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To improve the feasibility of system identification in the prediction of ship manoeuvrability, several measures are presented to deal
with the parameter identifiability in the parametric modeling of ship manoeuvring motion based on system identification. Drift of
nonlinear hydrodynamic coefficients is explained from the point of view of regression analysis. To diminish the multicollinearity
in a complicated manoeuvring model, difference method and additional signal method are employed to reconstruct the samples.
Moreover, the structure of manoeuvring model is simplified based on correlation analysis. Manoeuvring simulation is performed
to demonstrate the validity of the measures proposed.

1. Introduction

Prediction of ship manoeuvrability at the ship design stage
is an important method for evaluating the manoeuvring
performances of ships [1]. In general, two ways are available
to obtain the manoeuvrability parameters (e.g., advance,
transfer, tactical diameter, and overshoots), which include
simulation-free and simulation-based methods. For the
simulation-free method, one can obtain the manoeuvrability
parameters directly from database, full-scale trials, or free-
runningmodel tests. For the simulation-basedmethod, either
system based manoeuvring simulation or computational
fluid dynamics (CFD) based manoeuvring simulation can be
employed [2]. No matter which kind of simulation is used,
usually the ship manoeuvring model is indispensable, which
also determines the accuracy of the prediction ofmanoeuvra-
bility. Generally, there are two ways to obtain a ship manoeu-
vringmodel.Themost usedway is determination of hydrody-
namic derivatives (coefficients) in the mathematical model
of ship manoeuvring. The second way is where artificial
intelligence techniques are employed to obtain an implicit
model (or so-called a black-box model) that describes the
input-output mapping characteristics of ship dynamics.
Examples are the uses of artificial neural networks (ANN)
[3, 4] and support vector machines (SVM) [5, 6].

To determine the hydrodynamic coefficients in the math-
ematical model of shipmanoeuvring, several methods can be
used, including database, empirical formula, captive model
test, CFD calculation, and system identification (SI) com-
binedwith free-runningmodel test or full-scale trials. Among
them, the SI basedmethod provides an effective and practical
way to identify the hydrodynamic parameters in the ship
manoeuvring models. When combined with free-running
model tests, this method requires relatively low cost because
it is easy to generate more manoeuvres after a first set of
free-running model tests [2]. When combined with full-scale
trials, the so-called scale effects due to different Reynolds
numbers between that of the ship model and full-scale can be
avoided. During last decades, the SI based method has made
goodprogresses andmany techniques have beendeveloped in
the application to ship manoeuvring modeling. Examples are
least squares (LS) regression [7, 8], model reference method
(MRM) [9, 10], extend Kalman filter (EKF) [11, 12], maximum
likelihood (ML) estimation [13, 14], recursive prediction
error (RPE) method [15, 16], frequency spectrum analysis
(FSA) method [17, 18], particle swarm optimization (PSO)
[19, 20], genetic algorithm (GA) [21, 22], and support vector
regression (SVR) [23, 24]. Generally, there have beenmany SI
applications to the parameter identification of ship manoeu-
vring models.
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Like the other means to come to manoeuvring predic-
tions, SI has its own advantages and disadvantages when
applied to ship manoeuvring modeling. The main disadvan-
tage is the problem of parameter identifiability. It can be
explained from two aspects. One kind of parameter identi-
fiability is whether the parameters can be identified or not.
When solving a state space equation with respect to the ship
manoeuvring motion, some parameters cannot be identified
for instance the added masses or acceleration derivatives, no
matterwhat input-output samples are provided andnomatter
which SI technique is adopted. The other kind of parameter
identifiability is the effect of parameter drift. The identified
coefficients might be not physically correct but be mathe-
matically correct [2], which implies that even if the identified
parameters deviate from their true values, the manoeuvring
model can predict the manoeuvring motion well, compared
with the test results. However, this prediction ability is usually
restricted to the prediction of the manoeuvre which provides
the data samples for system identification. For example, a
manoeuvring model for a ship based on the identification of
10∘/10∘ zigzag manoeuvre can predict the same manoeuvre
well (i.e., 10∘/10∘ zigzag manoeuvre) but fails when predicting
other manoeuvres, for instance, 20∘/20∘ zigzag manoeuvre
or turning circle manoeuvres. The effect of parameter drift
happens more frequently and severely for a complicated ship
manoeuvring model in which a number of hydrodynamic
coefficients are contained, for instance, the Abkowitz model.

SI application to the modeling of ship manoeuvring had
ever been widely studied in the 1980s with the development
of SI techniques for instance the applications of EKF,ML, and
RPE. Correspondingly, the issues on parameter identifiability
were addressed and some measures had been proposed [11,
25, 26]. In the 1990s, studies on the application of SI to the ship
manoeuvring had been paid relatively less attention to due to
a new charming method (well known as the CFD method)
and the limitations of test technology and SI techniques avail-
able, including the system observability, the sensitivity to the
initial estimation of parameters andnoises, and the parameter
identifiability especially the effect of parameter drift. With
the development ofmodernmeasurement equipment and the
introduction of advanced SI techniques, SI based modeling
of ship manoeuvring received renewed attention during the
past decade. On one hand, some classical SI techniques have
been continuously applied and developed, for instance, the
LS method [8], the EKF method [12], the RPE method [16],
and some hybridmethods [27, 28]. On the other hand, several
novel and interesting SI methods have been proposed. Rep-
resentative examples are the artificial intelligence techniques
including PSO [19, 20], GA [21, 22], SVM [23, 24], and ANN
[29–31]. However, it should be noted thatmuchwork (includ-
ing the work on classical SI or the work on new SI) concerned
little about the problem of parameter identifiability especially
for the effect of parameter drift or avoided dealing with
the problem by selecting a simple manoeuvring model (e.g.,
the Nomoto model or the response model) in which the
parameter drift is weak because few parameters are involved.

In this paper, some issues on the parameter identifiability
are summarized. Furthermore, several measures to deal with
the identifiability problem are presented especially for the

diminishment of the parameter drift in the identification
of a complicated ship manoeuvring model, the Abkowitz
model. Combined with free-runningmodel test results, SVM
based system identification is employed to obtain the hydro-
dynamic coefficients. Based on the identified manoeuvring
model, manoeuvring simulation is conducted and prediction
results are comparedwith the test results, which demonstrates
the validity of the proposed methods.

2. Determination of Added Masses and
Added Moment of Inertia

Three kinds of models are available for the prediction of ship
manoeuvring, including the Abkowitz model [32], the MMG
model [33], and the response model [34]. Comparatively,
the first two models are frequently used because they give a
more comprehensive understanding of the shipmanoeuvring
motion. On the other hand, a number of hydrodynamic
coefficients are contained in themodels, whichmakes it chal-
lenging to determine these coefficients accurately. From the
point of view of system identification, one of the difficulties is
that not all coefficients can be identified.

Taking a linear manoeuvring model as an example, the
state space equation can be written as

[[
[

𝑚 − 𝑋�̇� 0 0
0 𝑚 − 𝑌V̇ 𝑚𝑥𝐺 − 𝑌 ̇𝑟
0 𝑚𝑥𝐺 − 𝑁V̇ 𝐼𝑧𝑧 − 𝑁 ̇𝑟

]]
]

[[
[

�̇�
V̇

̇𝑟
]]
]

= [[
[

𝑋𝑢 0 0
0 𝑌V 𝑌𝑟 − 𝑚𝑢0
0 𝑁V 𝑁𝑟 − 𝑚𝑥𝐺𝑢0

]]
]

[[
[

𝑢
V

𝑟
]]
]

+ [[
[

0
𝑌𝛿
𝑁𝛿

]]
]

𝛿,
(1)

where 𝑢 is the surge speed, V is the sway speed, 𝑟 is the yaw
rate, 𝛿 is the rudder angle, 𝑚 is the mass of the ship, 𝐼𝑧𝑧 is
the moment of inertia of the ship, 𝑥𝐺 longitudinal coordinate
of the ship’s center of gravity, 𝑢0 is the service speed of the
ship,𝑋�̇� et al. are the hydrodynamic derivatives amongwhich
the acceleration derivatives −𝑋�̇�, −𝑌V̇, −𝑌 ̇𝑟, −𝑁V̇ are named as
the added masses, and −𝑁 ̇𝑟 is the added moment of inertia.
Denote

𝑋 = [[
[

𝑢
V

𝑟
]]
]

,

𝑃 = [[
[

𝑚 − 𝑋�̇� 0 0
0 𝑚 − 𝑌V̇ 𝑚𝑥𝐺 − 𝑌 ̇𝑟
0 𝑚𝑥𝐺 − 𝑁V̇ 𝐼𝑧𝑧 − 𝑁 ̇𝑟

]]
]

,

𝐴 = [[
[

𝑋𝑢 0 0
0 𝑌V 𝑌𝑟 − 𝑚𝑢0
0 𝑁V 𝑁𝑟 − 𝑚𝑥𝐺𝑢0

]]
]

,

𝐵 = [[
[

0
𝑌𝛿
𝑁𝛿

]]
]

.

(2)
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Table 1: Added masses and added moment of inertia (×10−5).
Coefficient Slender-body theory Captive model test
𝑋�̇� −39.9 −42
𝑌V̇ −728 −748
𝑌̇𝑟 0 −9.354
𝑁V̇ 0 4.646
𝑁̇𝑟 −60.7 −43.8

Equation (1) can be written as

�̇� = 𝑃−1𝐴𝑋 + 𝑃−1𝐵𝛿, (3)

if 𝑃 is invertible.
Using SI, two matrix combinations in (3), that is, 𝑃−1𝐴

and 𝑃−1𝐵, can be determined; however, the three coefficient
matrices 𝑃, 𝐴, and 𝐵 cannot be obtained separately. One
solution is to determine one coefficientmatrix first in another
way, for example, the slender-body theory, empirical formula,
captive model test, or CFD calculation. Usually but not
always, the mass matrix 𝑃 is selected to be predetermined
in that the abovementioned methods have been successfully
applied to determine the added masses and added moment
of inertia for example [35–38]. Among these methods, the
slender-body theory provides a simple but effective way.
Table 1 lists the comparison results of nondimensional added
masses and addedmoment of inertia, between the calculation
based on slender-body theory [39] and captivemodel tests for
aMariner ship [40]. It is assumed that the ship is symmetrical
about 𝑦𝑧 plane in calculation, as such 𝑌̇𝑟 = 𝑁V̇ = 0.

As can be seen from the comparison results, the slender-
body theory gives a satisfactory estimation of three important
hydrodynamic derivatives 𝑋�̇�, 𝑌V̇ , and 𝑁̇𝑟 . Combined with
free-running model tests, SVM based SI was used to identify
the hydrodynamic derivatives in an Abkowitz model, except
for the added masses and added moment of inertia that were
obtained by slender-body method [24].

3. Parameter Drift and
Diminishment Measures

Another kind of parameter identifiability, referred to as
the parameter drift or simultaneous drift of parameters, is
more difficult to deal with, especially for the identification
of a complicated manoeuvring model such as an Abkowitz
model or a nonlinearMMGmodel. As aforementioned, when
parameter drift happens, the identified parameters might be
mathematically correct but physically incorrect. Even worse,
the “mathematically correct” parameters cannot be obtained.

The reason for the drift of hydrodynamic coefficients
has not been made fully clear physically. Hwang applied the
slender-body theory to explain the mechanism of the drift of
linear hydrodynamic coefficients which is due to the dynamic
cancellation [25]. However, for the drift of nonlinear hydro-
dynamic coefficients, it can only be explained from the point
of view of regression analysis, not physically but statistically.
The drift of nonlinear hydrodynamic coefficients is due to
the so-called multicollinearity [23]. In fact, many nonlinear

hydrodynamic coefficients in themathematical model of ship
manoeuvring motion have no clear physical meaning.

3.1. Simultaneous Drift of Linear Hydrodynamic Coefficients.
Brief explanation of the simultaneous drift of linear hydro-
dynamic coefficients is given as follows. More details can be
found in [11, 25].

For a slender ship moving on the horizontal plane, the
viscous sway force and yawmoment can be calculated as [39]

𝑌 = −1
2𝜌𝜋𝑑2𝑢0 (V + 1

2𝐿𝑟) ,
𝑁 = −1

4𝜌𝜋𝑑2𝐿𝑢0 (V + 1
2𝐿𝑟) ,

(4)

where 𝜌 is the fluid density, 𝑑 is the draft of the ship, 𝑢0 is the
service speed of the ship assuming 𝑢 ≈ 𝑢0, and 𝐿 the length
of ship. The above two expressions can be rewritten as

𝑌 = 𝑌VV + 𝑌𝑟𝑟,
𝑁 = 𝑁VV + 𝑁𝑟𝑟, (5)

in terms of hydrodynamic derivatives and motion variables.
It can be inferred that

𝑌V𝑌𝑟 = 𝑁V𝑁𝑟 = 2
𝐿 . (6)

During a ship manoeuvre, the pivot of the ship is near to the
bow; therefore, it follows that

V + 1
2𝐿𝑟 ≈ 0, (7)

which indicates that

𝑌VV + 𝑌𝑟𝑟 ≈ 0, (8)

𝑁VV + 𝑁𝑟𝑟 ≈ 0. (9)

Combinedwith (6), it can be inferred that two pairs of param-
eters, that is, 𝑌V and 𝑌𝑟, 𝑁V, and 𝑁𝑟, are allowed to become
larger or smaller simultaneously. Figure 1 presents the simu-
lation results of nondimensional linear components of sway
force and yawmoment for the 10∘/10∘ zigzag manoeuvre of a
Mariner vessel [40]. As can be seen, the sway force and
yaw moment are small at the helming stage when rudder
angle switches. At the steady stage when rudder angle keeps
unchanged, the following approximations hold:

𝑌VV + 𝑌𝑟𝑟 ≈ 𝑘1𝑌𝛿𝛿,
𝑁VV + 𝑁𝑟𝑟 ≈ 𝑘2𝑁𝛿𝛿,

V ≈ 𝑘3𝛿,
𝑟 ≈ 𝑘4𝛿,

(10)

where 𝑘1∼4 are constants. Based on the above approximations,
two linear expressions can be obtained as

𝑘3𝑌V + 𝑘4𝑌𝑟 ≈ 𝑘1𝑌𝛿
𝑘3𝑁V + 𝑘4𝑁𝑟 ≈ 𝑘2𝑁𝛿

(11)
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Figure 1: Nondimensional linear components of sway force and yaw
moment for 10∘/10∘ zigzag manoeuvre of aMariner vessel.

which means that the elements within the parameter set{𝑌V , 𝑌𝑟 , 𝑌𝛿} or {𝑁V, 𝑁𝑟 , 𝑁𝛿} possibly drift simultaneously.

3.2. Drift of Nonlinear Hydrodynamic Coefficients. From the
point of view of regression analysis, the drift of hydrodynamic
coefficients, linear and/or nonlinear, results from the so-
called multicollinearity. It can be explained that if the input
variables of a mathematical model are strongly linearly
dependent on each other, their corresponding coefficients in
the regressionmodelmight be incorrect, even if the predicted
results based on the regression model do agree well with
the desired. The case is more possible and serious especially
when the system contains a large number of parameters to be
identified. Equations (8) and (9) present simple examples of
linear dependence. It can be inferred that V and 𝑟 are linearly
dependent on each other. This implies that there exists
multicollinearity in themodel, which results in the parameter
drift of 𝑌V and 𝑌𝑟 for (8) and 𝑁V and 𝑁𝑟 for (9).

It is noted that multicollinearity is a commonplace in the
regression analysis [41], not a special effect that happens in
the system identification of shipmanoeuvring.Moreover, this
phenomenon cannot be eliminated but only moderated or
diminished, because the input variables are always linearly
dependent on each other, more or less.

It is important to assess the degree of multicollinearity in
a system before diminishment measures are taken. Common
used assessment tools include 𝐹- and 𝑡-tests, Variance Infla-
tion Factor (VIF) or tolerance (reciprocal ofVIF), eigenanaly-
sis, determination coefficient, and correlation coefficient.The

last method provides a simple and effective way. Using this
method, a correlation coefficient between two variables 𝑥1
and 𝑥2 can be defined as

𝜌𝑥
1
𝑥
2

= cov (𝑥1, 𝑥2)
√𝐷 (𝑥1)𝐷 (𝑥2)

, (12)

where 𝐷(𝑥1) and 𝐷(𝑥2) denote the variance and cov (𝑥1, 𝑥2)
denotes the covariance. Usually, the nearer to one the absolute
value of 𝜌𝑥

1
𝑥
2

approximates, the more serious the linear
dependence between 𝑥1 and 𝑥2 is. An example is given with
respect to a nonlinear ship manoeuvring model, in which the
nondimensional yaw-equation can be described as

(𝑚𝑥𝐺 − 𝑁V̇) ΔV̇ + (𝐼𝑧𝑧 − 𝑁̇𝑟) Δ ̇𝑟
= Δ𝑓3 (Δ𝑢, ΔV, Δ𝑟, Δ𝛿) , (13)

where Δ𝑢, ΔV, Δ𝑟, and Δ𝛿 are small perturbations from
nominal values of surge speed, sway speed, yaw rate, and
rudder angle, respectively.The nonlinear functionΔ𝑓3 on the
right-hand side of (13) can be expressed as [42]

Δ𝑓3 = 𝑁VΔV + 𝑁𝑟Δ𝑟 + 𝑁𝛿Δ𝛿 + 𝑁|V|V ΔV ΔV
+ 𝑁|V|𝑟 ΔV Δ𝑟 + 𝑁|𝑟|𝑟 Δ𝑟 Δ𝑟
+ 𝑁V|𝑟|ΔV Δ𝑟 + 𝑁𝛿𝛿𝛿Δ𝛿3 + 𝑁VV𝛿ΔV2Δ𝛿
+ 𝑁VV𝛿ΔVΔ𝛿2 + 𝑁𝑟𝛿𝛿Δ𝑟Δ𝛿2 + 𝑁𝑟𝑟𝛿Δ𝑟2Δ𝛿
+ 𝑁𝑟V𝛿Δ𝑟ΔVΔ𝛿 + 𝑁0.

(14)

Combined with the test data of 25∘/5∘ zigzag manoeuvre of
a KVLCC2 ship which was conducted in the Hamburg Ship
Model Basin (HSVA), the correlation coefficients of variables
in (14) can be calculated, as listed in Table 2. As can be seen,
the degree of linear dependence is heavy for some variables
for instance ΔV and ΔVΔ𝛿2, with the correlation coefficient
0.99. A heavymulticollinearitymight exist with respect to the
system (14) which results in the parameter drift, not only for
the linear parameters but also the nonlinear parameters.

3.3. Measures to Diminish the Drift of Hydrodynamic Coeffi-
cients. From the above discussion, it can be concluded that
multicollinearity is the main reason for the drift of hydrody-
namic coefficients especially for the nonlinear ones.Therefore,
the alleviation of multicollinearity is vital for the diminish-
ment of parameter drift.

Several remedies are available to moderate the degree of
multicollinearity for instance difference method, pruning-
variable method [43], principal component regression (PCR)
analysis [44], partial least squares (PLS) [45], and a group
method of data handling (GMDH) [46]. Some of them were
developed to diminish the drift of hydrodynamic coefficients.
For example, Hwang proposed parallel processing, exagger-
ated over- and underestimation, parameter transformation to
moderate the drift of linear hydrodynamic coefficients [25].
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Table 2: Matrix of correlation coefficients.

𝑁V 𝑁𝑟 𝑁|V|V 𝑁|V|𝑟 𝑁𝛿 𝑁𝛿𝛿𝛿 𝑁V𝛿𝛿 𝑁VV𝛿 𝑁|𝑟|𝑟 𝑁V|𝑟| 𝑁𝑟𝛿𝛿 𝑁𝑟𝑟𝛿 𝑁𝑟V𝛿𝑁V 1.00 0.45 0.98 0.67 0.91 0.92 0.99 0.97 0.39 0.84 0.54 0.54 0.68
𝑁𝑟 1.00 0.42 0.84 0.53 0.54 0.47 0.43 0.97 0.66 0.91 0.75 0.81
𝑁|V|V 1.00 0.66 0.83 0.85 0.98 1.00 0.32 0.77 0.50 0.42 0.67
𝑁|V|𝑟 1.00 0.62 0.64 0.68 0.66 0.75 0.87 0.92 0.73 1.00
𝑁𝛿 1.00 0.99 0.91 0.83 0.50 0.83 0.61 0.71 0.62
𝑁𝛿𝛿𝛿 1.00 0.92 0.85 0.50 0.83 0.62 0.69 0.64
𝑁V𝛿𝛿 1.00 0.98 0.40 0.83 0.55 0.53 0.69
𝑁VV𝛿 1.00 0.33 0.77 0.50 0.42 0.67
𝑁|𝑟|𝑟 1.00 0.62 0.86 0.81 0.72
𝑁V|𝑟| 1.00 0.78 0.82 0.89
𝑁𝑟𝛿𝛿 1.00 0.83 0.91
𝑁𝑟𝑟𝛿 1.00 0.73
𝑁𝑟V𝛿 1.00

For nonlinear hydrodynamic coefficients, ridge regression
and modification of input scenario were proposed [47, 48].
However, for given samples from real manoeuvring tests,
such a modification of excitation might be not applicable; in
other words, this approach might only work for simulation
data.

Since the multicollinearity is an inherent characteristic
of a regression model, besides the regression tool (e.g., LS
and EKF), modification of the model is a direct and effective
way to alleviate the multicollinearity, which can be achieved
by altering the structure of the model and reconstructing the
input variables in the model, with the aim to decrease the
linear dependence of variables. Based on these ideas, three
approaches are presented to diminish the drift of hydrody-
namic coefficients, including simplification of the manoeu-
vring model, difference of the samples, and the method of
additional signal. Studies are performed mainly combined
with the Abkowitz model.

3.3.1. Simplification of the Manoeuvring Model. Although the
Abkowitz model is often preferred in the prediction of ship
manoeuvring, such a “large” parametric system makes it
inconvenient to use in practice. Actually some nonlinear
derivatives are difficult to be determined although they could
be unimportant. In practical application of the Abkowitz
model, simplification had been performed to improve the
feasibility of this model. Examples are the work by Abkowitz
[11] and Norrbin Nils [37]. Physical meanings were the main
concern in the simplification. The simplification can also be
performed from the point of view of regression analysis [24].
Taking the yaw-equation (13) as an example, the original
expression of (14) is

Δ𝑓3 = 𝑁0𝑢Δ𝑢 + 𝑁0𝑢𝑢Δ𝑢2 + 𝑁VΔV + 𝑁𝑟Δ𝑟
+ 𝑁𝛿Δ𝛿 + 𝑁VVVΔV3 + 𝑁𝛿𝛿𝛿Δ𝛿3
+ 𝑁VV𝑟ΔV2Δ𝑟 + 𝑁VV𝛿ΔV2Δ𝛿 + 𝑁V𝛿𝛿ΔVΔ𝛿2

+ 𝑁𝛿𝑢Δ𝛿Δ𝑢 + 𝑁V𝑢ΔVΔ𝑢 + 𝑁𝑟𝑢Δ𝑟Δ𝑢
+ 𝑁𝛿𝑢𝑢Δ𝛿Δ𝑢2 + 𝑁𝑟𝑟𝑟Δ𝑟3 + 𝑁V𝑟𝑟ΔVΔ𝑟2
+ 𝑁V𝑢𝑢ΔVΔ𝑢2 + 𝑁𝑟𝑢𝑢Δ𝑟Δ𝑢2 + 𝑁𝑟𝛿𝛿Δ𝑟Δ𝛿2
+ 𝑁𝑟𝑟𝛿Δ𝑟2Δ𝛿 + 𝑁𝑟V𝛿Δ𝑟ΔVΔ𝛿 + 𝑁0,

(15)

in which 22 hydrodynamic coefficients are contained [40].
To simplify it, all the nonlinear terms related to the surge
perturbation Δ𝑢 are eliminated for two reasons. First, since
the ship total velocity 𝑈(𝑡) is taken as the nondimensional
factor, the effect of velocity loss has been taken into account in
every velocity term. Second, the linear dependence between
the linear and nonlinear terms relating to Δ𝑢 is significant,
whichwill result in the parameter drift. For example, the third
and twelfth terms on the right hand side of (15) at the 𝑘th
sampling time can be written as

𝑁VΔV (𝑘) 𝑈 (𝑘) + 𝑁V𝑢ΔV (𝑘) Δ𝑢 (𝑘) (16)

by considering the prime nondimensional definition

Δ𝑢 = Δ𝑢
𝑈 ,

Δ�̇� = Δ�̇�
(𝑈2/𝐿) .

(17)

For moderate manoeuvres, it holds that

𝑈 (𝑘) ≈ 𝑢0 + Δ𝑢 (𝑘) . (18)

The expression (16) can be written as

𝑁VΔV (𝑘) 𝑢0 + 𝑁VΔV (𝑘) Δ𝑢 (𝑘) + 𝑁V𝑢ΔV (𝑘) Δ𝑢 (𝑘) . (19)

Obviously, the second term is linearly dependent on the
third term. In consideration of the significance of the linear
derivative𝑁V, the nonlinear term𝑁V𝑢ΔV(𝑘)Δ𝑢(𝑘) is removed.
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In the same way, the other six terms related to the derivatives𝑁0𝑢𝑢, 𝑁𝛿𝑢, 𝑁𝑟𝑢, 𝑁𝛿𝑢𝑢, 𝑁V𝑢𝑢, and 𝑁𝑟𝑢𝑢 can be removed from
(15). Ignoring the effect of surge speed 𝑢 on the change of yaw
moment, 𝑁0𝑢Δ𝑢 can be removed furthermore. Finally, by
introducing the cross flow models to replace the third-order
nonlinear terms, model (15) is simplified to model (14), with
the number of hydrodynamic coefficients decreasing from 22
to 14.

Sensitivity analysis provides another way to simplify the
mathematical model of ship manoeuvring [49–53]. Using
this method, the effect of the hydrodynamic coefficient on
the prediction of ship manoeuvring is studied by observing
the change of manoeuvring (e.g., velocity, angular velocity,
advance, transfer, overshoots, and tactical diameter) to the
change of hydrodynamic coefficients. Based on the results of
sensitivity analysis, some trivial hydrodynamic coefficients
are removed from the mathematical model. The main diffi-
culties with this method are the determination of two factors:
(i) the criteria of importance for a hydrodynamic coefficient
which decides this coefficient will be retained or removed
from the model; (ii) the reference value of a hydrodynamic
coefficient when the real experimental data are used for
identification, instead of the simulation data.

3.3.2. Difference Method. Besides simplification of the math-
ematical model of ship manoeuvring, reconstruction of the
input variables or samples provides another effective way to
alleviate the parameter drift. It is noted that such a recon-
struction does not require a new manoeuvring to obtain new
input-output samples for system identification butmodify the
obtained samples. Difference method provides a simple way
to reconstruct the samples [24].

Taking (13) as an example, the following discrete equation
can be obtained:

Δ𝑟 (𝑘 + 1) = Δ𝑟 (𝑘) + 𝜃1ΔV (𝑘) 𝑈 (𝑘) + 𝜃2Δ𝑟 (𝑘)𝑈 (𝑘)
+ 𝜃3Δ𝛿 (𝑘)𝑈2 (𝑘) + 𝜃4 |ΔV (𝑘)| ΔV (𝑘)
+ 𝜃5 |ΔV (𝑘)| Δ𝑟 (𝑘) + 𝜃6 |Δ𝑟 (𝑘)| Δ𝑟 (𝑘)
+ 𝜃7ΔV (𝑘) |Δ𝑟 (𝑘)| + 𝜃8Δ𝛿3 (𝑘)𝑈2 (𝑘)
+ 𝜃9ΔV2 (𝑘) Δ𝛿 (𝑘)
+ 𝜃10ΔV (𝑘) Δ𝛿2 (𝑘) 𝑈 (𝑘)
+ 𝜃11Δ𝑟 (𝑘) Δ𝛿2 (𝑘) 𝑈 (𝑘)
+ 𝜃12Δ𝑟2 (𝑘) Δ𝛿 (𝑘)
+ 𝜃13Δ𝑟 (𝑘) ΔV (𝑘) Δ𝛿 (𝑘) + 𝜃14𝑈2 (𝑘) ,

(20)

where 𝜃1∼14 are the linear combinations of the hydrodynamic
coefficients with respect to the sway and yaw motion [23].
Define vectors
Θ = [𝜃1, 𝜃2, . . . , 𝜃14]14×1 ,
X (𝑘) = [ΔV (𝑘) 𝑈 (𝑘) , Δ𝑟 (𝑘)𝑈 (𝑘) , Δ𝛿 (𝑘)

⋅ 𝑈2 (𝑘) , |ΔV (𝑘)| ΔV (𝑘) , |ΔV (𝑘)| Δ𝑟 (𝑘) , |Δ𝑟 (𝑘)|

⋅ Δ𝑟 (𝑘) , ΔV (𝑘) |Δ𝑟 (𝑘)| , Δ𝛿3 (𝑘) 𝑈2 (𝑘) , ΔV2 (𝑘)
⋅ Δ𝛿 (𝑘) , ΔV (𝑘) Δ𝛿2 (𝑘)𝑈 (𝑘) , Δ𝑟 (𝑘) Δ𝛿2 (𝑘)
⋅ 𝑈 (𝑘) , Δ𝑟2 (𝑘) Δ𝛿 (𝑘) , Δ𝑟 (𝑘) ΔV (𝑘)
⋅ Δ𝛿 (𝑘) , 𝑈2 (𝑘)]𝑇

14×1
.

(21)

Equation (20) can be rewritten as

Δ𝑟 (𝑘 + 1) = Δ𝑟 (𝑘) +ΘX (𝑘) . (22)

At a neighbour sampling time, the above equation becomes

Δ𝑟 (𝑘) = Δ𝑟 (𝑘 − 1) +ΘX (𝑘 − 1) . (23)

Combined with (22), the following equality holds:

𝑧 (𝑘) = 𝑧 (𝑘 − 1) +ΘY (𝑘 − 1) , (24)

by definition of

𝑧 (𝑘) = Δ𝑟 (𝑘 + 1) − Δ𝑟 (𝑘) ,
Y (𝑘 − 1) = X (𝑘) − X (𝑘 − 1) . (25)

Comparing (23) with (24), it can be seen that although the
input-output pair are altered, the coefficient matrix remains
the same. Usually, if the degree of linear dependence of input
variables in the original system is serious, it could be mod-
erated after difference of samples. As a comparison, Table 3
lists the correlation coefficients after the difference method is
employed, as shown below the principal diagonal (elements
above the principal diagonal are the correlation coefficients
without difference method shown in Table 2). As can be
seen, the linear dependence of the input variables has been
obviously decreased.

3.3.3. Additional Signal. Besides the difference method,
another approach to reconstruct the input-output samples
can be used, which refers to the method of additional signal.
Such a method had been successfully applied to the identifi-
cation of shipmanoeuvring by analyzing simulation data [23]
and captive model test results [54]. Taking the system (22) as
an example, an additional ramp signal can be designed as

𝑦𝑎 (𝑘 + 1) = 𝑦𝑎 (𝑘) + 𝜆, (26)

where 𝜆 is a constant. Adding this signal to (22), a new
parameter system can be obtained as

[Δ𝑟 (𝑘 + 1) + 𝑦𝑎 (𝑘 + 1)]
= [Δ𝑟 (𝑘) + 𝑦a (𝑘)] +ΘX (𝑘) + 𝜆, (27)

where the output variable and the first input variable change;
however, the parameter matrix Θ related to hydrodynamic
coefficients does not. The additional signal can be viewed as
an additional excitation to the original system. As a result, the
manoeuvring characteristics of the original system, which
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Table 3: Comparison of correlation coefficients using difference method.

𝑁V 𝑁𝑟 𝑁|V|V 𝑁|V|𝑟 𝑁𝛿 𝑁𝛿𝛿𝛿 𝑁V𝛿𝛿 𝑁VV𝛿 𝑁|𝑟|𝑟 𝑁V|𝑟| 𝑁𝑟𝛿𝛿 𝑁𝑟𝑟𝛿 𝑁𝑟V𝛿𝑁V 1.00 0.45 0.98 0.67 0.91 0.92 0.99 0.97 0.39 0.84 0.54 0.54 0.68
𝑁𝑟 0.44 1.00 0.42 0.84 0.53 0.54 0.47 0.43 0.97 0.66 0.91 0.75 0.81
𝑁|V|V 0.83 0.31 1.00 0.66 0.83 0.85 0.98 1.00 0.32 0.77 0.50 0.42 0.67
𝑁|V|𝑟 0.34 0.21 0.38 1.00 0.62 0.64 0.68 0.66 0.75 0.87 0.92 0.73 1.00
𝑁𝛿 0.64 0.44 0.23 0.01 1.00 0.99 0.91 0.83 0.50 0.83 0.61 0.71 0.62
𝑁𝛿𝛿𝛿 0.50 0.33 0.25 0.13 0.74 1.00 0.92 0.85 0.50 0.83 0.62 0.69 0.64
𝑁V𝛿𝛿 0.84 0.41 0.77 0.36 0.48 0.66 1.00 0.98 0.40 0.83 0.55 0.53 0.69
𝑁VV𝛿 0.81 0.31 0.99 0.39 0.22 0.29 0.82 1.00 0.33 0.77 0.50 0.42 0.67
𝑁|𝑟|𝑟 0.34 0.88 0.03 0.07 0.54 0.35 0.28 0.04 1.00 0.62 0.86 0.81 0.72
𝑁V|𝑟| 0.57 0.27 0.21 0.46 0.58 0.41 0.40 0.19 0.30 1.00 0.78 0.82 0.89
𝑁𝑟𝛿𝛿 0.19 0.17 0.08 0.58 0.21 0.29 0.09 0.06 0.05 0.30 1.00 0.83 0.91
𝑁𝑟𝑟𝛿 0.29 0.32 0.15 0.16 0.72 0.44 0.09 0.18 0.49 0.62 0.50 1.00 0.73
𝑁𝑟V𝛿 0.32 0.11 0.33 0.90 0.01 0.09 0.26 0.32 0.16 0.49 0.73 0.24 1.00

Table 4: Comparison of correlation coefficients using additional
signal.

𝑁1 𝑁1𝑁V 0.465 0.081
𝑁𝑟 0.996 0.011
𝑁|V|V 0.450 0.026
𝑁|V|𝑟 0.849 0.002
𝑁𝛿 0.552 0.028
𝑁𝛿𝛿𝛿 0.556 0.022
𝑁V𝛿𝛿 0.491 0.005
𝑁VV𝛿 0.455 0.029
𝑁|𝑟|𝑟 0.023 0.834
𝑁V|𝑟| 0.970 0.039
𝑁𝑟𝛿𝛿 0.665 0.015
𝑁𝑟𝑟𝛿 0.912 0.013
𝑁𝑟V𝛿 0.771 0.024

might cause the parameter drift as described in the Sec-
tion 3.1, are changed and the parameter drift can be alleviated
resultantly. From the point of view of regression analysis, the
introduction of the additional signal alters the input variables,
which might alleviate the degree of linear dependence
between the changed variables and others. Takingmodel (27)
as an example, assuming 𝜆 = 1, Table 4 lists the correlation
coefficients before and after the additional signal is attached
to the samples, in which 𝑁1 = 𝑁1 = 1 indicates that coeffi-
cient of the first input variable [Δ𝑟(𝑘)+𝑦𝑎(𝑘)] in (27) is one. As
can be seen from the comparison results, the degree of linear
dependence remarkably decreases for most of variables after
an additional signal is added.

It is noted that the design of additional signal depends
on the characteristic of the data samples or the manoeuvring
motion. For periodically nonlinear motion such as zigzag
manoeuvre or turning circle manoeuvring, the linear ramp
signal like (26) works well [23]; for a linear motion such as
oblique towing test, a nonlinear additional signal is more
appropriate [54].

Table 5: Hydrodynamic coefficients of KVLCC2 (×10−5).
Value X-coef. Value Y-coef. Value N-coef. Value

𝑋�̇� −95.4 𝑋𝑢 −93 𝑌V −358 𝑁V −6.3
𝑌V̇ −1283 𝑋VV 149 𝑌𝑟 1980 𝑁𝑟 −74
𝑌̇𝑟 0 𝑋𝑟𝑟 −108 𝑌𝛿 448 𝑁𝛿 −165
𝑁V̇ 0 𝑋𝛿𝛿 −105 𝑌|V|V −3.5 𝑁|V|V 20
𝑁̇𝑟 −107 𝑋V𝑟 −237 𝑌|V|𝑟 30 𝑁|V|𝑟 −9.9
𝑥𝐺 3486 𝑋V𝛿 172 𝑌|𝑟|𝑟 679 𝑁|𝑟|𝑟 −17
𝑚 1908 𝑋𝑟𝛿 −433 𝑌V|𝑟| 158 𝑁V|𝑟| −43
𝐼𝑧 119 𝑋0 −48 𝑌𝛿𝛿𝛿 −94 𝑁𝛿𝛿𝛿 22

𝑌V𝛿𝛿 −3.6 𝑁V𝛿𝛿 17
𝑌VV𝛿 −7.3 𝑁VV𝛿 12
𝑌𝑟𝛿𝛿 −23 𝑁𝑟𝛿𝛿 22
𝑌𝑟𝑟𝛿 134 𝑁𝑟𝑟𝛿 −40
𝑌𝑟V𝛿 −28 𝑁𝑟V𝛿 3.9
𝑌0 −6.6 𝑁0 0.2

4. Example Study

The abovementioned measures on how to diminish the drift
of hydrodynamic coefficients, including difference method
and additional signal, are employed in identifying a simplified
Abkowitz model combined with free-running model tests of
aKVLCC2. SVMbased SI is used to obtain the hydrodynamic
coefficients. The details of the mathematical model of ship
manoeuvring, the SVM methodology, the ship, and the
model tests can be found in [24] and relevant literature.
Table 5 lists the identification results of the hydrodynamic
coefficients, in which the addedmasses and addedmoment of
inertia are calculated by slender-body theory, as stated in Sec-
tion 2. Based on the regression model, 25∘/5∘ zigzag manoeu-
vring motion is simulated and the predicted results are
comparedwith the experimental results, as shown in Figure 2.
Comparisons with the experimental results of other two
manoeuvres are presented in Figure 3 (20∘/5∘ zigzagmanoeu-
vre) and Figure 4 (20∘/10∘ zigzag manoeuvre), respectively.
As can be seen, good agreement between prediction and
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Figure 2: Prediction of 25∘/5∘ zigzag manoeuvre of a KCLCC2 ship.

Predictions
Experiments

0.5

1

1.5

u
(m

/s
)

20 40 60 80 100 120 140 1600
−0.5

0

0.5

�
(m

/s
)

r
(∘

/s
)

−5

0
5

−50

0
50

Heading (∘) and rudder angle (∘/s)

20 40 60 80 100 120 140 1600

20 40 60 80 100 120 140 1600

20 40 60 80 100 120 140 1600
Time (s)

Figure 3: Prediction of 20∘/5∘ zigzag manoeuvre of a KCLCC2 ship.

experiment is achieved. It is owing not only to the use of SVM
method, a powerful modeling tool, but also to the measures
taken to diminish the parameter drift.

5. Conclusions

Parameter identifiability is an important issue for the SI appli-
cation to the modeling of ship manoeuvring. Some parame-
ters in the manoeuvring model cannot be obtained using SI,
while some parameters deviate from true values even if they
can be derived. Several measures are proposed to deal with
the problem of parameter identifiability and the validities
are demonstrated by examples. To determine the added
masses and added moment of inertia, slender-body theory
provides a simple estimationmethod. Todiminish the param-
eter drift effect, the mathematical model of ship manoeu-
vring motion is simplified on the basis of regression analysis;
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Figure 4: Prediction of 20∘/10∘ zigzagmanoeuvre of aKCLCC2 ship.

difference of the samples and additional signal also take effect.
These measures can be viewed as developed approaches that
are commonly used in regression analysis to diminish the
multicollinearity. For instance, the simplification of a model
can be viewed as a kind of pruning-variable method or PCR
analysis since the main components in the model remained
while some trivial variables are removed. The additional
signal method can be viewed as the opposition to pruning-
variable method.

Future work will be devoted to the study on a more accu-
rate, practical and universal estimation method for added
masses and added moment of inertia since slender-body
method gives satisfactory results only for slender ships and
“mild” manoeuvres. Moreover, how to design an appropriate
additional signal according to the characteristics of samples
will be studied.
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