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This paper addresses the stabilization conditions for neutral systems with mixed time delays. By constructing a novel class of
Lyapunov functionals which contains an augmented Lyapunov functional, using a new class of improved Jensen’s like inequalities,
two improved delay-dependent stability criteria are firstly established. Next, state feedback controllers are designed according to
the stability conditions in different cases. Finally, five numerical examples are provided to demonstrate the theoretical results.

1. Introduction

It is well known that neutral systems are frequently encoun-
tered in various engineering systems, including population,
ecology, distributed networks containing lossless transmis-
sion lines, heat exchangers, and repetitive control. A neutral
time-delay system is a special delay system which contains
delays both in its state and in its derivatives of state. And
the delay in the derivative of state is always called neutral
delay, while the delay in the state without derivative is discrete
delay. Generally speaking, discrete delay is independent of
the neutral delay in neutral delay systems, which means
discrete delay is not always equal to neutral delay. In fact,
both neutral delay and discrete delay are one kind of time
delays in delay systems. In the past two decades, a great
deal of attention has been drawn to the delay-dependent
stability problem of neutral dynamical systems (see, e.g., [1–
33]). Various important methods have been introduced to
obtain the delay-dependent stability conditions for neutral
systems, such as model transformation approach [3], delay
partitioning technique [4], discretized Lyapunov functional
method [6], free-weighting matrix approach [7, 8], and
integral inequalitymethod [9].With this approach, better and
better delay-dependent stability conditions are presented one
by one, such as [6, 12, 17] and the references cited therein.
Many controller designs are also provided in [13, 34, 35]

and so on. Among those techniques to get stabilization for
neutral systems, Jensen’s like inequality has played an impor-
tant role in obtaining delay-dependent stability conditions
[10].

However, Jensen’s like inequality inevitably introduces
an undesirable conservatism and improving it is always an
open problem [11]. It has been improved in [11] which dealt
with single integral terms. Recently, a new multiple integral
inequality was introduced following a similar line as in proof
of the Jensen inequality in [12], and a novel delay-dependent
stability criterion was established, which has unfortunately
observed that the computational burden is slightly heavy.
Actually, [13] observed that the upper bounds of double
integral terms should also be estimated if triple integral
terms are introduced in the Lyapunov-Krasovskii functional
to obtain less conservative conditions. Based on theWirtinger
inequality, [14] improved the double Jensen’s like double
integral, and a double integral form of the Wirtinger-based
integral was introduced. However, they did not consider the
derivative of the integrand directly. We may get another dou-
ble integral inequality if we consider this case of derivative.
Many articles also attempt to introduce less conservative
inequalities [15, 16]. Very recently, [27] presented a new
class of inequalities, which produce tighter bounds than
what the Jensen inequality produces. These new inequalities
will play a key role in the field of stability analysis for
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less conservativeness of delay-dependent stabilization results.
This motivates our paper.

In this paper, we investigate the conventional neutral
systems to obtain delay-dependent stability and controller
design criteria. The rest of the paper is organized as follows.
In Section 2, we formulate the problem and the new class
of inequalities are provided. In Section 3, the stability and
stabilization conditions for neutral systems with mixed delay
are presented. The sufficient conditions are formed in terms
of LMIs, which can be easily calculated by Matlab control
toolbox [25]. Many cases are compared in the tables based
on the conventional numerical examples, which are used to
show the validity and less conservativeness of our approach
in Section 4. The paper is concluded by Section 5.

2. Problem Statement and Preliminaries

In this paper, we will reconsider the stabilization conditions
for the following neutral control system with mixed time
delays:

�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ) + 𝐷𝑢 (𝑡) ,

𝑥 (𝑡

0
+ 𝜃) = 𝜑 (𝜃) , ∀𝜃 ∈ [−𝜌, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control
input, and 𝑢(𝑡) = 𝐾𝑥(𝑡), 𝜏, and ℎ are time delays, 𝜌 =

max{𝜏, ℎ}, and 𝜑(𝜃) is the initial condition function. 𝐴, 𝐵, 𝐶
are knownmatrices and𝐾 is unknownmatrix to be designed.
In this paper, we always assume that the spectral radius of 𝐶
is less than 1.

As is well known, inequalities and Lyapunov functionals
are both important to improve the delay-dependent stabiliza-
tion condition for neutral control systems with mixed time
delays. Before presenting the main results, we first state the
following lemma which is novelty and will be used in the
proof of our main results.

Lemma 1 (see [27]). For a positive definite matrix 𝑅 > 0 and
a differentiable function {𝑥(𝑢) | 𝑢 ∈ [𝑎, 𝑏]}, the following
inequalities hold:

∫

𝑏

𝑎

𝑥

𝑇
(𝛼) 𝑅𝑥 (𝛼) 𝑑𝛼

≥

1

𝑏 − 𝑎

(∫

𝑏

𝑎

𝑥 (𝛼) 𝑑𝛼)

𝑇

𝑅(∫

𝑏

𝑎

𝑥 (𝛼) 𝑑𝛼)

+

3

𝑏 − 𝑎

Ω

𝑇

1
𝑅Ω

1
,

(2)

∫

𝑏

𝑎

�̇�

𝑇
(𝛼) 𝑅�̇� (𝛼) 𝑑𝛼

≥

1

𝑏 − 𝑎

Ω

𝑇

2
𝑅Ω

2
+

3

𝑏 − 𝑎

Ω

𝑇

3
𝑅Ω

3
+

5

𝑏 − 𝑎

Ω

𝑇

4
𝑅Ω

4
,

(3)

∫

𝑏

𝑎

∫

𝑏

𝛽

�̇�

𝑇
(𝛼) 𝑅�̇� (𝛼) 𝑑𝛼 𝑑𝛽 ≥ 2Ω

𝑇

5
𝑅Ω

5
+ 4Ω

𝑇

6
𝑅Ω

6
, (4)

where

Ω

1
= ∫

𝑏

𝑎

𝑥 (𝛼) 𝑑𝛼 −

2

(𝑏 − 𝑎)

∫

𝑏

𝑎

∫

𝑏

𝛽

𝑥𝛼𝑑𝛼𝑑𝛽,

Ω

2
= 𝑥 (𝑏) − 𝑥 (𝑎) ,

Ω

3
= 𝑥 (𝑏) + 𝑥 (𝑎) −

2

𝑏 − 𝑎

∫

𝑏

𝑎

𝑥 (𝛼) 𝑑𝛼,

Ω

4
= 𝑥 (𝑏) − 𝑥 (𝑎) +

6

𝑏 − 𝑎

∫

𝑏

𝑎

𝑥 (𝛼) 𝑑𝛼

−

12

(𝑏 − 𝑎)

2
∫

𝑏

𝑎

∫

𝑏

𝛽

𝑥𝛼𝑑𝛼𝑑𝛽,

Ω

5
= 𝑥 (𝑏) −

1

𝑏 − 𝑎

∫

𝑏

𝑎

𝑥 (𝛼) 𝑑𝛼,

Ω

6
= 𝑥 (𝑏) +

2

𝑏 − 𝑎

∫

𝑏

𝑎

𝑥 (𝛼) 𝑑𝛼

−

6

(𝑏 − 𝑎)

2
∫

𝑏

𝑎

∫

𝑏

𝛽

𝑥 (𝛼) 𝑑𝛼 𝑑𝛽.

(5)

Remark 2. In fact, [27] introducedmany novelty inequalities.
For our purpose for stability analysis, we introduced some of
the most important inequalities for our article. One can refer
to the other inequalities in [27] and learn the proof of these
novelty inequalities, which produce tighter bounds than the
Jensen inequality.

Remark 3. Actually, with simple computation, inequality (4)
of Lemma 1 can be easily transformed into the form of LMI
which can be used thereafter in this paper as follows:

∫

𝑎

𝑏

∫

𝑏

𝛽

�̇�

𝑇
(𝛼) 𝑅�̇� (𝛼) 𝑑𝛼 𝑑𝛽 ≥ 6Ω

𝑇
RΩ, (6)

where

R = (

𝑅 𝑅 −4𝑅

⋆ 3𝑅 −8𝑅

⋆ ⋆ 24𝑅

) ,

Ω

𝑇
= (𝑥

𝑇
(𝑡) ,

1

𝑏 − 𝑎

∫

𝑏

𝑎

𝑥

𝑇
(𝛼) 𝑑𝛼,

1

(𝑏 − 𝑎)

2

⋅ ∫

𝑏

𝑎

∫

𝑏

𝛽

𝑥

𝑇
(𝛼) 𝑑𝛼 𝑑𝛽) .

(7)

3. Main Result

In this section, we will firstly introduce the delay-dependent
stability conditions for system (1) in different case. By con-
structing a new class of Lyapunov functionals and usingmany
inequalities which were introduced in Lemma 1, some much
better delay-dependent stability conditions are obtained.
And, then, based on the obtained delay-dependent stability
conditions, the state feedback controllers for system (1) are
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designed by the optimization technique. We are now in a
position to derive all the conditions as follows.

Theorem 4. System (1) with 𝑢(𝑡) = 0 is asymptotically stable
if there exist positive definite matrices 𝑃, 𝑊

1
, 𝑊
2
, 𝑄
1
, 𝑄
2
, 𝑅
1
,

𝑅

2
, symmetric matrices 𝑌

𝑖𝑖
, 𝑍
𝑖𝑖
(𝑖 = 1, 2, 3, 4), 𝑅

11
, 𝑅
22
, and

any matrices 𝑌
𝑖𝑗
, 𝑍
𝑖𝑗
(𝑖 ̸= 𝑗 ∈ 1, 2, 3, 4),R

2×2
with appropriate

dimensions satisfying the following linear matrix inequalities:

Ψ

6×6
> 0, (8)

(

𝜑

8×8
Λ

𝑇

1

⋆ −𝑆

) < 0, (9)

where

Ψ

11
= 𝑃 + 𝑌

11
+ 𝑍

11
+

4

𝜏

𝑅

22
+ 6ℎ𝑊

2
+ 6𝜏𝑊

1
+

3ℎ

2

𝑅

2

+

3𝜏

2

𝑅

1
,

Ψ

12
= 𝑌

12
+ 𝑍

12
+

2

𝜏

𝑅

22
,

Ψ

13
= 𝜏𝑌

13
− 2𝑅

𝑇

12
−

6

𝜏

𝑅

22
+ 6𝜏𝑊

1
,

Ψ

14
= 6ℎ𝑊

2
+ 𝜏

2
𝑍

13
,

Ψ

15
= 6𝑅

𝑇

12
− 24𝜏𝑊

1
− 3𝜏𝑅

1
+ ℎ𝑌

14
,

Ψ

16
= −24ℎ𝑊

2
− 3ℎ𝑅

2
+ ℎ

2
𝑍

14
,

Ψ

22
= 𝑌

22
+ 𝑍

22
+

4

𝜏

𝑅

22
,

Ψ

23
= 𝜏𝑌

23
− 4𝑅

𝑇

12
−

6

𝜏

𝑅

22
,

Ψ

24
= 𝜏

2
𝑍

23
,

Ψ

25
= 6𝑅

𝑇

12
+ ℎ𝑌

24
,

Ψ

26
= ℎ

2
𝑍

24
,

Ψ

33
= 4𝜏𝑄

1
+ 4𝜏𝑅

11
+

12

𝜏

𝑅

22
+ 6𝑅

12
+ 6𝑅

𝑇

12
+ 18𝜏𝑊

1

+ 𝜏

2
𝑌

33
,

Ψ

35
= −6𝜏𝑄

1
− 2𝜏 (3𝑅

11
+

6

𝜏

𝑅

𝑇

12
) − 48𝜏𝑊

1
+ ℎ𝜏𝑌

34
,

Ψ

44
= 4ℎ𝑄

2
+ 18ℎ𝑊

2
+ 𝜏

4
𝑍

33
,

Ψ

46
= −6ℎ𝑄

2
− 48ℎ𝑊

2
+ ℎ

2
𝜏

2
𝑍

34
,

Ψ

55
= 12𝜏𝑄

1
+ 12𝜏𝑅

11
+ 144𝜏𝑊

1
+ 6𝜏𝑅

1
+ ℎ

2
𝑌

44
,

Ψ

66
= 12ℎ𝑄

2
+ 144ℎ𝑊

2
+ 6ℎ𝑅

2
+ ℎ

4
𝑍

44
,

Λ

1
= [𝑆𝐴 0 𝑆𝐵 𝑆𝐶 0 0 0 0] ,

𝜑

11
= 𝑄

1
+ 𝑄

2
− 6𝑅

1
+ 𝑅

11
− 6𝑅

2
− 9𝑊

1
− 9𝑊

2
+ 𝑌

13

+ 𝑌

𝑇

13
+ 𝑌

14
+ 𝑌

𝑇

14
+ ℎ𝑍

14
+ ℎ𝑍

𝑇

14
+ 𝜏𝑍

13

+ 𝜏𝑍

𝑇

13
+ 𝑃𝐴 + 𝐴

𝑇
𝑃 + 𝑌

11
𝐴 + 𝐴

𝑇
𝑌

𝑇

11

+ 𝑍

11
𝐴 + 𝐴

𝑇
𝑍

𝑇

11
+ 𝑅

12
𝐴 + 𝐴

𝑇
𝑅

𝑇

12
,

𝜑

12
= 𝑌

𝑇

23
− 𝑌

13
+ 3𝑊

1
+ 𝑌

𝑇

24
+ 𝐴

𝑇
𝑌

12
+ 𝐴

𝑇
𝑍

12

+ ℎ𝑍

𝑇

24
+ 𝜏𝑍

𝑇

23
,

𝜑

13
= 3𝑊

2
− 𝑌

14
+ 𝑅

12
𝐵 + 𝑃𝐵 + 𝑌

11
𝐵 + 𝑍

11
𝐵,

𝜑

22
= −𝑄

1
− 𝑅

11
− 9𝑊

1
− 𝑌

23
− 𝑌

𝑇

23
,

𝜑

23
= 𝑌

𝑇

12
𝐵 − 𝑌

24
+ 𝑍

𝑇

12
𝐵,

𝜑

33
= −9𝑊

2
− 𝑄

2
,

𝜑

14
= 𝑌

12
+ 𝑍

12
+ 𝑅

12
𝐶 + 𝑃𝐶 + 𝑌

11
𝐶 + 𝑍

11
𝐶,

𝜑

24
= 𝑌

22
− 𝑅

12
+ 𝑍

22
+ 𝑌

𝑇

12
𝐶 + 𝑍

𝑇

12
𝐶,

𝜑

44
= −𝑅

22
,

𝜑

15
= 𝜏𝑌

33
+ 𝜏𝑌

𝑇

34
+ 𝜏𝐴

𝑇
𝑌

13
− 24𝑊

1
− 𝜏𝑍

13
− 6𝑅

1
,

𝜑

25
= 36𝑊

1
− 𝜏𝑌

33
− 𝜏𝑍

23
,

𝜑

35
= −𝜏 (𝑌

𝑇

34
− 𝐵

𝑇
𝑌

13
) ,

𝜑

45
= 𝜏 (𝑌

23
+ 𝐶

𝑇
𝑌

13
) ,

𝜑

55
= −18𝑅

1
− 192𝑊

1
,

𝜑

16
= ℎ (𝑌

34
+ 𝑌

44
+ 𝐴

𝑇
𝑌

14
) − 24𝑊

2
− ℎ𝑍

14
− 6𝑅

2
,

𝜑

26
= −ℎ𝑌

34
− ℎ𝑍

24
,

𝜑

36
= 36𝑊

2
− ℎ (𝑌

44
− 𝐵

𝑇
𝑌

14
) ,

𝜑

46
= ℎ (𝑌

24
+ 𝐶

𝑇
𝑌

14
) ,

𝜑

66
= −18𝑅

2
− 192𝑊

2
,

𝜑

17
= 24𝑅

1
+ 60𝑊

1
+ 𝜏

2
(𝐴

𝑇
𝑍

13
+ 𝜏𝑍

33
+ ℎ𝑍

𝑇

34
) ,

𝜑

27
= −60𝑊

1
,

𝜑

37
= 𝜏

2
𝐵

𝑇
𝑍

13
,

𝜑

47
= 𝜏

2
(𝑍

23
+ 𝐶

𝑇
𝑍

13
) ,

𝜑

57
= 48𝑅

1
+ 360𝑊

1
− 𝜏

3
𝑍

33
,

𝜑

67
= −ℎ𝜏

2
𝑍

𝑇

34
,

𝜑

77
= −144𝑅

1
− 720𝑊

1
,

𝜑

18
= 24𝑅

2
+ 60𝑊

2
+ ℎ

2
(𝐴

𝑇
𝑍

14
+ ℎ𝑍

44
+ 𝜏𝑍

34
) ,
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𝜑

38
= ℎ

2
𝐵

𝑇
𝑍

14
− 60𝑊

2
,

𝜑

48
= ℎ

2
(𝑍

24
+ 𝐶

𝑇
𝑍

14
) ,

𝜑

58
= −𝜏ℎ

2
𝑍

34
,

𝜑

68
= 48𝑅

2
+ 360𝑊

2
− ℎ

3
𝑍

44
,

𝜑

88
= −144𝑅

2
− 720𝑊

2
,

𝑆 = 𝑅

22
+

𝜏

2

2

𝑅

1
+

ℎ

2

2

𝑅

2
+ 𝜏

2
𝑊

1
+ ℎ

2
𝑊

2
.

(10)

Proof. Construct a Lyapunov functional candidate as

𝑉 (𝑥

𝑡
, 𝑡) =

5

∑

𝑖=1

𝑉

𝑖
(𝑥

𝑡
, 𝑡) , (11)

with

𝑉

1
= 𝑥

𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

𝑉

2
= ∫

𝑡

𝑡−𝜏

𝑥

𝑇
(𝑠) 𝑄

1
𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−ℎ

𝑥

𝑇
(𝑠) 𝑄

2
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏

(

𝑥 (𝑠)

�̇� (𝑠)

)

𝑇

R(

𝑥 (𝑠)

�̇� (𝑠)

) 𝑑𝑠,

𝑉

3
= ∫

𝑡

𝑡−𝜏

∫

𝑡

𝛽

�̇�

𝑇
(𝛼) (𝜏𝑊1

) �̇� (𝛼) 𝑑𝛼 𝑑𝛽

+ ∫

𝑡

𝑡−ℎ

∫

𝑡

𝛽

�̇�

𝑇
(𝛼) (ℎ𝑊

2
) �̇� (𝛼) 𝑑𝛼 𝑑𝛽,

𝑉

4
= ∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃

∫

𝑡

𝜆

�̇�

𝑇
(𝑠) 𝑅1

�̇� (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃

+ ∫

𝑡

𝑡−ℎ

∫

𝑡

𝜃

∫

𝑡

𝜆

�̇�

𝑇
(𝑠) 𝑅

2
�̇� (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃,

𝑉

5
= 𝐺

𝑇

1
𝑍𝐺

1
+ 𝐺

𝑇

2
𝑌𝐺

2
,

(12)

where 𝑌 and 𝑍 are 4-order matrices with their elements 𝑌
𝑖𝑗
,

𝑍

𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3, 4) expressed inTheorem 4.

𝐺

1
=

(

(

(

𝑥(𝑡)

𝑥 (𝑡 − 𝜏)

∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

∫

𝑡

𝑡−ℎ

∫

𝑡

𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

)

)

)

,

𝐺

2
=

(

(

(

𝑥(𝑡)

𝑥 (𝑡 − 𝜏)

∫

𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

)

)

)

.

(13)

For the sake of convenience, we set 𝑒
𝑖

∈ R8𝑛×𝑛 (𝑖 =

1, . . . , 8) as elementary matrices; for example, 𝑒

𝑇

2
=

[0 𝐼 0 0 0 0 0 0], and let

𝑒

0
= 𝐴𝑒

1
+ 𝐵𝑒

3
+ 𝐶𝑒

4
,

𝜉

𝑇
= (𝑥

𝑇
(𝑡) , 𝑥

𝑇
(𝑡 − 𝜏) , 𝑥

𝑇
(𝑡 − ℎ) , �̇�

𝑇
(𝑡 − 𝜏) ,

1

𝜏

⋅ ∫

𝑡

𝑡−𝜏

𝑥

𝑇
(𝑠) 𝑑𝑠,

1

ℎ

∫

𝑡

𝑡−ℎ

𝑥

𝑇
(𝑠) 𝑑𝑠,

1

𝜏

2

⋅ ∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃

𝑥

𝑇
(𝑠) 𝑑𝑠 𝑑𝜃,

1

ℎ

2
∫

𝑡

𝑡−ℎ

∫

𝑡

𝜃

𝑥

𝑇
(𝑠) 𝑑𝑠 𝑑𝜃) .

(14)

First, with Lemma 1, the Lyapunov functionals𝑉
2
and 𝑉

3
can

be scaled as

𝑉

2
≥ 𝜉

𝑇
× {𝜏𝑒

𝑇

5
𝑄

1
𝑒

5
+ 3𝜏 (𝑒

5
− 2𝑒

7
)

𝑇
𝑄

1
(𝑒

5
− 2𝑒

7
)

+ ℎ𝑒

𝑇

6
𝑄

2
𝑒

6
+ 3ℎ (𝑒

6
− 2𝑒

8
)

𝑇
𝑄

2
(𝑒

6
− 2𝑒

8
)

+

1

𝜏

[𝜏𝑒

𝑇

5
𝑒

𝑇

1
− 𝑒

𝑇

2
]R [𝜏𝑒

𝑇

5
𝑒

𝑇

1
− 𝑒

𝑇

2
]

𝑇

+

3

𝜏

[𝜏𝑒

𝑇

5
− 2𝜏𝑒

𝑇

7
−𝑒

𝑇

1
− 𝑒

𝑇

2
+ 2𝑒

𝑇

5
]R

× [𝜏𝑒

𝑇

5
− 2𝜏𝑒

𝑇

7
−𝑒

𝑇

1
− 𝑒

𝑇

2
+ 2𝑒

𝑇

5
]

𝑇

} × 𝜉,

𝑉

3
≥ 𝜉

𝑇
× {2𝜏 (𝑒

1
− 𝑒

5
)

𝑇
𝑊

1
(𝑒

1
− 𝑒

5
)

+ 4𝜏 (𝑒

1
+ 2𝑒

5
− 6𝑒

7
)

𝑇
𝑊

1
(𝑒

1
+ 2𝑒

5
− 6𝑒

7
)

+ 2ℎ (𝑒

1
− 𝑒

6
)

𝑇
𝑊

2
(𝑒

1
− 𝑒

6
)

+ 4ℎ (𝑒

1
+ 2𝑒

6
− 6𝑒

8
)

𝑇
𝑊

2
(𝑒

1
+ 2𝑒

6
− 6𝑒

8
)} 𝜉.

(15)

Following the same line to prove the conventional Jensen
inequality [9], 𝑉

4
can be bounded as

𝑉

4
≥ 𝜉

𝑇
× {

6

𝜏

3
(

𝜏

2

2

𝑒

1
− 𝜏

2
𝑒

7
)

𝑇

𝑅

1
(

𝜏

2

2

𝑒

1
− 𝜏

2
𝑒

7
)

+

6

ℎ

3
(

ℎ

2

2

𝑒

1
− ℎ

2
𝑒

8
)

𝑇

𝑅

2
(

ℎ

2

2

𝑒

1
− ℎ

2
𝑒

8
)}𝜉.

(16)

On the other hand, 𝑉
1
and 𝑉

5
can be presented as

𝑉

1
= 𝜉

𝑇
𝑒

𝑇

1
𝑃𝑒

1
𝜉,

𝑉

5
= 𝜉

𝑇
× {[𝑒

𝑇

1
𝑒

𝑇

2
𝜏

2
𝑒

𝑇

7
ℎ

2
𝑒

𝑇

8
]

𝑇

× 𝑍

× [𝑒

𝑇

1
𝑒

𝑇

2
𝜏

2
𝑒

𝑇

7
ℎ

2
𝑒

𝑇

8
]

+ [𝑒

𝑇

1
𝑒

𝑇

2
𝜏𝑒

𝑇

5
ℎ𝑒

𝑇

6
]

𝑇

𝑌 [𝑒

𝑇

1
𝑒

𝑇

2
𝜏𝑒

𝑇

5
ℎ𝑒

𝑇

6
]} 𝜉.

(17)

From (15) to (17), we can get that

𝑉 ≥ 𝜉

𝑇

1
Ψ𝜉

1
, (18)

where



Mathematical Problems in Engineering 5

𝜉

𝑇

1
= (

𝑥

𝑇
(𝑡) , 𝑥

𝑇
(𝑡 − 𝜏) ,

1

𝜏

∫

𝑡

𝑡−𝜏

𝑥

𝑇
(𝑠) 𝑑𝑠,

1

ℎ

∫

𝑡

𝑡−ℎ

𝑥

𝑇
(𝑠) 𝑑𝑠,

1

𝜏

2
∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃

𝑥

𝑇
(𝑠) 𝑑𝑠 𝑑𝜃,

1

ℎ

2
∫

𝑡

𝑡−ℎ

∫

𝑡

𝜃

𝑥

𝑇
(𝑠) 𝑑𝑠 𝑑𝜃

) . (19)

According to inequality (8), functional (11) is positive definite.
Then, the time derivative of 𝑉(𝑡) along the trajectories of (1)
can be firstly computed as follows:

̇

𝑉 (𝑥

𝑡
, 𝑡) =

5

∑

𝑖=1

̇

𝑉

𝑖
(𝑥

𝑡
, 𝑡) , (20)

with

̇

𝑉

1
= 2𝑥

𝑇
(𝑡) 𝑃 [𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ) + 𝐶�̇� (𝑡 − ℎ)]

= 2𝜉

𝑇
𝑒

𝑇

1
𝑃𝑒

0
𝜉,

̇

𝑉

2
= 𝑥

𝑇
(𝑡) (𝑄

1
+ 𝑄

2
) 𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − 𝜏)𝑄

1
𝑥 (𝑡 − 𝜏)

− 𝑥

𝑇
(𝑡 − ℎ)𝑄

2
𝑥 (𝑡 − ℎ) + (

𝑥 (𝑡)

�̇� (𝑡)

)

𝑇

R(

𝑥 (𝑡)

�̇� (𝑡)

)

− (

𝑥 (𝑡 − 𝜏)

�̇� (𝑡 − 𝜏)

)

𝑇

R(

𝑥 (𝑡 − 𝜏)

�̇� (𝑡 − 𝜏)

)

𝑇

= 𝜉

𝑇
[

[

(

𝑒

1

𝑒

0

)

𝑇

R(

𝑒

1

𝑒

0

) − (

𝑒

2

𝑒

4

)

𝑇

R(

𝑒

2

𝑒

4

)

+ 𝑒

𝑇

1
(𝑄

1
+ 𝑄

2
) 𝑒

1
− 𝑒

𝑇

2
𝑄

1
𝑒

2
− 𝑒

𝑇

3
𝑄

2
𝑒

3
]

]

𝜉,

̇

𝑉

3
= 𝜉

𝑇
[𝑒

𝑇

0
(𝜏

2
𝑊

1
+ ℎ

2
𝑊

2
) 𝑒

0
] 𝜉

− 𝜏∫

𝑡

𝑡−𝜏

�̇�

𝑇
(𝑠)𝑊

1
�̇� (𝑠) 𝑑𝑠

− ℎ∫

𝑡

𝑡−ℎ

�̇�

𝑇
(𝑠)𝑊

2
�̇� (𝑠) 𝑑𝑠.

(21)

With Lemma 1, one can obtain that

̇

𝑉

3
≤ 𝜉

𝑇
[𝑒

𝑇

0
(𝜏

2
𝑊

1
+ ℎ

2
𝑊

2
) 𝑒

0
− (𝑒

1
− 𝑒

2
)

𝑇

⋅ 𝑊

1
(𝑒

1
− 𝑒

2
) − (𝑒

1
− 𝑒

3
)

𝑇
𝑊

2
(𝑒

1
− 𝑒

3
)

− 3 (𝑒

1
+ 𝑒

2
− 2𝑒

5
)

𝑇
𝑊

1
(𝑒

1
+ 𝑒

2
− 2𝑒

5
)

− 3 (𝑒

1
+ 𝑒

3
− 2𝑒

6
)

𝑇
𝑊

2
(𝑒

1
+ 𝑒

3
− 2𝑒

6
)

− 5 (𝑒

1
− 𝑒

2
+ 6𝑒

5
− 12𝑒

7
)

𝑇

⋅ 𝑊

1
(𝑒

1
− 𝑒

2
+ 6𝑒

5
− 12𝑒

7
)

− 5 (𝑒

1
− 𝑒

3
+ 6𝑒

6
− 12𝑒

8
)

𝑇

⋅ 𝑊

2
(𝑒

1
− 𝑒

3
+ 6𝑒

6
− 12𝑒

8
)] 𝜉,

̇

𝑉

4
= 𝜉

𝑇
[

1

2

𝑒

𝑇

0
(𝜏

2
𝑅

1
+ ℎ

2
𝑅

2
) 𝑒

0
] 𝜉

− ∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃

�̇�

𝑇
(𝑠) 𝑅

1
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

− ∫

𝑡

𝑡−ℎ

∫

𝑡

𝜃

�̇�

𝑇
(𝑠) 𝑅

2
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃.

(22)

By using inequality (6) for Lemma 1, one can see that

̇

𝑉

4
≤ 𝜉

𝑇
[

1

2

𝑒

𝑇

0
(𝜏

2
𝑅

1
+ ℎ

2
𝑅

2
) 𝑒

0

− (𝑒

𝑇

1
𝑒

𝑇

5
𝑒

𝑇

7
)𝐾

1
(𝑒

𝑇

1
𝑒

𝑇

5
𝑒

𝑇

7
)

𝑇

− (𝑒

𝑇

1
𝑒

𝑇

6
𝑒

𝑇

8
)𝐾

2
(𝑒

𝑇

1
𝑒

𝑇

6
𝑒

𝑇

8
)

𝑇

] 𝜉,

(23)

with

𝐾

1
= 6𝑅

1
(

1 1 −4

1 3 −8

−4 −8 24

) ,

𝐾

2
= 6𝑅

2
(

1 1 −4

1 3 −8

−4 −8 24

) ,

̇

𝑉

5
=

̇

𝐺

𝑇

1
𝑍𝐺

1
+ 𝐺

𝑇

1
𝑍

̇

𝐺

1
+

̇

𝐺

𝑇

2
𝑌𝐺

2
+ 𝐺

𝑇

2
𝑌

̇

𝐺

2

= 𝜉

𝑇
[2 (𝑒

𝑇

1
𝑒

𝑇

2
𝜏

2
𝑒

𝑇

7
ℎ

2
𝑒

𝑇

8
)

𝑇

⋅ 𝑍 (𝑒

𝑇

0
𝑒

𝑇

4
𝜏𝑒

𝑇

1
− 𝜏𝑒

𝑇

5
ℎ𝑒

𝑇

1
− ℎ𝑒

𝑇

6
)

𝑇

+ 2 (𝑒

𝑇

1
𝑒

𝑇

2
𝜏𝑒

𝑇

5
ℎ𝑒

𝑇

6
) 𝑌 (𝑒

𝑇

0
𝑒

𝑇

4
𝑒

𝑇

1
− 𝑒

𝑇

2
𝑒

𝑇

1
− 𝑒

𝑇

3
)

𝑇

]

⋅ 𝜉.

(24)

From (20) to (24), one can see that

̇

𝑉 = 𝜉

𝑇
(𝜑 + Λ

𝑇

1
𝑆

−1
Λ

1
) 𝜉 < 0. (25)

Using Schur’s complement lemma, it is obvious that
inequality (25) holds if condition (9) is satisfied inTheorem 4.
Accordingly, system (1) is asymptotically stable, which con-
cludes the proof.
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Remark 5. In the proof of this theorem, functional𝑉 is more
general than the existing results for considering much more
information about the state vector. In particular, 𝑉

5
is very

important to improve the delay-dependent stability condition
according tomany numerical experiments. First, the vector of
the augmented Lyapunov functional should contain 𝑥(𝑡 − 𝜏).
In other words, if one attempts to delete 𝑥(𝑡 − 𝜏) from 𝐺

1

or 𝐺
2
, the maximum of time delay may be less than those

of the original 𝑉
5
. Second, single integral of 𝜏 and ℎ should

be presented in 𝐺

1
at the same time; it is similar to double

integral in 𝐺

2
. More accurately, single integral and double

integral should not be put together in 𝐺
1
or 𝐺
2
. It is also very

important to use a new class of inequalities for improving
delay-dependent stability condition.

Remark 6. The considered neutral systems with constant
delays have been well studied so far with very rich literature.
However, we would obtain the best condition comapred to
the existing results based on the skillful combination of our
novelty constructed Lyapunov functionals and the new class
of inequalities.

When the neutral delay 𝜏 is equal to discrete delay ℎ,
following the same line of the proof for Theorem 4, we can
obtain the following theorem.

Theorem 7. System (1) with 𝑢(𝑡) = 0 and 𝜏 = ℎ is
asymptotically stable if there exist positive definite matrices
𝑃, 𝑊
2
, 𝑄
2
, 𝑅
2
, symmetric matrices 𝑌

𝑖𝑖
, 𝑍
𝑖𝑖
(𝑖 = 1, 2, 3), 𝑅

11
,

𝑅

22
, and any matrices 𝑌

𝑖𝑗
, 𝑍
𝑖𝑗
(𝑖 ̸= 𝑗 ∈ 1, 2, 3), R

2×2
with

appropriate dimensions satisfying the following linear matrix
inequalities:

Ψ

4×4
> 0,

(

𝜑

5×5
Λ

𝑇

2

⋆ −𝑆

) < 0,

(26)

where

Ψ

11
= 𝑃 + 𝑌

11
+ 𝑍

11
+ 6ℎ𝑊

2
+

4

ℎ

𝑅

22
+

3ℎ

2

𝑅

2
,

Ψ

12
= 𝑌

12
+ 𝑍

12
+

2

ℎ

𝑅

22
,

Ψ

13
= 6ℎ𝑊

2
− 2𝑅

𝑇

12
+ ℎ𝑌

13
−

6

ℎ

𝑅

22
,

Ψ

14
= 6𝑅

𝑇

12
− 24ℎ𝑊

2
+ ℎ

2
𝑍

13
−

3ℎ

2

𝑅

2
,

Ψ

22
= 𝑌

22
+ 𝑍

22
+

4

ℎ

𝑅

22
,

Ψ

23
= ℎ𝑌

23
− 4𝑅

𝑇

12
−

6

ℎ

𝑅

22
,

Ψ

24
= ℎ

2
𝑍

23
+ 6𝑅

𝑇

12
,

Ψ

33
= 4ℎ𝑄

2
+ 18ℎ𝑊

2
+ 6𝑅

12
+ 6𝑅

𝑇

12
+ 4ℎ𝑅

11

+

12

ℎ

𝑅

22
+ ℎ

2
𝑌

33
,

Ψ

34
= −6ℎ𝑄

2
− 48ℎ𝑊

2
− 12𝑅

𝑇

12
− 6ℎ𝑅

11
,

Ψ

44
= 12ℎ𝑄

2
+ 144ℎ𝑊

2
+ 12ℎ𝑅

11
+ 6ℎ𝑅

2
+ ℎ

4
𝑍

33
,

Λ

2
= [𝑆𝐴 𝑆𝐵 𝑆𝐶 0 0 0] ,

𝜑

11
= 𝑅

11
− 6𝑅

2
− 9𝑊

2
+ 𝑌

13
+ 𝑌

𝑇

13
+ ℎ𝑍

13
+ ℎ𝑍

𝑇

13

+ 𝐴

𝑇
𝑃 + 𝑃𝐴 + 𝐴

𝑇
𝑌

11
+ 𝑌

11
𝐴 + 𝑍

11
𝐴

+ 𝐴

𝑇
𝑍

11
+ 𝑄

2
+ 𝑅

12
𝐴 + 𝐴

𝑇
𝑅

𝑇

12
,

𝜑

12
= 3𝑊

2
− 𝑌

13
+ 𝑌

𝑇

23
+ 𝐴

𝑇
𝑌

12
+ 𝐴

𝑇
𝑍

12
+ ℎ𝑍

𝑇

23

+ (𝑃 + 𝑌

11
+ 𝑍

11
+ 𝑅

12
) 𝐵,

𝜑

13
= 𝑌

12
+ 𝑍

12
+ 𝑅

12
𝐶 + 𝑃𝐶 + 𝑌

11
𝐶 + 𝑍

11
𝐶,

𝜑

14
= ℎ (𝑌

33
+ 𝐴

𝑇
𝑌

13
) − 24𝑊

2
− ℎ𝑍

13
− 6𝑅

2
,

𝜑

15
= 24𝑅

2
+ 60𝑊

2
+ ℎ

2
(𝐴

𝑇
𝑍

13
+ ℎ𝑍

33
) ,

𝜑

22
= 𝐵

𝑇
𝑌

12
+ 𝑌

𝑇

12
𝐵 − 𝑅

11
− 9𝑊

2
− 𝑌

23
− 𝑌

𝑇

23
− 𝑄

2

+ 𝐵

𝑇
𝑍

12
+ 𝑍

𝑇

12
𝐵,

𝜑

23
= 𝑌

22
− 𝑅

12
+ 𝑍

22
+ 𝑌

𝑇

12
𝐶 + 𝑍

𝑇

12
𝐶,

𝜑

24
= 36𝑊

2
− ℎ𝑍

23
− ℎ (𝑌

33
− 𝐵

𝑇
𝑌

13
) ,

𝜑

25
= ℎ

2
𝐵

𝑇
𝑍

13
− 60𝑊

2
,

𝜑

33
= −𝑅

22
,

𝜑

34
= ℎ (𝑌

23
+ 𝐶

𝑇
𝑌

13
) ,

𝜑

35
= ℎ

2
(𝑍

23
+ 𝐶

𝑇
𝑍

13
) ,

𝜑

44
= −18𝑅

2
− 192𝑊

2
,

𝜑

45
= 48𝑅

2
+ 360𝑊

2
− ℎ

3
𝑍

33
,

𝜑

55
= −144𝑅

2
− 720𝑊

2
,

𝑆 = 𝑅

22
+

ℎ

2

2

𝑅

2
+ ℎ

2
𝑊

2
.

(27)

Next, based on the above theorems, we will design the
input controller 𝐾 for the neutral control system (1) in
different cases.

Theorem8. System (1) is asymptotically stabilized if there exist
positive definitematrices𝑋,̂𝑊

1
,̂𝑊
2
,̂𝑄
1
,̂𝑄
2
, ̂𝑅
1
, ̂𝑅
2
, symmetric

matrices ̂𝑌
𝑖𝑖
,

̂

𝑍

𝑖𝑖
(𝑖 = 1, 2, 3, 4), ̂𝑅

11
, ̂𝑅
22
, and any matrices
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̂

𝑌

𝑖𝑗
, ̂𝑍
𝑖𝑗
(𝑖 ̸= 𝑗 ∈ 1, 2, 3, 4), ̂𝑅

12
, 𝐿 with appropriate dimensions

satisfying the following linear matrix inequalities:

̂

Ψ

6×6
> 0, (28)

(

�̂�

8×8
0 Λ

𝑇

3
Γ

𝑇

1

⋆ −

̂

𝑆

̂

𝑆 0

⋆ ⋆ −𝐽 0

⋆ ⋆ ⋆ −𝑋𝐽

−1
𝑋

) < 0, (29)

where

̂

Ψ

11

= 𝑋 +

̂

𝑌

11
+

̂

𝑍

11
+

4

𝜏

̂

𝑅

22
+ 6ℎ

̂

𝑊

2
+ 6𝜏

̂

𝑊

1
+

3ℎ

2

̂

𝑅

2

+

3𝜏

2

̂

𝑅

1
,

̂

Ψ

12
=

̂

𝑌

12
+

̂

𝑍

12
+

2

𝜏

̂

𝑅

22
,

̂

Ψ

13
= 𝜏

̂

𝑌

13
− 2

̂

𝑅

𝑇

12
−

6

𝜏

̂

𝑅

22
+ 6𝜏

̂

𝑊

1
,

̂

Ψ

14
= 6ℎ

̂

𝑊

2
+ 𝜏

2
̂

𝑍

13
,

̂

Ψ

15
= 6

̂

𝑅

𝑇

12
− 24𝜏

̂

𝑊

1
− 3𝜏

̂

𝑅

1
+ ℎ

̂

𝑌

14
,

̂

Ψ

16
= −24ℎ

̂

𝑊

2
− 3ℎ

̂

𝑅

2
+ ℎ

2
̂

𝑍

14
,

̂

Ψ

22
=

̂

𝑌

22
+

̂

𝑍

22
+

4

𝜏

̂

𝑅

22
,

̂

Ψ

23
= 𝜏

̂

𝑌

23
− 4

̂

𝑅

𝑇

12
−

6

𝜏

̂

𝑅

22
,

̂

Ψ

24
= 𝜏

2
̂

𝑍

23
,

̂

Ψ

25
= 6

̂

𝑅

𝑇

12
+ ℎ

̂

𝑌

24
,

̂

Ψ

26
= ℎ

2
̂

𝑍

24
,

̂

Ψ

33

= 4𝜏

̂

𝑄

1
+ 4𝜏

̂

𝑅

11
+

12

𝜏

̂

𝑅

22
+ 6

̂

𝑅

12
+ 6

̂

𝑅

𝑇

12
+ 18𝜏

̂

𝑊

1

+ 𝜏

2
̂

𝑌

33
,

̂

Ψ

35
= −6𝜏

̂

𝑄

1
− 2𝜏 (3

̂

𝑅

11
+

6

𝜏

̂

𝑅

𝑇

12
) − 48𝜏

̂

𝑊

1
+ ℎ𝜏

̂

𝑌

34
,

̂

Ψ

44
= 4ℎ

̂

𝑄

2
+ 18ℎ

̂

𝑊

2
+ 𝜏

4
̂

𝑍

33
,

̂

Ψ

46
= −6ℎ

̂

𝑄

2
− 48ℎ

̂

𝑊

2
+ ℎ

2
𝜏

2
̂

𝑍

34
,

̂

Ψ

55
= 12𝜏

̂

𝑄

1
+ 12𝜏

̂

𝑅

11
+ 144𝜏

̂

𝑊

1
+ 6𝜏

̂

𝑅

1
+ ℎ

2
̂

𝑌

44
,

̂

Ψ

66
= 12ℎ

̂

𝑄

2
+ 144ℎ

̂

𝑊

2
+ 6ℎ

̂

𝑅

2
+ ℎ

4
̂

𝑍

44
,

Λ

3

= [
̂

𝑌

11
+

̂

𝑍

11
+

̂

𝑅

𝑇

12
̂

𝑌

12
+

̂

𝑍

12
0 0

̂

𝑌

13
̂

𝑌

14
̂

𝑍

13
̂

𝑍

14
] ,

Γ

1
= [𝐴𝑋 + 𝐷𝐿 0 𝐵𝑋 𝐶𝑋 0 0 0 0] ,

�̂�

11

=

̂

𝑄

1
+

̂

𝑄

2
− 6

̂

𝑅

1
+

̂

𝑅

11
− 6

̂

𝑅

2
− 9

̂

𝑊

1
− 9

̂

𝑊

2
+

̂

𝑌

13
+

̂

𝑌

𝑇

13

+

̂

𝑌

14
+

̂

𝑌

𝑇

14
+ ℎ

̂

𝑍

14
+ ℎ

̂

𝑍

𝑇

14
+ 𝜏

̂

𝑍

13
+ 𝜏

̂

𝑍

𝑇

13
+ 𝐴𝑋

+ 𝑋𝐴

𝑇
+ 𝐷𝐿 + 𝐿

𝑇
𝐷

𝑇
,

�̂�

12
=

̂

𝑌

𝑇

23
−

̂

𝑌

13
+ 3

̂

𝑊

1
+

̂

𝑌

𝑇

24
+ ℎ

̂

𝑍

𝑇

24
+ 𝜏

̂

𝑍

𝑇

23
,

�̂�

22
= −

̂

𝑄

1
−

̂

𝑅

11
− 9

̂

𝑊

1
−

̂

𝑌

23
−

̂

𝑌

𝑇

23
,

�̂�

13
= 3

̂

𝑊

2
−

̂

𝑌

14
+ 𝐵𝑋,

�̂�

23
= −

̂

𝑌

24
,

�̂�

33
= −9

̂

𝑊

2
−

̂

𝑄

2
,

�̂�

14
=

̂

𝑌

12
+

̂

𝑍

12
+ 𝐶𝑋,

�̂�

24
=

̂

𝑌

22
−

̂

𝑅

12
+

̂

𝑍

22
,

�̂�

44
= −

̂

𝑅

22
,

�̂�

15
= 𝜏

̂

𝑌

33
+ 𝜏

̂

𝑌

𝑇

34
− 24

̂

𝑊

1
− 𝜏

̂

𝑍

13
− 6

̂

𝑅

1
,

�̂�

25
= 36

̂

𝑊

1
− 𝜏

̂

𝑌

33
− 𝜏

̂

𝑍

23
,

�̂�

35
= −𝜏

̂

𝑌

𝑇

34
,

�̂�

45
= 𝜏

̂

𝑌

23
,

�̂�

55
= −18

̂

𝑅

1
− 192

̂

𝑊

1
,

�̂�

16
= ℎ (

̂

𝑌

34
+

̂

𝑌

44
) − 24

̂

𝑊

2
− ℎ

̂

𝑍

14
− 6

̂

𝑅

2
,

�̂�

26
= −ℎ

̂

𝑌

34
− ℎ

̂

𝑍

24
,

�̂�

36
= 36

̂

𝑊

2
− ℎ

̂

𝑌

44
,

�̂�

46
= ℎ

̂

𝑌

24
,

�̂�

66
= −18

̂

𝑅

2
− 192

̂

𝑊

2
,

�̂�

17
= 24

̂

𝑅

1
+ 60

̂

𝑊

1
+ 𝜏

2
(𝜏

̂

𝑍

33
+ ℎ

̂

𝑍

𝑇

34
) ,

�̂�

27
= −60

̂

𝑊

1
,

�̂�

47
= 𝜏

2
̂

𝑍

23
,

�̂�

57
= 48

̂

𝑅

1
+ 360

̂

𝑊

1
− 𝜏

3
̂

𝑍

33
,

�̂�

67
= −ℎ𝜏

2
̂

𝑍

𝑇

34
,

�̂�

77
= −144

̂

𝑅

1
− 720

̂

𝑊

1
,

�̂�

18
= 24

̂

𝑅

2
+ 60

̂

𝑊

2
+ ℎ

2
(ℎ

̂

𝑍

44
+ 𝜏

̂

𝑍

34
) ,
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�̂�

38
= −60

̂

𝑊

2
,

�̂�

48
= ℎ

2
̂

𝑍

24
,

�̂�

58
= −𝜏ℎ

2
̂

𝑍

34
,

�̂�

68
= 48

̂

𝑅

2
+ 360

̂

𝑊

2
− ℎ

3
̂

𝑍

44
,

�̂�

88
= −144

̂

𝑅

2
− 720

̂

𝑊

2
,

̂

𝑆 =

̂

𝑅

22
+

𝜏

2

2

̂

𝑅

1
+

ℎ

2

2

̂

𝑅

2
+ 𝜏

2
̂

𝑊

1
+ ℎ

2
̂

𝑊

2
,

(30)

and the state feedback controller is 𝑢(𝑡) = 𝐿𝑋−1𝑥(𝑡).

Proof. By introducing 𝑢(𝑡) = 𝐾𝑥(𝑡) into system (1), one can
obtain that

�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏) = (𝐴 + 𝐷𝐾) 𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ) , (31)

and we replace the element Λ in LMI (9) with 𝐴 + 𝐷𝐾.
Now, pre- and postmultiply diag{𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1}
and diag{𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1} to (8) and
(9), respectively, and apply the change of variables such that
𝑋 ≜ 𝑃

−1,̂(∗) ≜ 𝑋 ⋅ (∗) ⋅ 𝑋, and 𝐿 ≜ 𝐾𝑃−1. Inequality (28) can
be easily obtained. On the other hand, we obtain

Ξ + Λ

𝑇

3
𝑋

−1
Γ

1
+ Γ

𝑇

1
𝑋

−1
Λ

3
< 0, (32)

where

Ξ = (

�̂�

8×8
0

⋆

̂

𝑆

) , (33)

Λ

3

= [
̂

𝑌

11
+

̂

𝑍

11
+

̂

𝑅

𝑇

12
̂

𝑌

12
+

̂

𝑍

12
0 0

̂

𝑌

13
̂

𝑌

14
̂

𝑍

13
̂

𝑍

14
] ,

Γ

1
= [𝐴𝑋 + 𝐷𝐿 0 𝐵𝑋 𝐶𝑋 0 0 0 0] .

(34)

Clearly, the following inequality is satisfied for any 𝐽 > 0with
appropriate dimensions:

Λ

𝑇

3
𝑋

−1
Γ

1
+ Γ

𝑇

1
𝑋

−1
Λ

3
≤ Λ

𝑇

3
𝐽

−1
Λ

3
+ Γ

𝑇

1
𝑋

−1
𝐽𝑋

−1
Γ

1
. (35)

By introducing the above inequality (35) into (32) and using
Schur’s complement lemma, inequality (29) is obtained easily.
This completes the proof.

It is noted that the resulting conditions for the controller
design inTheorem 8 are no longer LMI conditions because of
the term𝑋𝐽

−1
𝑋 in (29). As a result, unfortunately, we cannot

find in general the global maximum time delay using convex
optimization algorithms in this case to design controller.

An easy way to obtain a suboptimal maximal delay
instead is simply setting 𝐽 = 𝜆𝑋 in (28) and (29), which
results in LMI conditions. However, this approach will bring
much conservativeness. If one can affordmore computational
efforts, better results can be obtained using an iterative
algorithm presented next, which is usually adopted in many
references such as [29].

First, we define a new variable𝑁 > 0 such that𝑋−1𝐽𝑋−1 ≤
𝑁

−1. Let 𝐻 = 𝑁

−1, 𝑀 = 𝑋

−1, and 𝐹 = 𝐽

−1; computing
the feasible solution of (29) can be transformed to resolve the
minimization problem of the following LMI constraints:

min Trace (𝑁𝐻 + 𝑋𝑀 + 𝐽𝐹) (36)

s.t. (

𝐻 𝑀

𝑀 𝐹

) ≥ 0,

(

𝑁 𝐼

𝐼 𝐻

) ≥ 0,

(37)

(

𝑋 𝐼

𝐼 𝑀

) ≥ 0,

(

𝐽 𝐼

𝐼 𝐹

) ≥ 0,

(38)

(

�̂�

8×8
0 Λ

𝑇

3
Γ

𝑇

1

⋆ −

̂

𝑆 −

̂

𝑆 0

⋆ ⋆ −𝐽 0

⋆ ⋆ ⋆ −𝑁

) < 0. (39)

If the solution of the above minimization problem is 3𝑛, that
is, tr(𝑁𝐻 +𝑋𝑀+ 𝐽𝐹) = 3𝑛, we can say fromTheorem 8 that
system (1) with the control 𝑢(𝑡) = 𝐿𝑋−1𝑥(𝑡) is asymptotically
stable. Although it is still impossible to always find the global
optimal solution, the proposednonlinearminimization prob-
lem is easier to solve than the original nonconvex feasibility
problem. Actually, utilizing the linearizationmethod [30], we
can easily find a suboptimal maximal delay using an iterative
algorithm presented in the following.

Note that condition (29) is used as a stopping criterion in
the algorithm since it is numerically very difficult in practice
to obtain the optimal solution such that tr(𝑁𝐻 + 𝑋𝑀 + 𝐽𝐹)

is exactly equal to 3𝑛.
The above calculation thought can be carried out by the

following steps.

Algorithm 9.

Step 1. Choose a sufficiently small initial integer 𝑛 > 0 such
that there exists a feasible solution to the LMI conditions in
(37) and (38). Set 𝑛so = 𝑛.

Step 2. Find a feasible set

{𝑋

0
,

̂

𝑊

10
,

̂

𝑊

20
,

̂

𝑄

10
,

̂

𝑄

20
,

̂

𝑅

10
,

̂

𝑅

20
,

̂

𝑌

0
,

̂

𝑍

0
,

̂

𝑅

0
, 𝐿

0
, 𝐻

0
,𝑀

0
,

𝐹

0
, 𝑁

0
, 𝐽

0
}

(40)

for LMIs (37)–(39). Set 𝑘 = 0, where

̂

𝑅

0
= (

̂

𝑅

110
̂

𝑅

120

⋆

̂

𝑅

220

) . (41)

Step 3. Solve the following LMI problem for the variables:
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{𝑋,

̂

𝑊

1
,

̂

𝑊

2
,

̂

𝑄

1
,

̂

𝑄

2
,

̂

𝑅

1
,

̂

𝑅

2
,

̂

𝑌,

̂

𝑍,

̂

𝑅, 𝐿,𝐻,𝑀, 𝐹,𝑁, 𝐽} :

Minimize Trace (𝑁
𝑘
𝐻 +𝐻

𝑘
𝑁 + 𝑋

𝑘
𝑀+𝑀

𝑘
𝑋 + 𝐽

𝑘
𝐹 + 𝐹

𝑘
𝐽)

subject to (37)–(39) .

(42)

Set 𝑁
𝑘+1

= 𝑁, 𝐻
𝑘+1

= 𝐻, 𝑋
𝑘+1

= 𝑋, 𝑀
𝑘+1

= 𝑀, 𝐽
𝑘+1

= 𝐽,
and 𝐹

𝑘+1
= 𝐹.

Step 4. If condition (29) is satisfied, then set ℎso = ℎ and
return to Step 2 after increasing ℎ to some extent. If condition
(29) is not satisfied within a specified number of iterations,
say, 𝑘max, then exit. Otherwise, set 𝑘 = 𝑘 + 1 and go to
Step 3.

The above algorithm gives a suboptimal maximal delay
ℎso such that system (1) can be stabilized with the controller
𝑢(𝑡) = 𝐿𝑋

−1
𝑥(𝑡). Later, in Section 4, we shall illustrate via

numerical examples that the above algorithm can provide
quite satisfactory results.

Similar to Theorem 8, the stabilization condition for
system (1) with 𝜏 = ℎ can be easily obtained.

Theorem 10. System (1) with 𝜏 = ℎ is asymptotically stabilized
if there exist positive definite matrices𝑋, ̂𝑊

2
, ̂𝑄
2
, ̂𝑅
2
, symmet-

ric matrices ̂𝑌
𝑖𝑖
, ̂𝑍
𝑖𝑖
(𝑖 = 1, 2, 3), ̂𝑅

11
, ̂𝑅
22
, and any matrices

̂

𝑌

𝑖𝑗
, ̂𝑍
𝑖𝑗
(𝑖 ̸= 𝑗 ∈ 1, 2, 3), ̂𝑅

12
, 𝐿 with appropriate dimensions

satisfying the following linear matrix inequalities:

̂

Ψ

4×4
> 0,

(

�̂�

5×5
0 Λ

𝑇

4
Γ

𝑇

2

⋆ −

̂

𝑆

̂

𝑆 0

⋆ ⋆ −𝐽 0

⋆ ⋆ ⋆ −𝑋𝐽

−1
𝑋

) < 0,

(43)

where

̂

Ψ

11
= 𝑋 +

̂

𝑌

11
+

̂

𝑍

11
+ 6ℎ

̂

𝑊

2
+

4

ℎ

̂

𝑅

22
+

3ℎ

2

̂

𝑅

2
,

̂

Ψ

12
=

̂

𝑌

12
+

̂

𝑍

12
+

2

ℎ

̂

𝑅

22
,

̂

Ψ

13
= 6ℎ

̂

𝑊

2
− 2

̂

𝑅

𝑇

12
+ ℎ

̂

𝑌

13
−

6

ℎ

̂

𝑅

22
,

̂

Ψ

14
= 6

̂

𝑅

𝑇

12
− 24ℎ

̂

𝑊

2
+ ℎ

2
̂

𝑍

13
−

3ℎ

2

̂

𝑅

2
,

̂

Ψ

22
=

̂

𝑌

22
+

̂

𝑍

22
+

4

ℎ

̂

𝑅

22
,

̂

Ψ

23
= ℎ

̂

𝑌

23
− 4

̂

𝑅

𝑇

12
−

6

ℎ

̂

𝑅

22
,

̂

Ψ

24
= ℎ

2
̂

𝑍

23
+ 6

̂

𝑅

𝑇

12
,

̂

Ψ

33
= 4ℎ

̂

𝑄

2
+ 18ℎ

̂

𝑊

2
+ 6

̂

𝑅

12
+ 6

̂

𝑅

𝑇

12
+ 4ℎ

̂

𝑅

11

+

12

ℎ

̂

𝑅

22
+ ℎ

2
̂

𝑌

33
,

̂

Ψ

34
= −6ℎ

̂

𝑄

2
− 48ℎ

̂

𝑊

2
− 12

̂

𝑅

𝑇

12
− 6ℎ

̂

𝑅

11
,

̂

Ψ

44
= 12ℎ

̂

𝑄

2
+ 144ℎ

̂

𝑊

2
+ 12ℎ

̂

𝑅

11
+ 6ℎ

̂

𝑅

2
+ ℎ

4
̂

𝑍

33
,

Λ

4
= [

̂

𝑌

11
+

̂

𝑍

11
+

̂

𝑅

𝑇

12
̂

𝑌

12
+

̂

𝑍

12
0

̂

𝑌

13
̂

𝑍

13
] ,

Γ

2
= [𝐴𝑋 + 𝐷𝐿 𝐵𝑋 𝐶𝑋 0 0 0] ,

�̂�

11
=

̂

𝑅

11
− 6

̂

𝑅

2
− 9

̂

𝑊

2
+

̂

𝑌

13
+

̂

𝑌

𝑇

13
+ ℎ

̂

𝑍

13
+ ℎ

̂

𝑍

𝑇

13

+ 𝑋𝐴

𝑇
+ 𝐴𝑋 + 𝐷𝐿 + 𝐿

𝑇
𝐷

𝑇
+

̂

𝑄

2
,

�̂�

12
= 3

̂

𝑊

2
−

̂

𝑌

13
+

̂

𝑌

𝑇

23
+ ℎ

̂

𝑍

𝑇

23
+ 𝐵𝑋,

�̂�

13
=

̂

𝑌

12
+

̂

𝑍

12
+ 𝐶𝑋,

�̂�

14
= ℎ

̂

𝑌

33
− 24

̂

𝑊

2
− ℎ

̂

𝑍

13
− 6

̂

𝑅

2
,

�̂�

15
= 24

̂

𝑅

2
+ 60

̂

𝑊

2
+ ℎ

3
̂

𝑍

33
,

�̂�

22
= −

̂

𝑅

11
− 9

̂

𝑊

2
−

̂

𝑌

23
−

̂

𝑌

𝑇

23
−

̂

𝑄

2
,

�̂�

23
=

̂

𝑌

22
−

̂

𝑅

12
+

̂

𝑍

22
,

�̂�

24
= 36

̂

𝑊

2
− ℎ

̂

𝑍

23
− ℎ

̂

𝑌

33
,

�̂�

25
= −60

̂

𝑊

2
,

�̂�

33
= −

̂

𝑅

22
,

�̂�

34
= ℎ

̂

𝑌

23
,

�̂�

35
= ℎ

2
̂

𝑍

23
,

�̂�

44
= −18

̂

𝑅

2
− 192

̂

𝑊

2
,

�̂�

45
= 48

̂

𝑅

2
+ 360

̂

𝑊

2
− ℎ

3
̂

𝑍

33
,
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Table 1: The maximum of ℎ for different 𝜏.

References 𝜏 = 0.1 𝜏 = 0.5 𝜏 = 1.0

[7] 1.7100 1.6718 1.6543
[8] 1.7844 1.7495 1.7201
[17] 1.8307 1.7755 1.7213
[5] 2.1229 2.1229 2.1229
[6] 2.2951 2.3471 2.3752
Theorem 3 (𝑁 = 1) in [9] 1.8413 2.0954 2.2611
Theorem 3 (𝑁 = 3) in [9] 2.1845 2.2973 2.3331
Theorem 3 (𝑁 = 5) in [9] 2.2137 2.3210 2.3588
Theorem 1 in [4] 2.2021 2.2469 2.2670
Theorem 2 (𝑁 = 1) in [4] 1.8432 2.1078 2.2587
Theorem 2 (𝑁 = 3) in [4] 2.1886 2.3100 2.3452
Theorem 2 (𝑁 = 5) in [4] 2.2181 2.3331 2.3636
Theorem 4 2.2959 2.3488 2.3769
Analytical bounds 2.2963 2.3491 2.3775

�̂�

55
= −144

̂

𝑅

2
− 720

̂

𝑊

2
,

̂

𝑆 =

̂

𝑅

22
+

ℎ

2

2

̂

𝑅

2
+ ℎ

2
̂

𝑊

2
,

(44)

and the state feedback controller is 𝑢(𝑡) = 𝐿𝑋−1𝑥(𝑡).

4. Examples

In this section, we will demonstrate the superiority of our
approach in the above section using the conventional neutral
system by the following examples.

Example 1 (see [1]). Consider system (1) with the state
matrices listed as follows:

𝐴 = (

−0.9 0.2

0.1 −0.9

) ,

𝐵 = (

−1.1 −0.2

−0.1 −1.1

) ,

𝐶 = (

−0.2 0

0.2 −0.1

) .

(45)

With different cases, we can obtain different maximum
time delay ℎ by using Matlab toolbox [25] as listed in Tables 1
and 2, compared with some existing references.

The first case is 𝜏 ̸= ℎ, and the maximum of ℎ for different
𝜏 compared to the existing results are listed in Table 1. From
Table 1, we can see that the results in [4, 9] are close to
our results. However, the maximum of ℎ using Theorem 4
is closer to analytical bounds, which shows our approach is
less conservative than the existing results. It is shown that
wemay also obtain better delay-dependent stability condition
without using discrete Lyapunov functional approach such as
in [6].

Table 2: The maximum of ℎ as ℎ = 𝜏.

References 𝜏 = 0.1

[10] 1.3718
[7] 1.6527
[20] 1.7191
[21] 1.7220
[8] 1.7844
[23] 1.7856
[17] 1.8307
[5] 2.2254
Theorem 3 (𝑁 = 5) [9] 2.2069 (𝑁V = 113)
Theorem 3 (𝑁 = 5) [4] 2.2069 (𝑁V = 65)
Theorem 4 2.2250 (𝑁V = 60)
Analytical bounds 2.2255

The second case is 𝜏 = ℎ, and the maximum of ℎ com-
pared to the existing results are listed in Table 2, where 𝑁V
denotes the 𝑁 of variables to compute the LMIs of stability
conditions. Although our result is a little less than that in [5],
our condition is the best result except the condition obtained
by using the approach in [5]. Furthermore, our approachmay
bring simpler computation than that in [5], because the 𝑁
of variables to compute the maximum delay are 13𝑛2 + 6𝑛

in [5] and 12𝑛

2
+ 6𝑛 in this paper, respectively. From the

comparison between [4] and [9], [4] improves the results
in [9] on the computation of variables. However, our results
not only decrease the number of variables but also increase
the maximum bound of delay compared to [4]. Furthermore,
using our approachmay bemore efficient to deal with neutral
systems with mixed time-varying delay.

In a word, it is observed that ourmethod presented in this
paper is less conservative than most of the existing results.

In order to widely show the effectiveness and superiority
of our approach presented in this paper, the next examples
should be listed.

Example 2 (see [1]). Consider system (1) with the state
matrices listed as follows:

𝐴 = (

−2 0

0 −0.9

) ,

𝐵 = (

−1 0

−1 −1

) ,

𝐶 = (

𝑐 0

0 𝑐

) ,

(46)

with the positive scalar 𝑐 and 𝜏 = ℎ. With different 𝑐, we
can obtain different maximum time delay ℎ by using Matlab
toolbox [25] as listed in Table 3, compared with the existing
references. For the sake of simplicity, the computation for the
𝑁 of variables in [1–3, 18, 19] is omitted here.

Clearly, the results of ℎ in [1–3, 18, 19] are much more
conservative than those in [12, 13] and Theorem 7. It is
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Table 3: The maximal allowable delays ℎ of Example 2 for different values of 𝑐.

𝑐 0 0.1 0.3 0.5 𝑁 of variables
[1] 4.47 3.49 2.06 1.14 Omitted
[18] 4.35 4.33 4.10 3.62 Omitted
[2] 4.47 4.35 4.13 3.67 Omitted
[3] 4.47 4.42 4.17 3.69 Omitted
[19] 4.63 4.57 4.29 3.75 Omitted
[13] 5.30 5.21 4.85 4.20 6𝑛

2
+ 3.5𝑛

Theorem 1 (𝑁 = 6) [12] 5.8613 5.7781 5.3946 4.6687 46𝑛

2
+ 11𝑛

Theorem 1 (𝑁 = 7) [12] 5.8779 5.7910 5.4007 4.6703 56.5𝑛

2
+ 12.5𝑛

Theorem 1 (𝑁 = 8) [12] 5.9287 5.8427 5.4417 4.6917 68𝑛

2
+ 14𝑛

Theorem 1 (𝑁 = 9) [12] 6.1028 5.9816 5.5173 4.7247 80.5𝑛

2
+ 15.5𝑛

[28] 6.117 — — — —
Theorem 7 6.1689 6.0339 5.5470 4.7374 12𝑛

2
+ 6𝑛

observed from Table 3 that our time delay ℎ is much bigger
than the existing results with the less variables.

This example shows again that our approach is effective
and less conservative than the existing results.

Example 3. Consider the PEECmodel introduced in [24, 32]
with 𝜏 = ℎ and the matrices parameters listed as follows:

𝐴 = 100 ×(

𝜃 1 2

3 −9 0

1 2 −6

) ,

𝐵 = 100 ×(

1 0 −3

−0.5 −0.5 −1

−0.5 −1.5 0

) ,

𝐶 =

1

72

×(

−1 5 2

4 0 3

−2 4 1

) .

(47)

With our approach and using Matlab toolbox [25], the
maximum time delay ℎ compared to the existing results is
listed in Table 4. It is quite evident that our result is the best.

Example 4 (see [3]). Consider the neutral system (1) with 𝜏 =
ℎ as the following parameters:

𝐴 = (

−1.7073 0.6856

0.2279 −0.6368

) ,

𝐵 = (

−2.5026 −1.0540

−0.1856 −1.5715

) ,

𝐶 = (

0.0558 0.0360

0.2747 −0.1084

) .

(48)

Using the conditions in [7], [3], [21], and [2] and with
Matlab toolbox [25], the maximum values of time delay ℎ are
calculated as 0.5735, 0.5937, 0.6054, and 0.6189, respectively.

Table 4: The maximal allowable delays ℎ for different values of 𝜃.

𝜃 −2.105 −2.103 −2.1

[31] 1.0874 0.3709 0.2433
[32] 1.1413 0.3892 0.2533
Theorems 1 and 2 in [33] 1.3200 0.4917 0.3214
Theorems 3 and 4 in [33] 1.6978 0.5747 0.3749
Theorem 7 1.7824 0.6030 0.3930

Now applying our approach in this paper, the maximum time
delay ℎ is computed as 0.7029. It is 22.56, 18.39, 16.11, and
13.57 larger than those in [7], [3], [21], and [2], respectively.

On the other hand, the neutral system is changed into
delay system as 𝐶 = 0, and the maximum of ℎ is obtained as
0.6093 in [1, 22, 36]. Although the maximum of ℎ can reach
0.7163 and 0.7198 in [3] and [2], respectively, our result is
0.9351 which is 30.55% and 30.07% larger than those in [3]
and [2].This example shows again that our conditions are less
conservative than the existing results.

Example 5 (see [13]). Consider the following linear time-
delay control system:

�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ) + 𝐷𝑢 (𝑡) , (49)

where

𝐴 = (

0 0

0 1

) ,

𝐵 = (

−1 −1

0 −0.9

) ,

𝐶 = (

0 0

0 0

) ,

𝐷 = (

0

1

) .

(50)
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Table 5: The comparison of different controller design methods for
ℎ.

Method ℎ 𝐾 Iterations
[34] 0.6779 [−0.1155 −1.9839] —
[35] 1.51 [−58.31 −294.935] —
[37] 1.51 [−0.7851 −2.0379] 6
[37] 8 [−65.4058 −76.7778] 111
[13] 9 [−44.1358 −49.0181] 94
[13] 10 [−86.3203 −93.8552] 164
[13] 11 [−153.1753 −164.7362] 247
Theorem 10 9 [−1.4897 −3.0566] 34
Theorem 10 10 [−1.8289 −3.4439] 31
Theorem 10 11 [−2.2411 −3.9037] 34
Theorem 10 15 [−4.1009 −5.9452] 39
Theorem 10 25 [−9.2669 −11.2516] 43

With the help ofMatlab toolbox [25], Table 5 presents the
delay bounds and feedback gain matrices obtained in [13, 34,
35, 37] along with those achieved in this paper.

From the comparison in Table 5, we can see that our
approach needs less iterations to design the feedback con-
troller for the same delay ℎ. Furthermore, the proposed stabi-
lization criteria obtained in this paper provide a significantly
better upper delay bound than that given in [13, 34, 35, 37].

5. Conclusion

In this paper, the delay-dependent stabilization problems
for neutral systems have been investigated based on the
improved Jensen’s inequalities and new Lyapunov-Krasovskii
functionals. Based on a new class of constructed Lyapunov-
Krasovskii functionals and combined with the new integral
inequalities, two new stability criteria have been firstly
obtained for neutral systems with mixed time delay. Then,
state feedback controllers have been designed using a cone
complementarity linearizationmethod for the neutral control
systems in different cases. Finally, five examples have shown
the effectiveness and less conservativeness of the condition
presented in this paper. Our future work is to obtain more
efficient and less conservative stabilization conditions for
neutral dynamical systems with time-varying delay by using
our new technique presented in this paper.
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