
(𝐴
𝑘
𝑧
𝑘
+ 𝐵
𝑘
𝜉
𝑘
− 𝛼
𝑖−1
𝑧
𝑘−1
) .

(45)

Using the optimality conditions for control law leads to

𝜕𝐻
𝑘

𝜕𝜉
𝑘

= 0 󳨐⇒

𝑅
𝑘
𝜉
𝑘
+ 𝐵
𝑇

𝑘
𝜆
𝑘
= 0 󳨐⇒

𝜉
𝑘
= −𝑅
−1

𝑘
𝐵
𝑇

𝑘
𝜆
𝑘
;

(46)

since

𝜆
𝑘
=
𝜕Φ
𝑘

𝜕𝑧
𝑘

= 𝑃
𝑘
𝑧
𝑘

(47)

then

𝜉
𝑘
= −𝑅
−1

𝑘
𝐵
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
; (48)

equaling (42) and (48) will give

(𝐵
𝑘
) 𝜉
𝑘
= − (𝐵

𝑘
) 𝑅
−1

𝑘
𝐵
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘

= − (𝐵
𝑘
) V
𝑘

+ (V̇
𝑘−1
− 𝐴
𝑘
V
𝑘−1
+ 𝛼
𝑘−1
𝑧
𝑘−1
− 𝐺
𝑘
𝑤
𝑘
) .

(49)

So the virtual control V
𝑖
can now be computed:

(𝐵
𝑘
) V
𝑘
= (𝐵
𝑘
) 𝑅
−1

𝑘
𝐵
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘

+ (V̇
𝑘−1
− 𝐴
𝑘
V
𝑘−1
+ 𝛼
𝑘−1
𝑧
𝑘−1
− 𝐺
𝑘
𝑤
𝑘
) .

(50)

Equation (38) will help to extract the past 𝑧̇
𝑖
from recurrence

technique

𝑧
𝑖
= V
𝑖−1
− 𝜙
𝑖−1
; (51)

replacing V
𝑖−1

from (50) gives

(𝐵
𝑖−1
) 𝑧
𝑖
= (𝐵
𝑖−1
) 𝑅
−1

𝑖−1
𝐵
𝑇

𝑖−1
𝑃
𝑖−1
𝑧
𝑖−1

+ (V̇
𝑖−2
− 𝐴
𝑖−1

V
𝑖−2
+ 𝛼
𝑖−2
𝑧
𝑖−2
− 𝐺
𝑖−1
𝑤
𝑖−1
)

− (𝐵
𝑖−1
) 𝜙
𝑖−1
,

(𝐵
𝑖−1
) 𝑧
𝑖
= 𝐵
𝑖−1
𝑅
−1

𝑖−1
𝐵
𝑇

𝑖−1
𝑃
𝑖−1
𝑧
𝑖−1
− 𝐴
𝑖−1
(𝑥
𝑖−1
+ 𝑧
𝑖−1
)

+ V̇
𝑖−2
+ 𝛼
𝑖−2
𝑧
𝑖−2
− 𝐵
𝑖−1,𝑖−1

𝑤
𝑖−1

− 𝐵
𝑖−1
𝜙
𝑖−1
,

(𝐵
𝑖−1
) 𝑧
𝑖
= 𝐵
𝑖−1
𝑅
−1

𝑖−1
𝐵
𝑇

𝑖−1
𝑃
𝑖−1
𝑧
𝑖−1
− 𝐴
𝑖−1
𝑧
𝑖−1
+ 𝛼
𝑖−2
𝑧
𝑖−2

+ V̇
𝑖−2
− 𝐴
𝑖−1
𝑥
𝑖−1
− 𝐵
𝑖−1
𝜙
𝑖−1

− 𝐵
𝑖−1,𝑖−1

𝑤
𝑖−1
;

(52)

using (40) leads to

𝐵
𝑖−1
𝑧
𝑖
= 𝐵
𝑖−1
𝑅
−1

𝑖−1
𝐵
𝑇

𝑖−1
𝑃
𝑖−1
𝑧
𝑖−1
− 𝐴
𝑖−1
𝑧
𝑖−1
+ 𝛼
𝑖−2
𝑧
𝑖−2

+ 𝑧̇
𝑖−1
;

(53)
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then 𝑧̇
𝑖−1

is evaluated:

𝑧̇
𝑖−1
= 𝐵
𝑖−1
𝑧
𝑖
+ (𝐴
𝑖−1
− 𝐵
𝑖−1
𝑅
−1

𝑖−1
𝐵
𝑇

𝑖−1
𝑃
𝑖−1
) 𝑧
𝑖−1

− 𝛼
𝑖−2
𝑧
𝑖−2
;

(54)

by recurrence 𝑧̇
𝑖
is

𝑧̇
𝑖
= 𝐵
𝑖
𝑧
𝑖+1
+ (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
) 𝑧
𝑖
− 𝛼
𝑖−1
𝑧
𝑖−1
. (55)

Introducing the new computed variables in the Hamiltonian
(45) will give

𝐻
𝑘

=

𝑘

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑄
𝑖
𝑧
𝑖
+
1

2
𝜉
𝑇

𝑘
𝑅
𝑘
𝜉
𝑘
+

𝑘−1

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖

+

𝑘−1

∑

𝑖=1

𝜆
𝑇

𝑖
(𝐵
𝑖
𝑧
𝑖+1
+ (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
) 𝑧
𝑖
− 𝛼
𝑖−1
𝑧
𝑖−1
)

+ 𝜆
𝑇

𝑘
(𝐴
𝑘
𝑧
𝑘
+ 𝐵
𝑘
𝜉
𝑘
− 𝛼
𝑘−1
𝑧
𝑘−1
) − 𝛾
2

𝑘
𝑤
𝑇

𝑘
𝑤
𝑘
.

(56)

Taking the worst case for 𝑤
𝑘
in linear form [18]:

𝑤
𝑘
=
1

2𝛾
2

𝑘

𝐺
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
. (57)

So (56) becomes

𝐻
𝑘

=

𝑘

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑄
𝑖
𝑧
𝑖
+
1

2
𝜉
𝑇

𝑘
𝑅
𝑘
𝜉
𝑘
+

𝑘−1

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖

+

𝑘−1

∑

𝑖=1

𝜆
𝑇

𝑖
(𝐵
𝑖
𝑧
𝑖+1
+ (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
) 𝑧
𝑖
− 𝛼
𝑖−1
𝑧
𝑖−1
)

+ 𝜆
𝑇

𝑘
(𝐴
𝑘
𝑧
𝑘
+ 𝐵
𝑘
𝜉
𝑘
− 𝛼
𝑘−1
𝑧
𝑘−1
)

−
1

4𝛾
2

𝑘

𝑧
𝑇

𝑘
𝑃
𝑘
𝐺
𝑘
𝐺
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
.

(58)

Applying the optimality conditions from (58) leads to

𝜆̇
𝑖
= −(

𝜕𝐻
𝑘

𝜕𝑧
𝑖

)

𝑇

𝑖 = 1 ⋅ ⋅ ⋅ 𝑘 − 1

= −𝑄
𝑖
𝑧
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖
− (𝐵
𝑖−1
)
𝑇

𝜆
𝑖−1

− (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝜆
𝑖
+ (𝑃
−1

𝑖+1
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝜆
𝑖+1

𝜆̇
𝑖
= −𝑄
𝑖
𝑧
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖
− (𝐵
𝑖−1
)
𝑇

𝑃
𝑖−1
𝑧
𝑖−1

− (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝑃
𝑖
𝑧
𝑖

+ (𝑃
−1

𝑖+1
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝑃
𝑖+1
𝑧
𝑖+1
,

(59)

𝜆̇
𝑖
= −𝑄
𝑖
𝑧
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖
− (𝐵
𝑖−1
)
𝑇

𝑃
𝑖−1
𝑧
𝑖−1

− (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝑃
𝑖
𝑧
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝑧
𝑖+1
.

(60)

For the final step 𝜆̇
𝑘
is computed:

𝜆̇
𝑘
= −(

𝜕𝐻
𝑘

𝜕𝑧
𝑘

)

𝑇

,

𝜆̇
𝑘
= −𝑄
𝑘
𝑧
𝑘
− 𝐴
𝑇

𝑘
𝜆
𝑘
− (𝐵
𝑘−1
)
𝑇

𝜆
𝑘−1

−
1

2𝛾
2

𝑘

𝑃
𝑘
𝐵
𝑘𝑘
𝐵
𝑇

𝑘𝑘
𝑃
𝑘
𝑧
𝑘
,

(61)

𝜆̇
𝑘
= −𝑄
𝑘
𝑧
𝑘
− 𝐴
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
− (𝐵
𝑘−1
)
𝑇

𝑃
𝑘−1
𝑧
𝑘−1

−
1

2𝛾
2

𝑘

𝑃
𝑘
𝐺
𝑘
𝐺
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
.

(62)

Taking (47) and differentiating for 𝑖 and 𝑘:

𝜆̇
𝑖
= 𝑃̇
𝑖
𝑧
𝑖
+ 𝑃
𝑖
𝑧̇
𝑖
𝑖 = 1 ⋅ ⋅ ⋅ 𝑘 − 1,

𝜆̇
𝑘
= 𝑃̇
𝑘
𝑧
𝑘
+ 𝑃
𝑘
𝑧̇
𝑘
;

(63)

comparing with (60) and (62) leads to

𝑃̇
𝑖
𝑧
𝑖
+ 𝑃
𝑖
𝑧̇
𝑖

= −𝑄
𝑖
𝑧
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖
− (𝐵
𝑖−1
)
𝑇

𝑃
𝑖−1
𝑧
𝑖−1

− (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝑃
𝑖
𝑧
𝑖

+ (𝑃
−1

𝑖+1
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝑃
𝑖+1
𝑧
𝑖+1
,

𝑃̇
𝑖
𝑧
𝑖

= −𝑄
𝑖
𝑧
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
𝑧
𝑖
− (𝐵
𝑖−1
)
𝑇

𝑃
𝑖−1
𝑧
𝑖−1

− (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝑃
𝑖
𝑧
𝑖

+ (𝑃
−1

𝑖+1
𝐵
𝑇

𝑖
𝑃
𝑖
)
𝑇

𝑃
𝑖+1
𝑧
𝑖+1

− 𝑃
𝑖
(𝐵
𝑖
𝑧
𝑖+1
+ (𝐴
𝑖
− 𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
) 𝑧
𝑖
− 𝛼
𝑖−1
𝑧
𝑖−1
) ,

𝑃̇
𝑖
𝑧
𝑖

= − (𝑄
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
) 𝑧
𝑖

− 𝐵
𝑇

𝑖−1
𝑃
𝑖−1
𝑧
𝑖−1
+ 𝑃
𝑖
𝛼
𝑖−1
𝑧
𝑖−1
+ 𝑃
𝑖
𝐵
𝑖
𝑧
𝑖+1

− 𝑃
𝑖
𝐵
𝑖
𝑧
𝑖+1
;

(64)

taking 𝑃
𝑖
𝛼
𝑖−1
= 𝐵
𝑇

𝑖−1
𝑃
𝑖−1

then

𝛼
𝑖−1
= 𝑃
−1

𝑖
𝐵
𝑇

𝑖−1
𝑃
𝑖−1
; (65)

finally the Riccati equation before the final step will be

− 𝑃̇
𝑖
= (𝑄
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝑅
−1

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
)

𝑖 = 1 ⋅ ⋅ ⋅ 𝑘 − 1.

(66)
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Let us compute the Riccati equation for the final step using
the computed value 𝛼

𝑖−1
:

𝑃̇
𝑘
𝑧
𝑘
+ 𝑃
𝑘
𝑧̇
𝑘

= −𝑄
𝑘
𝑧
𝑘
− 𝐴
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
−
1

2𝛾
2

𝑘

𝑃
𝑘
𝐵
𝑘𝑘
𝐵
𝑇

𝑘𝑘
𝑃
𝑘
𝑧
𝑘

− (𝐵
𝑘−1
)
𝑇

𝑃
𝑘−1
𝑧
𝑘−1
,

𝑃̇
𝑘
𝑧
𝑘

= −𝑄
𝑘
𝑧
𝑘
− 𝐴
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
−
1

2𝛾
2

𝑘

𝑃
𝑘
𝐺
𝑘
𝐺
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘

− (𝐵
𝑘−1
)
𝑇

𝑃
𝑘−1
𝑧
𝑘−1

− 𝑃
𝑘
(𝐴
𝑘
𝑧
𝑘
+ 𝐵
𝑘
𝜉
𝑘
− 𝑃
−1

𝑘
𝐵
𝑇

𝑘−1
𝑃
𝑘−1
𝑧
𝑘−1
) ;

(67)

replacing the value of 𝜉
𝑘
from (48):

𝑃̇
𝑘
𝑧
𝑘

= −𝑄
𝑘
𝑧
𝑘
− 𝐴
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
−
1

2𝛾
2

𝑘

𝑃
𝑘
𝐺
𝑘
𝐺
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘

− (𝐵
𝑘−1
)
𝑇

𝑃
𝑘−1
𝑧
𝑘−1

− 𝑃
𝑘
(𝐴
𝑘
𝑧
𝑘
− 𝐵
𝑘
𝑅
−1

𝑘
𝐵
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
− 𝑃
−1

𝑘
𝐵
𝑇

𝑘−1
𝑃
𝑘−1
𝑧
𝑘−1
)

(68)

then

−𝑃̇
𝑘
𝑧
𝑘
= (𝑄

𝑘
+ 𝐴
𝑇

𝑘
𝑃
𝑘
+ 𝑃
𝑘
𝐴
𝑘
+
1

2𝛾
2

𝑘

𝑃
𝑘
𝐺
𝑘
𝐺
𝑇

𝑘
𝑃
𝑘
)𝑧
𝑘

− 𝑃
𝑘
𝐵
𝑘
𝑅
−1

𝑘
𝐵
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘

+ (𝐵
𝑇

𝑘−1
𝑃
𝑘−1
𝑧
𝑘−1
− 𝐵
𝑇

𝑘−1
𝑃
𝑘−1
𝑧
𝑘−1
) .

(69)

Finally the Riccati equation is formulated as

−𝑃̇
𝑘
= 𝐴𝑃
𝑘
+ 𝑃
𝑘
𝐴
𝑘
+ 𝑃
𝑘
(
1

2𝛾
2

𝑘

𝐺
𝑘
𝐺
𝑇

𝑘
− 𝐵
𝑘
𝑅
−1

𝑘
𝐵
𝑇

𝑘
)𝑃
𝑘

+ 𝑄
𝑘

(70)

and the equation of V
𝑘
becomes

𝐵
𝑘
V
𝑘
= 𝐵
𝑘
𝑅
−1

𝑘
𝐵
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
+ V̇
𝑘−1
− 𝐴
𝑘
V
𝑘−1

+ 𝑃
−1

𝑘
𝐵
𝑇

𝑘−1
𝑃
𝑘−1
𝑧
𝑘−1
−
1

2𝛾
2

𝑘

𝐺
𝑘
𝐺
𝑇

𝑘
𝑃
𝑘
𝑧
𝑘
,

𝐵
𝑘
V
𝑘
= (𝐵
𝑘
𝑅
−1

𝑘
𝐵
𝑇

𝑘
−
1

2𝛾
2

𝑘

𝐺
𝑘
𝐺
𝑇

𝑘
)𝑃
𝑘
𝑧
𝑘

+ (V̇
𝑘−1
− 𝐴
𝑘
V
𝑘−1
+ 𝑃
−1

𝑘
𝐵
𝑇

𝑘−1
𝑃
𝑘−1

z
𝑘−1
) ,

𝐵
𝑘
V
𝑘
= Γ
𝑘
𝑃
𝑘
𝑧
𝑘
+ (V̇
𝑘−1
− 𝐴
𝑘
V
𝑘−1
+ 𝑃
−1

𝑘
𝐵
𝑇

𝑘−1
𝑃
𝑘−1
𝑧
𝑘−1
) ;

(71)

this will conclude the proof.

Step 1. The algorithm (hierarchical) for computing control
law needs initialization. Let V

0
(𝑡) = 𝑥

1𝑑
(𝑡); 𝜙
0
(𝑡) = 𝑥

1
(𝑡);

𝜙
1
(𝑡) = 𝑥

2
(𝑡); 𝑃
0
= 0; 𝐵

0
= 0; 𝐺

1
= 0; and taking the virtual

control V
1
sign(𝑞

0
(0)) then the submodel will be

𝑥̇
1
= 𝐵
1
𝜙
1
(𝑥
2
) = 𝐵
1
V
1
sign (𝑞

0
(0)) ;

𝑧
1
= V
0
sign (𝑞

0
(0)) − 𝜙

0
(𝑡)

= 𝑥
1𝑑
sign (𝑞

0
(0)) − 𝑥

1
(𝑡) ,

𝑧̇
1
= 𝑥̇
1𝑑
sign (𝑞

0
(0)) − 𝑥̇

1
(𝑡)

= 𝑥̇
1𝑑
sign (𝑞

0
(0)) − 𝐵

1
V
1
sign (𝑞

0
(0)) .

(72)

Let the model with the new variable control

𝑧̇
1
= 𝐴
1
𝑧
1
+ 𝐵
1
𝜉
1

(73)

with

𝐴
1
= 0 󳨐⇒

𝐵
1
𝜉
1
= 𝑥̇
1𝑑
sign (𝑞

0
(0)) − 𝐵

1
V
1
sign (𝑞

0
(0)) .

(74)

Taking

𝐿
1
=
1

2
𝑧
𝑇

1
𝑄
1
𝑧
1
+
1

2
𝜉
𝑇

1
𝑅
1
𝜉
1
+
1

2
𝑧
𝑇

1
𝑃
1
𝐵
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1
,

Φ
1
=
1

2
𝑧
𝑇

1
𝑃
1
𝑧
1

(75)

the Hamiltonian will be for this case

𝐻
1
=
1

2
𝑧
𝑇

1
𝑄
1
𝑧
1
+
1

2
𝜉
𝑇

1
𝑅
1
𝜉
1
+ 𝜆
𝑇

1
(𝐵
1
𝜉
1
) ,

Φ
1
(𝑧
1
, 𝑡) =

1

2
𝑧
𝑇

1
𝑃
1
𝑧
1
;

(76)

applying the optimality conditions:

𝜆̇
1
= −(

𝜕𝐻
1

𝜕𝑞
𝑒V
)

𝑇

= −𝑄
1
𝑧
1
, (77)

𝜆
1
=
𝜕Φ
1
(𝑧
1
, 𝑡)

𝜕𝑧
1

= 𝑃
1
𝑧
1

(78)

control law is deduced from Hamiltonian equation which
reflects the𝐻

∞
control law (optimality condition):

𝜕𝐻
1

𝜕𝜉
1

= 0 󳨐⇒

𝑅
1
𝜉
1
+ 𝐵
𝑇

1
𝜆
1
= 0 󳨐⇒

𝜉
1
= −𝑅
−1

1
𝐵
𝑇

1
𝜆
1
= −𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1

(79)

for 𝑥
1𝑑
= [0, 0, 0]

𝑇;

𝜉
1
= 𝑅
−1

1
𝐸
𝑇

1
𝑃
1
𝑞
𝑒V; (80)



8 Mathematical Problems in Engineering

differentiating (78) and comparing with (77) lead to

𝑃̇
1
𝑧
1
= −𝑃
1
(𝐵
1
(−𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1
)) − 𝑄

1
𝑧
1
; (81)

the Riccati equation became

−𝑃̇
1
= −𝑃
1
𝐸
1
𝑅
−1

1
𝐸
𝑇

1
𝑃
1
+ 𝑄
1

(82)

with 𝑄
1
being a symmetric matrix and 𝑅

1
being a diagonal

matrix; then the control law 𝜉
1
is calculated as

𝐵
1
𝜉
1
= 𝐵
1
𝑅
−1

1
𝐸
𝑇

1
𝑃
1
𝑞
𝑒V

= 𝑥̇
1𝑑
sign (𝑞

0
(0)) − 𝐵

1
V
1
sign (𝑞

0
(0)) ;

(83)

finally the control law V
1
is computed:

V
1
= −𝑅
−1

1
𝐸
−1

1
𝑅
−1

1
𝑃
1
𝑞V sign (𝑞0 (0)) . (84)

Step 2. Taking the second submodel

Ω̇aux = 𝐴2Ωaux + 𝐵2V + 𝐵22𝑤2,

𝑥̇
2
= 𝐴
2
𝑥
2
+ 𝐵
2
𝜙
2
+ 𝐵
22
𝑤
2
;

(85)

the model presented in 𝑧 variable form is

𝑧̇
2
= V̇
1
sign (𝑞

0
(0)) − 𝜙̇

1
= V̇
1
sign (𝑞

0
(0)) − 𝑥̇

2
,

𝑧̇
2
= V̇
1
sign (𝑞

0
(0)) − 𝐴

2
𝑥
2
− 𝐵
2
V
2
− 𝐵
22
𝑤
2
,

𝑧̇
2
= V̇
1
sign (𝑞

0
(0)) + 𝐴

2
(𝑧
2
− V
1
sign (𝑞

0
(0)))

− 𝐵
2
V
2
− 𝐵
22
𝑤
2
;

(86)

this equation can be written:

𝑧̇
2
= 𝐴
2
𝑧
2
+ 𝐵
2
𝜉
2
− 𝑃
−1

2
𝐵
𝑇

1
𝑃
1
𝑧
1

(87)

taking the worst case for 𝑤
2

𝑤
2
=
1

2𝛾
2

2

𝐵
𝑇

22
𝑃
2
𝑧
2 (88)

with

𝐵
2
𝜉
2
= −𝐵
2
V
2
+ V̇
1
sign (𝑞

0
(0)) − 𝐴

2
V
1
sign (𝑞

0
(0))

+ 𝑃
−1

2
𝐵
𝑇

1
𝑃
1
𝑧
1
−
1

2𝛾
2

2

𝐵
22
𝐵
𝑇

22
𝑃
2
𝑧
2
.

(89)

Let

Φ
2
=
1

2
𝑧
𝑇

1
𝑃
1
𝑧
1
+
1

2
𝑧
𝑇

2
𝑃
2
𝑧
2
; (90)

by recurrence the past 𝑧̇
1
is calculated:

𝑧̇
1
= 𝐵
1
𝑧
2
− 𝐵
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1
; (91)

the Hamiltonian will be

𝐻
2
=

2

∑

𝑖=1

1

2
𝑧
𝑇

𝑖
𝑄
𝑖
𝑧
𝑖
+
1

2
𝜉
𝑇

2
𝑅
2
𝜉
2
+
1

2
𝑧
𝑇

1
𝑃
1
𝐵
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1

−
1

4𝛾
2

2

𝑧
𝑇

2
𝑃
2
𝐵
22
𝐵
𝑇

22
𝑃
2
𝑧
2
+ 𝜆
𝑇

1
𝑧̇
1
+ 𝜆
𝑇

2
𝑧̇
2
,

𝐻
2
=
1

2
𝑧
𝑇

1
𝑄
1
𝑧
1
+
1

2
𝑧
𝑇

2
𝑄
2
𝑧
2
+
1

2
𝑧
𝑇

1
𝐵
1
𝑃
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1

−
1

4𝛾
2

2

𝑧
𝑇

2
𝑃
2
𝐵
22
𝐵
𝑇

22
𝑃
2
𝑧
2
+
1

2
𝜉
𝑇

2
𝑅
2
𝜉
2

+ 𝜆
𝑇

1
(𝐵
1
𝑧
2
− 𝐵
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1
)

+ 𝜆
𝑇

2
(𝐴
2
𝑧
2
+ 𝐵
2
𝜉
2
− 𝑃
−1

2
𝐵
𝑇

1
𝑃
1
𝑧
1
) .

(92)

Applying the optimality conditions for 𝜆̇
1
and 𝜆̇

2
will give

𝜆̇
1
= −𝑄
1
𝑧
1
− 𝑃
1
𝐵
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1
+ (𝐵
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
)
𝑇

𝜆
1

+ (𝑃
−1

2
𝐵
𝑇

1
𝑃
1
)
𝑇

𝜆
2
,

𝜆̇
1
= −𝑄
1
𝑧
1
+ 𝑃
1
𝐵
1
𝑧
2
,

𝜆̇
2
= −𝑄
2
𝑧
2
− 𝐴
𝑇

2
𝑃
2
𝑧
2
− 𝑃
1
𝑧
1
−
1

2𝛾
2

2

𝑃
2
𝐵
22
𝐵
𝑇

22
𝑃
2
𝑧
2

(93)

knowing that

𝜆
1
=
𝜕Φ
2

𝜕𝑧
1

= 𝑃
1
𝑧
1
,

𝜆
2
=
𝜕Φ
2

𝜕𝑧
2

= 𝑃
2
𝑧
2
;

(94)

then the control law is deduced from Hamiltonian equation
(optimality condition):

𝜕𝐻
2

𝜕𝜉
2

= 0; (95)

then

𝜕𝐻
2

𝜕𝜉
2

= 0 󳨐⇒

𝑅
2
𝜉
2
+ 𝐵
𝑇

2
𝜆
2
= 0 󳨐⇒

𝜉
2
= −𝑅
−1

2
𝐵
𝑇

2
𝑃
2
𝑧
2
;

(96)

hence

𝜆̇
1
= 𝑃
1
𝑧̇
1
+ 𝑃̇
1
𝑧
1
= −𝑄
1
𝑧
1
+ 𝑃
1
𝐵
1
𝑧
2
,

𝑃̇
1
𝑧
1
= −𝑄
1
𝑧
1
+ 𝑃
1
𝐵
1
𝑧
2
− 𝑃
1
(𝐵
1
𝑧
2
− 𝐵
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
𝑧
1
)

−𝑃̇
1
= −𝑃
1
𝐵
1
𝑅
−1

1
𝐵
𝑇

1
𝑃
1
+ 𝑄
1
.
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Similarly,

𝜆̇
2
= 𝑃
2
𝑧̇
2
+ 𝑃̇
2
𝑧
2

= −𝑄
2
𝑧
2
− 𝐴
𝑇

2
𝑃
2
𝑧
2
− 𝐵
𝑇

1
𝑃
1
𝑧
1

−
1

2𝛾
2

2

𝑃
2
𝐺
2
𝐺
𝑇

2
𝑃
2
𝑧
2
,

𝑃̇
2
𝑧
2
= −𝑄
2
𝑧
2
− 𝐴
𝑇

2
𝑃
2
𝑧
2
− 𝐵
𝑇

1
𝑃
1
𝑧
1

−
1

2𝛾
2

2

𝑃
2
𝐺
2
𝐺
𝑇

2
𝑃
2
𝑧
2

− 𝑃
2
(𝐴
2
𝑧
2
+ 𝐵
2
𝜉
2
− 𝑃
−1

2
𝐵
𝑇

1
𝑃
1
𝑧
1
) ,

𝑃̇
2
𝑧
2
= −𝑄
2
𝑧
2
− 𝐴
𝑇

2
𝑃
2
𝑧
2
− 𝐵
𝑇

1
𝑃
1
𝑧
1

−
1

2𝛾
2

2

𝑃
2
𝐺
2
𝐺
𝑇

2
𝑃
2
𝑧
2
− 𝑃
2
𝐴
2
𝑧
2

− 𝑃
2
𝐵
2
(−𝑅
−1

2
𝐵
𝑇

2
𝑃
2
𝑧
2
) + 𝑃
2
𝑃
−1

2
𝐵
𝑇

1
𝑃
1
𝑧
1
,

𝑃̇
2
𝑧
2
= −𝑄
2
𝑧
2
− 𝐴
𝑇

2
𝑃
2
𝑧
2
− 𝑃
2
𝐴
2
𝑧
2
+ 𝑃
2
𝐵
2
𝑅
−1

2
𝐵
𝑇

2
𝑃
2
𝑧
2

−
1

2𝛾
2

2

𝑃
2
𝐺
2
𝐺
𝑇

2
𝑃
2
𝑧
2
,

−𝑃̇
2
= 𝐴
𝑇

2
𝑃
2
+ 𝑃
2
𝐴
2

+ 𝑃
2
(
1

2𝛾
2

2

𝐺
2
𝐺
𝑇

2
− 𝐵
2
𝑅
−1

2
𝐵
𝑇

2
)𝑃
2
+ 𝑄
2

−𝑃̇
2
= 𝐴
𝑇

2
𝑃
2
+ 𝑃
2
𝐴
2
+ 𝑃
2
Γ
2
𝑃
2
+ 𝑄
2
.

(98)

Hence the Riccati equation is determined. 𝑄
2
is chosen to be

a symmetric matrix. So the control law is

𝐵
2
V
2
= 𝐵
2
𝑅
−1

2
𝐵
𝑇

2
𝑃
2
𝑧
2
+ V̇
1
sign (𝑞

0
(0))

− 𝐴
2
V
1
sign (𝑞

0
(0)) + 𝑃

−1

2
𝐵
𝑇

1
𝑃
1
𝑧
1

−
1

2𝛾
2

2

𝐵
22
𝐵
𝑇

22
𝑃
2
𝑧
2
;

(99)

in other way

𝑧
2
= V
1
sign (𝑞

0
(0)) − 𝑥

2
,

𝑧
2
= V
1
sign (𝑞

0
(0)) − Ωaux.

(100)

So

V
2
= 𝑅
−1

2
𝐽
−1

𝑃
2
(V
1
sign (𝑞

0
(0)) − Ωaux)

+ 𝐽 (V̇
1
sign (𝑞

0
(0)) − 𝐴

2
V
1
sign (𝑞

0
(0)))

⋅ 𝐽 (−𝑃
−1

2
𝐽
−1

𝑃
1
𝑞V sign (𝑞0 (0)))

− 𝐽(
1

2𝛾
2

2

𝐵
22
𝐵
𝑇

22
𝑃
2
V
1
sign (𝑞

0
(0)) + Ωaux) ;

(101)
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Figure 1: Quaternion error (Case 1).
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Figure 2: Angular velocity (Case 1).

replacing𝐴
2
by its value the real control𝑢 is finally computed:

𝐴
2
= −𝐽
−1

𝑆 (Ωaux) 𝐽 − 𝐽
−1

𝑆 (Ω
∗

𝑑
) 𝐽,

𝑢 = V
2
+ 𝑆 (Ωaux) 𝐽Ω

∗

𝑑
+ 𝑆 (Ω

∗

𝑑
) 𝐽Ω
∗

𝑑

+ 𝐽𝑆
𝑇

(Ω) 𝑅
𝑇

(𝑄
𝑒
)Ω
𝑑
+ 𝐽𝑅
𝑇

(𝑄
𝑒
) Ω̇
𝑑
.

(102)

4. Simulation Results

The parameters of the model are 𝐽 = diag(0.0098, 0.0098,
0.0176), the parameters of the controller are 𝛾

2
= 150, 𝑅

1
=

0.1𝐼
3×3

, 𝑅
2
= 0.03𝐼

3×3
, and 𝑄

1
= 𝑄
2
= 𝐼
3×3

. Note the
quaternion can be represented as 𝑞

0
(𝑡) = cos(𝜙), 𝑞⃗V(𝑡) =

⃗𝑒 sin(𝜙), and hence the initial location can be easily seen
through 𝜙(0).

Case 1. Let the initial condition of the quaternion error be
𝑄
𝑒0
= (0.8224, 0.2226, 0.4397, 0.3604)

𝑇, which corresponds
to an angle 𝜙(0) = 34.67

∘; the matrices 𝑃
1
and 𝑃

2
are

computed through Riccati equation and 𝛾
2
is chosen to

achieve good performances. For that case 𝑞
0
(0) > 0 and

will be stabilized to 1. Figures 1, 2, and 3 show the attitude
responses and the control inputs, which gives a convergence
in short time. These results are nearby the normal reflect
when analyzing the initial location of 𝜙 which lies in the first
quadrant.



10 Mathematical Problems in Engineering

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0
0.05

−0.05

−0.1

−0.15

−0.2

−0.25

−0.3

−0.35

−0.4

−0.45

U
 (N

m
)

Time (sec)

u1
u2

u3

Figure 3: Control input (Case 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

Temps (sec)

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7

−0.8

−0.9

−1

q0
q1

q2
q3

Q
e
(t
)

Figure 4: Quaternion error (Case 2).
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Case 2. Taking an initial condition of the quaternion error
𝑄
𝑒0

= (−0.02226, −0.8224, −0.3604, −0.4397)
𝑇, and 𝜙 =

91.34
∘, this case will give 𝑞

0
(0) < 0 and simulation under

closed loop control shows stabilization of 𝑞
0
(0) to −1. This

is confirmed by Figures 4, 5, and 6; this will emphasize the
fact of 𝜙(0) which lies in the second quadrant.
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Figure 6: Control input (Case 2).

5. Conclusion

A hierarchical 𝐻
∞
/backstepping controller is proposed and

theory to derive control law is developed. This combination
will emphasize not only the robustness performance but
also the choice of the adaptation matrix. The local stabi-
lizability/detectability conditions are thus ensured by the
existence of the proper solutions of the unperturbed Riccati
equations. Theoretical results are supported by numerical
simulations that demonstrate efficiency of the proposed con-
troller design. Further investigation is focused onhierarchical
observer/controller.
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