
Research Article
Analyzing Network Protocols of Application Layer
Using Hidden Semi-Markov Model

Jun Cai, Jian-Zhen Luo, and Fangyuan Lei

School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China

Correspondence should be addressed to Jian-Zhen Luo; helu84@139.com

Received 13 November 2015; Accepted 22 March 2016

Academic Editor: Yakov Strelniker

Copyright © 2016 Jun Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of Internet, especially the mobile Internet, the new applications or network attacks emerge in a high
rate in recent years. More and more traffic becomes unknown due to the lack of protocol specifications about the newly emerging
applications. Automatic protocol reverse engineering is a promising solution for understanding this unknown traffic and recovering
its protocol specification. One challenge of protocol reverse engineering is to determine the length of protocol keywords and
message fields. Existing algorithms are designed to select the longest substrings as protocol keywords, which is an empirical way
to decide the length of protocol keywords. In this paper, we propose a novel approach to determine the optimal length of protocol
keywords and recover message formats of Internet protocols by maximizing the likelihood probability of message segmentation
and keyword selection. A hidden semi-Markov model is presented to model the protocol message format. An affinity propagation
mechanism based clustering technique is introduced to determine the message type. The proposed method is applied to identify
network traffic and compare the results with existing algorithm.

1. Introduction

Network protocol specifications, describing the structure of
protocol messages and regulating the behaviors of commu-
nication entities on the Internet, play an important role
in addressing numbers of security or management ori-
ented issues in several domains of computer and network-
ing. For example, intrusion detection systems and firewall
systems require protocol specifications to perform deep
packet inspection. Security experts spy and understand the
specification of command & control (C&C) protocols [1]
to detect and defend the botnets. Network management
administrators build up application signatures based on
protocol specifications to identify protocols and tunnels in
monitored network traffic. Fuzz tests [2]make use of protocol
specifications to reduce the number of fault-inserted files
while still maintaining the maximum test case coverage. The
protocol specifications are also powerful tools to enable the
interoperation betweenmultiple systems based on incompat-
ible protocols [3–5].

A complete specification is referred to as both protocol
message format and protocol state machine. The former
reveals the protocol syntax which conducts the process of
constructing different types of messages to be exchanged
between communication entities, while the latter formulates
the behaviors of protocol entities during the whole process
of communication, such as the order in which different types
of messages should be sent or received. For open protocols,
like HTTP and FTP, their specifications can be obtained by
means of accessing to the published documents. However,
for proprietary protocols used by enterprises or hackers, their
specifications would not be unpublished for commercial or
security reasons. To date, more and more new protocols and
mobile applications emerge every day due to the rapid devel-
opment of mobile Internet and unprecedented popularity
of smart phones [6]; network management administrators
need to know about the specifications of these protocols or
applications to monitor the network traffic. However, there
is no public documentation about their specifications. Over
the past few years, researchers deem that the only available

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 9161723, 14 pages
http://dx.doi.org/10.1155/2016/9161723

2 Mathematical Problems in Engineering

option to spy the specification of proprietary protocol or new
emergingmobile applications is protocol reverse engineering.

Traditionally, protocol reverse engineering is performed
by manual analysis, which is time-consuming and error-
prone. For example, the Samba project has taken over 12
years to manually recover the specification of SMB/CIFS [3].
In the Pidgin project [4], the Pidgin plug-ins have to be
patched when the target protocol is changed and the delay
between the protocol changes and working patches could be
months, caused by reverse engineering. In order to address
these problems, automatic protocol reverse engineering has
been proposed over the last decade and has become a heat
topic in research field of network traffic analysis.

Automatic protocol reverse engineering is a process of
recovering protocol message formats and inferring protocol
state machine without access to the specification of target
protocol. Generally, automatic protocol reverse engineering
can be divided into network trace based approach and binary
analysis based approach. The network trace based approach
takes captured network trace as input and reconstructs
message formats by identifying basic components, such
as message fields or protocol keywords, using techniques
introduced from the fields of data mining, bioinformatics,
nature language processing, and so on. The binary analysis
based approach operates by observing how the executable
binary software implementing the target protocol makes use
of the memory and registers during the runtime to process
the received messages or construct the sent message. The
former approach is easy to deploy and relies only on the
network trace generated by the target protocol, while the
latter approach is useful for the scenarios where executable
binary software is available and can be run in a control
environment.

In this paper, we focus on recovering themessage formats
from network trace using the network trace based approach.
Our goal is to identify the location of message fields and
determine the length of protocol keywords. The message
format is comprised of message fields. Some fields (called
keyword fields) contain the protocol keywords. The protocol
keywords are some constants or commands used by network
protocol. For example, “GET”, “HTTP”, and “POST” are
some protocol keywords used by HTTP protocol.

The first challenge in our research is to determine the
length of protocol keywords. Previous works [7–12] which
are based on longest common subsequence (LCS) criteria
select longest frequent substrings to be protocol keywords.
For example, if “G”, “E”, “T”, “GE”, “ET”, and “GET” are
frequent substrings, “GET” will be chosen as the protocol
keyword, since it is the longest substring. However, if the
frequency threshold is low enough, “GET abc” (“abc” is a
string that follows “GET”) will become a frequent string, so
“GET abc” will be chosen as protocol keyword, while the
true keyword “GET” would be dropped. Therefore, it is not
rational to simply choose the longest frequent substrings as
protocol keywords.

The second challenge is to deal with binary protocols. It
is easy to define and understand the protocol keywords that
bound themessage fields in text protocols which restrict their
content to printable ASCII characters. However, for binary

protocols, fields are predefined by the protocol specifications
to represent specific meanings instead of using the protocol
keywords as the preambles. Messages containing only fixed-
length fields are not difficult to recover. However, the com-
plexity will increase dramatically when the fields are variable
in length.

The third challenge is to determine the location rela-
tionship of message fields. The relationship of fields varies
from sequence to juxtaposition. For example, in the request
message of HTTP, the request method field “GET” and the
HTTP version field “HTTP/1.1” are of sequential relation,
which means that “GET” must occur in some location before
the position of “HTTP/1.1” and the location of the two fields
can not be exchanged, while some other fields, such as the
“Host” field and the “Server” field, are of juxtapositional
relation, which means that their locations can be exchanged
with each other.

In this paper, we apply a probabilistic model, hidden
semi-Markov model (HsMM) [13], to address the challenges
of our work. On the one hand, one can find out the optimal
length of the protocol keyword with maximal likelihood
probability based on the HsMM. Obviously, the length of
keyword based on maximal likelihood probability is much
more reasonable and rigorous than those empiristic decisions
of choosing the longest frequent substrings. On the other
hand, the HsMM model is a probabilistic directed graph
(lattice). Each node in the lattice represents a state that can
emit various observations. The states in the same longitude
are of sequential relation, while states in the same latitude
are of juxtapositional relation. Therefore, it is natural to use
HsMM to model the sequential and juxtapositional relation
of fields.

The organization of this paper is as follows. In Section 2,
related work about protocol reverse engineering is studied. In
Section 3, a brief review of the concept and definition about
HsMM is illustrated. In Section 4, the proposed method
of modeling message format using HsMM is presented in
detail. In Section 5, the system architecture is presented and
some implementation issues are discussed. In Section 6, the
proposed method is evaluated and the experiment results are
shown. Finally, a conclusion is made in Section 7.

2. Related Work

Over the past few years, automatic protocol reverse engi-
neering has attracted tremendous research interest in both
research and industry field of computer and networking
application. Numbers of works have been published to dis-
cuss and addressmany issues about the heat topic. Beddoe [7]
proposes to make use of algorithms widely used in the field
of bioinformatics, that is, the sequence alignment algorithms
and phylogeny construction algorithm, to determine the
location and size of field in each individual packet. Beddoe
presents his effort in the protocol informatics project and
implements his approach in Python to extract the longest
common subsequence (LCS) as message fields with constant
value. Kreibich and Crowcroft [8] introduce a novel variant
of the Jacobson-Vo algorithm [14] to compute the LCSs of

Mathematical Problems in Engineering 3

input strings and employ a flexible gap-minimising algorithm
to improve the efficiency and effectiveness of network traffic
alignment. The authors show that their method outperforms
the commonly used Smith-Waterman approach on a wide
range of network protocols. Both Beddoe [7] and Kreibich
and Crowcroft [8] aim to mine the commonalities of mes-
sages as the basic components of message formats based on
LCS, while our approach is to infer the location and length of
message fields based on the maximal likelihood probability.

Cui et al. present Discoverer [15] to recursively cluster
and align the token patterns of messages to infer protocol
message format idioms. Although Discoverer is practicable
to recover the protocol message formats of three selected
protocols, that is, HTTP, RPC, and SMB/CIFS, there are
still about 10% of the message formats that could not be
correctly inferred due to some inaccurate parsing. Discoverer
firstly tokenizes the protocol messages and initially clusters
messages according to the token patterns. Thus, the lengths
of fields are factitiously forced to be consistent with the
size of tokens and the boundaries of message fields in
the text protocols are restricted to some separators (such
as space) specified by the authors. Moreover, the relation-
ship of fields in message formats inferred by Discoverer is
sequential. In our approach, we do not make any assump-
tion about the separators and aim to infer the optimal
length of fields by maximizing the likelihood probability of
message segmentation. Meanwhile, we capture the location
relationship of fields, such as sequential and juxtaposi-
tional relation, by learning a probabilistic directed lattice
graph.

Wang et al. [16] present a framework to infer message for-
mats by improving the Aho-Corasick (AC) algorithm [17] to
identify frequent sequences and mining the association rules
among the frequent sequences. They evaluate the framework
in wireless environment and show that the framework can
identify ARP and ICMP packets in high accuracy. However,
their framework only searches for association rules of some
frequent fields in protocol messages, while the aim of our
scheme is to infer the whole format of message by inferring
all of the message fields.

Wang et al. propose Biprominer [18] to extract binary
protocol message formats based on the statistical nature of
message formats. Firstly, the Biprominer recursively learns
and labels frequent patterns in the message based on the
frequency of blocks (comprised of several bytes). Then, the
messages with labeled blocks are converted into a transition
probability model. Antunes and Neves [19] present building
an automaton based on sequence alignment algorithm for
recovering message formats from network trace. They firstly
extend the partial order alignment algorithm to generate an
initial automaton from messages, then apply sequence align-
ment techniques to find out the optimal alignment between
the automaton and the new coming messages, and finally use
the alignment results to further extend the automaton.These
researches focus on modeling the transition probability of
message blocks or finding out the acceptable paths of bytes
in the automatons, while our work aims to identify message
fields with variable length as well as model the location
relationship of fields.

Some works leverage the semantics analysis of message
fields to infer message formats. The so-called semantics
analysis is to identify the keyword sequences, each of which
indicates a specific intention of the protocolmessage. Krueger
et al. [20] present a semantics-aware tool for network
payloads analysis to automatically extract semantics-aware
components from captured network trace. They map pro-
tocol messages to a vector space based on tokens or words
and identify communication templates corresponding to the
base directions in the vector space. Wang et al. propose
ProDecoder [21] to reconstruct the message formats based
on semantics-aware approach. ProDecoder first identifies
keywords using Latent Dirichlet Allocation (LDA) models
taken from natural language processing. Protocol messages
are then clustered according to their semantics (different
combination of keywords) using the Information Bottleneck
clustering algorithm. Finally, messages in each cluster are
aligned to find out the commonparts among themusingwell-
known sequence alignment algorithms. These methods aim
to reveal the semantics characteristics of protocol messages
under specific communication motivations, so the message
formats are expected to be affected by the user intentions.
However, our method captures the general structures of
messages of the target protocol.

As an alternative approach to understand the unknown
or proprietary protocols, binary analysis based techniques
also draw much research attention in the field of network
security. For example, Polyglot [22], Tupni [23], AutoFormat
[24], Prospex [25], and Dispatcher [26] are all systems
based on binary analysis techniques. They are workable and
applicable in the scenarios where the binary software is
available and can be run in a controlled environment. In
addition, binary analysis techniques can not work when the
binary clients apply some interference techniques, such as
obfuscation, to protect themselves from being detected and
reverse-engineered. In this paper, we narrow our research
into the application scene that only the network trace of target
protocols is available. Hence, we do not discuss these binary
analysis based techniques but focus on those approaches
based on network trace.

3. Hidden Semi-Markov Models

A hidden semi-Markov model (HsMM) as shown in Figure 1
is an extension of hiddenMarkov model (HMM) by allowing
the underlying process to be a semi-Markov chain with a
variable duration time for each state [13, 27].

The basic elements of HsMM include the hidden state set

S = {1, 2, . . . ,𝑀} , (1)

the state duration set

D = {1, 2, . . . , 𝐷} , (2)

and the observation set

V = {V
1
, V
2
, . . . , V

𝐾
} . (3)

The hidden state of underlying process at time 𝑡 is
donated as 𝑠

𝑡
∈ S. The symbols 𝑖 and 𝑗 are used to

4 Mathematical Problems in Engineering

Observable

Time axis

Underlying process

t1 2 3 4 5 6 T

processO1 O3 O3 O4 O5 O6 OT−1OT

(i1, d1) (i2, d2) (in, dn)

ai1,i2 ai2,i3 ai𝑛−1,i𝑛
· · ·

· · ·

· · ·

· · ·

Figure 1: Hidden semi-Markov model.

represent substantive values of state variable 𝑠. For simplicity
of notation, we denote the following:

(i) 𝑠

𝑡
2

𝑡
1

= 𝑖 means 𝑠
𝑡
1

= 𝑠
𝑡
1
+1

= ⋅ ⋅ ⋅ = 𝑠
𝑡
2

= 𝑖; however, the
previous state 𝑠

𝑡
1
−1
and the next state 𝑠

𝑡
2
+1
may ormay

not be 𝑖.
(ii) 𝑠

𝑡
2
]

[𝑡
1

= 𝑖 means 𝑠
𝑡
1

= 𝑠
𝑡
1
+1

= ⋅ ⋅ ⋅ = 𝑠
𝑡
2

= 𝑖; however,
neither 𝑠

𝑡
1
−1

nor 𝑠
𝑡
2
+1

is 𝑖.

(iii) 𝑠

𝑡
2
]

𝑡
1

= 𝑖 means 𝑠
𝑡
1

= 𝑠
𝑡
1
+1

= ⋅ ⋅ ⋅ = 𝑠
𝑡
2

= 𝑖 and 𝑠
𝑡
2
+1

̸= 𝑖;
however, the previous state 𝑠

𝑡
1
−1

may or may not be 𝑖.

(iv) 𝑠

𝑡
2

[𝑡
1

= 𝑖 means 𝑠
𝑡
1

= 𝑠
𝑡
1
+1

= ⋅ ⋅ ⋅ = 𝑠
𝑡
2

= 𝑖 and 𝑠
𝑡
1
−1

̸= 𝑖;
however, the next state 𝑠

𝑡
2
+1

may or may not be 𝑖.

As shown in Figure 1, the observation sequence 𝑂

𝑇

1
is the

observable process, while the state sequence 𝑠

𝑇

1
and the state

transitions (𝑖
𝑚
, 𝑑
𝑚
) → (𝑖

𝑚+1
, 𝑑
𝑚+1

), 𝑚 = 1, 2, . . . , 𝑛 − 1, are
underlying process that cannot be observed. For each pair
(𝑖
𝑚
, 𝑑
𝑚
) in the underlying process, 𝑑

𝑚
is the time duration

of state 𝑖
𝑚
.

Formally, a HsMM can be represented by

𝜆 = (𝐴, 𝐵, 𝑃, 𝜋) , (4)

where 𝐴 is the state transition probability matrix, 𝐵 is the
emission probability matrix, 𝑃 is the distribution of state
durations, and 𝜋 is the initial distribution of states.

The state transition probability matrix is defined as

𝐴 = {𝑎
𝑖,𝑗

| ∀𝑖, 𝑗 ∈ S} , (5)

where 𝑎
𝑖,𝑗

= 𝑃(𝑠
[𝑡+1

= 𝑗 | 𝑠
𝑡]

= 𝑖), subject to ∑
𝑗∈S\𝑖 𝑎𝑖,𝑗 = 1

and zero self-transition probabilities 𝑎
𝑖,𝑖

= 0, for all 𝑖, 𝑗 ∈ S.
The emission probability matrix 𝐵 is defined as

𝐵 = {𝑏
𝑖
(V) | ∀𝑖 ∈ S, V ∈ V} , (6)

where 𝑏
𝑖
(V) = 𝑃(𝑜

𝑡
= V | 𝑠

𝑡
= 𝑖) means that V is observed at 𝑡

in state 𝑖.
The distribution of the state duration is

𝑃 = {𝑝
𝑖
(𝑑)} , 𝑖 ∈ S, 𝑑 ∈ D. (7)

The initial distribution of states indicates the probability
of the initial state before time 𝑡 = 1; that is,

𝜋 (𝑖) = 𝑃 (𝑠
𝑡
= 𝑖) , 𝑡 ≤ 1, 𝑖 ∈ S. (8)

GET Host:GET HTTP/1.1 Host: Server:

Keyword field
Data field

f1 f2 f3 f4 f5 f6 f7 f8

Figure 2: Message format.

4. Protocol Modeling

4.1. Modeling Network Protocol Using HsMM. A network
protocol is a set of rules for regulating the exchange of
messages in the Internet. The specification of network pro-
tocol describes the strict syntactical format for valid message
and defines the strict procedure rules of data exchange. The
alphabet of valid messages is the set of all possible values of a
single byte; that is,

Σ = {0x00, 0x01, 0x02, . . . , 0x𝐹𝐹} . (9)

A string 𝜔 over Σ is defined as a finite sequence of letters
in Σ; that is, 𝜔 = 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
, (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
∈ Σ). The set of

all finite strings over alphabet Σ is represented as Σ∗.
The protocol message, denoted as 𝑚, is defined as the

basic data unit exchanged between different communicating
entities of application-layer protocol. A message consists of a
set of message fields, including keyword fields and data fields,
as shown in Figure 2. The message fields, denoted as 𝑓, are
strings over Σ; that is, 𝑓 ∈ Σ

∗.
The validmessages exchanged by communicating entities

are constructed according to the protocol message format.
The relationship of field location in the message format
is varying from sequential to juxtapositional. For example,
according to the HTTP specification, message fields 𝑓

1
, 𝑓
2
,

and 𝑓
3
in Figure 2 are of sequential relation; that is, the

location of 𝑓
2
must go after 𝑓

1
but preceded 𝑓

3
. However, the

relation of fields 𝑓
5
and 𝑓

7
is juxtapositional that means the

location of 𝑓
5
and 𝑓

7
can be exchanged with each other.

In order to model message format using HsMM, protocol
message is treated as an observation sequence representing
the observable process. Each field is a block of observations
associated with a specific hidden state with the length of
this field as the corresponding state duration. For example
in Figure 3, 𝑓

1
is the block of observations from 𝑡 = 1 to 3

associated with state 𝑖
1
and duration 𝑑

1
= 3. In this model,

the emission probability matrix 𝐵 implies the relationship
between observations and hidden states, while the state
transition probability matrix 𝐴 implies the relationship of
field location.

Mathematical Problems in Engineering 5

t

G E T H T T P

1 2 3

Observable

Time axis

Underlying process

process

(i1, d1) (i2, d2) (i3, d3)

ai1,i2 ai2,i3 ai3,i4
· · ·

· · ·

· · ·

· · ·· · ·

· · ·

f1 f2 f3

Figure 3: Illustration of modeling HTTP based on hidden semi-
Markov model.

Let 𝑂 be an observation sequence and let Ω be the set
of frequent strings that occurred in 𝑂. Given 𝜔

, 𝜔 ∈ Ω, we

denote that 𝜔 ⊂ 𝜔, if 𝜔 is the substring of 𝜔. The string 𝜔 is
closed in Ω, if there does not exist a string 𝜔

∈ Ω to satisfy

𝜔 ⊂ 𝜔

. The set of closed frequent strings in Ω is denoted as
L.

Each closed string in L is associated with different
hidden states; thus, the number of hidden states for closed
string in L is 𝑁 = ‖L‖. Suppose that 𝜔

𝑖
∈ L is associated

with state 𝑖; then all characters in 𝜔
𝑖
are observations of state

𝑖.
Additionally, we define other 𝑀 − 𝑁 special states (𝑖 =

𝑁+1,𝑁+2, . . . ,𝑀) which are associated with any characters
in Σ.

4.2. Parameters Reestimation. In this section, we discuss an
iterative procedure for reestimating the parameters of 𝜆 =

(𝐴, 𝐵, 𝑃, 𝜋), based on the Baum-Welch method [28]. At the
beginning, a random initialization of 𝐴 and 𝜋 is selected,
while the initialization of 𝐵 and 𝑃 is processed as follows.

For 𝑖 ∈ {1, 2, . . . , 𝑁}, 𝑏
𝑖
(𝑐) = exp(−‖𝜔

𝑖
‖/10), if 𝑐 ∈ Σ,

where 𝜔
𝑖
∈ L is the closed frequent string associated with

𝑖. Otherwise, 𝑏
𝑖
(𝑐) = 0, if 𝑐 does not occur in 𝜔

𝑖
.

For 𝑖 ∈ {𝑁 + 1,𝑁 + 2, . . . ,𝑀}, the emission probability of
letter 𝑐 in state 𝑖 is 𝑏

𝑖
(𝑐) = exp(−20).

For 𝑖 ∈ S and 𝑑 ∈ D,

𝑝
𝑖
(𝑑) =

𝑑

2

∑

𝐷

𝑘=1
𝑘

2
. (10)

In the forward-backward procedure, the forward variable
is defined as

𝛼
𝑡
(𝑗, 𝑑) ≡ 𝑃 ((𝑠

𝑡
, 𝜏
𝑡
) = (𝑗, 𝑑) , 𝑂

𝑡

1
) , (11)

where 𝜏
𝑡
is the remaining time of the current state 𝑠

𝑡
.

Initially, 𝛼
1
(𝑖, 𝑑) = 𝜋(𝑖)𝑏

𝑖
(𝑂
1
)𝑝
𝑖
(𝑑).

The inductive solution for 𝛼
𝑡
(𝑖, 𝑑) when 𝑡 > 1 is given as

follows:
𝛼
𝑡
(𝑖, 𝑑) = 𝛼

𝑡−1
(𝑖, 𝑑 + 1) 𝑏

𝑖
(𝑜
𝑡
)

+ (∑

𝑗 ̸=𝑖

𝛼
𝑡−1

(𝑗, 1) 𝑎
𝑗𝑖
)𝑏
𝑖
(𝑜
𝑡
) 𝑝
𝑖
(𝑑) ,

𝑑 ≥ 1.

(12)

The backward variable is defined as
𝛽
𝑡
(𝑖, 𝑑) ≡ 𝑃 (𝑂

𝑇

𝑡+1
| (𝑠
𝑡
, 𝜏
𝑡
) = (𝑖, 𝑑)) . (13)

Initially, 𝛽
𝑇
(𝑖, 𝑑) = 1.

The inductive solution for 𝛽
𝑡
(𝑖, 𝑑)when 1 ≤ 𝑡 < 𝑇 is given

as follows:

𝛽
𝑡
(𝑖, 𝑑) = 𝑏

𝑖
(𝑜
𝑡+1

) 𝛽
𝑡+1

(𝑖, 𝑑 − 1) , 𝑑 > 1,

𝛽
𝑡
(𝑖, 1) = ∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑏
𝑗
(𝑜
𝑡+1

)(∑

𝑑≥1

𝑝
𝑗
(𝑑) 𝛽
𝑡+1

(𝑗, 𝑑)) .

(14)

We define the probability that the state 𝑖 ends at time
𝑡, while the state 𝑗 starts at time 𝑡 + 1, given the entire
observation sequence 𝑂

𝑇

1
, as follows:

𝜉
𝑡
(𝑖, 𝑗) ≡ 𝑃 (𝑂

𝑇

1
, 𝑠
𝑡−1

= 𝑖, 𝑠
𝑡
= 𝑗)

= 𝛼
𝑡−1

(𝑖, 1) 𝑎
𝑖𝑗
𝑏
𝑗
(𝑜
𝑡
)(∑

𝑑≥1

𝑝
𝑗
(𝑑) 𝛽
𝑡
(𝑗, 𝑑)) .

(15)

The probability that the state 𝑗 ends at time 𝑡 with its
duration being 𝑑, given the entire observation sequence 𝑂

𝑇

1
,

is defined as

𝜂
𝑡
(𝑖, 𝑑) ≡ 𝑃 (𝑠

𝑡−1
̸= 𝑖, 𝑠
𝑡
= 𝑖, 𝜏
𝑡
= 𝑑,𝑂

𝑇

1
)

= (∑

𝑗 ̸=𝑖

𝛼
𝑡−1

(𝑗, 1) 𝑎
𝑗𝑖
)𝑏
𝑖
(𝑜
𝑡
) 𝑝
𝑖
(𝑑) 𝛽
𝑡
(𝑖, 𝑑) .

(16)

The probability that the state at time 𝑡 is 𝑖, given the entire
observation sequence 𝑂

𝑇

1
, is defined as

𝛾
𝑡
(𝑖) ≡ 𝑃 (𝑠

𝑡
= 𝑖, 𝑂

𝑇

1
) . (17)

In order to solve for 𝛾
𝑡
(𝑖), we consider the following

identities:

𝑃 (𝑠

𝑡+1

𝑡
= 𝑗, 𝑂

𝑇

1
) = 𝑃 (𝑠

𝑡
= 𝑗, 𝑂

𝑇

1
) − 𝑃 (𝑠

𝑡]
= 𝑗, 𝑂

𝑇

1
) ,

𝑃 (𝑠

𝑡+1

𝑡
= 𝑗, 𝑂

𝑇

1
) = 𝑃 (𝑠

𝑡+1
= 𝑗, 𝑂

𝑇

1
)

− 𝑃 (𝑠
[𝑡+1

= 𝑗, 𝑂

𝑇

1
) .

(18)

Thus, we have a recursive formula for 𝛾
𝑡
(𝑖) as follows:

𝛾
𝑡
(𝑖) = 𝛾

𝑡+1
(𝑖) + ∑

𝑗 ̸=𝑖

(𝜉
𝑡+1

(𝑖, 𝑗) − 𝜉
𝑡+1

(𝑗, 𝑖)) . (19)

In the phase of recursively computing 𝛾
𝑡
(𝑖), the initial

condition is given as follows:

𝛾
𝑇
(𝑖) = ∑

𝑑≥1

𝛼
𝑇
(𝑖, 𝑑) . (20)

6 Mathematical Problems in Engineering

With these notations, the parameters of 𝜆 can be updated
and improved by the following equations:

�̂�
𝑖
=

𝛾
1
(𝑖)

∑
𝑖
𝛾
1
(𝑖)

,

�̂�
𝑖𝑗

=

∑

𝑇

𝑡=1
𝜉
𝑡
(𝑖, 𝑗)

∑
𝑗 ̸=𝑖

∑
𝑡
𝜉
𝑡
(𝑖, 𝑗)

,

�̂�

𝑖
(𝑑) =

∑

𝑇

𝑡=1
𝜂
𝑡
(𝑖, 𝑑)

∑

𝐷

𝑑=1
∑

𝑇

𝑡=1
𝜂
𝑡
(𝑖, 𝑑)

,

̂
𝑏
𝑖
(V
𝑘
) =

∑

𝑇

𝑡=1
𝛾
𝑡
(𝑖) I (𝑜

𝑡
== V
𝑘
)

∑
𝑘
∑

𝑇

𝑡=1
𝛾
𝑡
(𝑖) I (𝑜

𝑡
== V
𝑘
)

.

(21)

Note that I(expression) = 1, if expression is true.
Otherwise I(expression) = 0, if expression is not true.

4.3. Inferring Protocol Keywords. Given the reestimated
HsMM ̂

𝜆 = (
̂
𝐴,

̂
𝐵,

̂
𝑃, �̂�) and an observation sequence 𝑂, the

forward and backward variables can be computed based on
forward-backward algorithm. Then, the variable 𝜂

𝑡
(𝑗, 𝑑) can

be computed using (16). In what follows, we can infer the state
sequence with maximal likelihood probability based on the
Viterbi algorithm [29]. The inference procedure is given as
follows:

(𝑖
1
, 𝑑
1
) = argmax

𝑗,𝑑

(𝜂
𝑇
(𝑗, 𝑑)) ,

(𝑖
2
, 𝑑
2
) = argmax

𝑗,𝑑

(𝜂
𝑇−𝑑
1

(𝑗, 𝑑)) ,

(𝑖
3
, 𝑑
3
) = argmax

𝑗,𝑑

(𝜂
𝑇−𝑑
1
−𝑑
2

(𝑗, 𝑑)) ,

.

.

.

(𝑖
𝑛
, 𝑑
𝑛
) = argmax

𝑗,𝑑

(𝜂
𝑇−𝑑
1
−𝑑
2
−⋅⋅⋅−𝑑

𝑛−1
−𝑑
𝑛

(𝑗, 𝑑)) .

(22)

The iteration proceeds until 𝑑
1
+ 𝑑
2
+ ⋅ ⋅ ⋅ + 𝑑

𝑛
= 𝑇. Thus,

the observation𝑂 is divided into a sequence of fields with the
𝑘th field to be 𝜔

𝑘
= 𝑂

𝑇−𝑑
1
−⋅⋅⋅−𝑑

𝑘−1

𝑇−𝑑
1
−⋅⋅⋅−𝑑

𝑘−1
−𝑑
𝑘
+1
. 𝑖
𝑘
is referred to as the

state of 𝜔
𝑘
. If 1 ≤ 𝑖

𝑘
≤ 𝑁, 𝜔

𝑘
is a protocol keyword with the

corresponding field as keyword field. If 𝑁 < 𝑖
𝑘
≤ 𝑀, then 𝜔

𝑘

is a data string and the corresponding field is a data field.

4.4. Inferring Message Type. In this section, we present an
algorithm to determine the type of protocol messages. The
messages which belong to the same type have similar formats
with each other. Thus, the type of protocol messages can
be determined using clustering method according to the
similarities between their message formats.

In this paper, we apply an unsupervised clustering algo-
rithm proposed by Frey and Dueck [30] to solve the problem.
The algorithm based on the affinity propagation mechanism
takes the similarity matrix of data points as input and
recursively selects representative exemplars for each point.
Each of the selected exemplars represents a data type, while

the type of other data points is determined by the exemplars
they select. The number of clusters need not be specified
beforehand.The similaritymetric need not be defined strictly
in a continuous space and does not have to satisfy the
symmetric and the triangle inequality. Therefore, we can
define the similarity in any reasonable way.

Before the further discussion about the message cluster-
ing algorithm, we define some basic notations. Suppose the
universal set of protocol keywords is denoted as𝐾 and the set
of protocol keywords that occurred in message𝑚

𝑗
is denoted

as 𝐾
𝑗
. Given a protocol keyword 𝑘 of message 𝑚

𝑖
, the cost of

encoding 𝑘 in 𝑚
𝑖
using the keyword set of message 𝑚

𝑗
using

𝐾
𝑗
as the code book is defined as

𝑐
𝑖,𝑗

(𝑘) =

{

{

{

log
2

𝐾
𝑗

, 𝑘 ∈ 𝐾
𝑗
,

log
2 |

𝐾| , otherwise.
(23)

The similarity of 𝑚
𝑖
to 𝑚
𝑗
is defined as the minus

summation of cost of encoding all keywords in 𝑚
𝑖
using 𝐾

𝑗

as code book is defined as

Sim (𝑖, 𝑗) = − ∑

∀𝑘∈𝜃
𝑖

𝑐
𝑖,𝑗

(𝑘) . (24)

The affinity propagation algorithm exchanges two kinds
of information between data points during the clustering
process: responsibility (𝑟(𝑖, 𝑘)) and availability (𝑎(𝑖, 𝑘)). The
“responsibility” 𝑟(𝑖, 𝑘), sent from an ordinary data point 𝑖

to the candidate exemplar point 𝑘, reflects the accumulated
evidence for how well-suited point 𝑘 is to serve as the exem-
plar for point 𝑖, taking into account other potential exemplars
for point 𝑖. The “availability” 𝑎(𝑖, 𝑘), sent from candidate
exemplar point 𝑘 to point 𝑖, reflects the accumulated evidence
for how appropriate it would be for point 𝑖 to choose point 𝑘
as its exemplar, taking into account the support from other
points that point 𝑘 should be an exemplar.

In this paper, we treat each message as a data point, and
the responsibility and availability are updated according to
the following equations:

𝑟 (𝑖, 𝑘) ← Sim (𝑖, 𝑘) − max
𝑘

̸=𝑘

{𝑎 (𝑖, 𝑘

) + Sim (𝑖, 𝑘

)} ,

𝑎 (𝑖, 𝑘)

← min
{

{

{

0, 𝑟 (𝑘, 𝑘) + ∑

𝑖

̸=𝑖,𝑘

max {0, 𝑟 (𝑖

, 𝑘)}

}

}

}

.

(25)

Specially, 𝑎(𝑘, 𝑘) is updated by

𝑎 (𝑘, 𝑘) ← ∑

∀𝑖

̸=𝑘

max {0, 𝑟 (𝑖

, 𝑘)} . (26)

The affinity propagation algorithm clusters messages into
subclusters, each of which represents a type of messages.
The results of message type inference are important for
constructing protocol state machine which will be discussed
in our future work.

Mathematical Problems in Engineering 7

Message
reassembling

Session
reconstruction

HsMM
modeling

Message
segmentation

Training
data set

Message
typeMessage type

inference

Message
fields

Message
formats

Figure 4: Overview of system architecture.

5. System Implementation

In this section, we will illustrate an overview of our system
architecture and discuss some implementation issues which
have to be addressed when one implements the proposed
approach.

5.1. System Overview. A brief view of our system architecture
is shown in Figure 4. Training data set is raw traffic captured
from real world using a well-known network traffic analysis
tool called tshark [31].

Since well-known protocols, such as HTTP, are well
studied and described in public documents, almost all of pop
analyzer tools of network traffic embed and identifywell these
protocols, so the true ground of well-known protocols is easy
to be obtained. As a result, we consider some well-known
protocols to validate and evaluate our approach in this paper
and assume that the training data set is generated by only one
protocol.

In the session reconstruction phase, we reconstruct the
sessions according to the 5-tuple, that is, transport protocol,
source transport number, destination transport number,
source IP address, and destination IP address. For TCP-based
protocol, a session starts at the packet with the SYN flag in
TCP header and finishes when the FIN flag is acknowledged.
For UDP protocol, a session is defined as the packets shared
the same 5-tuple.

In the message reassembling phase, messages of TCP-
based protocols are reassembled from packets according to
the TCP sequence number and acknowledgement number
while the messages of UDP-based protocols are reassembled
according to the arrival time stamp of packets and the
transmission direction of packets.

In the HsMM modeling step, an algorithm based on the
Baum-Welch method is performed to reestimate the param-
eters of the HsMM-based protocol model. The reestimated
HsMM model produced by this step implies the message
format.

In the message segmentation phase, the reestimated
HsMM model is applied to determine the optimal length of
protocol keywords and divide message into field sequence.

In the step of message type inference, protocol messages
are clustered using the affinity propagation mechanism and
each cluster represents a type of messages.

(1) Input: observation 𝑂, frequency threshold Γ

(2) Output: closed frequent string setL
(3) # Find out the frequent strings
(4) Initialization: frequent candidate set 𝐶

1
= Σ, 𝑖 = 1

(5) while 𝐶
𝑖

̸= 𝜙 do
(6) # Check frequency of strings in 𝐶

𝑖

(7) for 𝜔 ∈ 𝐶
𝑖
do

(8) # Freq(𝜔) is the frequency of 𝜔 in 𝑂

(9) if Freq(𝜔) < Γ then
(10) Delete 𝜔 from 𝐶

𝑖

(11) end if
(12) end for
(13) # Generate new candidate set 𝐶

𝑖+1

(14) for 𝜔
1
, 𝜔
2
∈ 𝐶
𝑖
do

(15) if 𝜔
1
[1 : 𝑖 − 1] = 𝜔

2
[2 : 𝑖] then

(16) Create a new string 𝜔

[1 : 𝑖 + 1]

(17) Let 𝜔[1 : 𝑖] = 𝜔
2
[1 : 𝑖], 𝜔[𝑖 + 1] = 𝜔

1
[𝑖]

(18) Add 𝜔

 to 𝐶
𝑖+1

(19) end if
(20) end for
(21) 𝑖 = 𝑖 + 1;
(22) end while
(23) # Find out the closed frequent strings
(24) Initialization: 𝑖 = 1

(25) while 𝐶
𝑖+1

̸= 𝜙 do
(26) for 𝜔

1
∈ 𝐶
𝑖
do

(27) for 𝜔
2
∈ 𝐶
𝑖+1

do
(28) # delete the substrings
(29) if 𝜔

1
⊂ 𝜔
2
then

(30) Delete 𝜔
1
from 𝐶

𝑖

(31) Break
(32) end if
(33) end for
(34) end for
(35) UpdateL = L ∪ 𝐶

𝑖

(36) 𝑖 = 𝑖 + 1

(37) end while
(38) UpdateL = L ∪ 𝐶

𝑖

Algorithm 1: Closed frequent string algorithm.

5.2. Extracting Closed Frequent Strings. Suppose that L is a
frequent string set. If 𝜔 ∈ L and there do not exist 𝜔 ∈ L
satisfying that 𝜔 is the substring of 𝜔

, then 𝜔 is a closed
frequent string in L. In this section, the Apriori algorithm
[32] widely used in data mining field is introduced and
modified to address the problem of mining closed frequent
strings as shown in Algorithm 1.

The frequent string candidate set 𝐶
𝑖
is initialized as 𝐶

1
=

Σ = {0, 1, . . . , 255}, each element in which represents a one-
byte character (line (4)). Note that the length of each element
in 𝐶
𝑖
is 𝑖. The frequencies of elements in 𝐶

𝑖
are checked

and the ones whose frequencies are less than the frequency
threshold Γ would be deleted from 𝐶

𝑖
(lines (6)∼(12)). The

candidates of frequent stringswith length of 𝑖+1 are generated
in lines (14)∼(20), where the notation 𝜔[1 : 𝑖] represents the
byte sequence from the first byte to 𝑖th byte in𝜔. If𝜔

1
, 𝜔
2
∈ 𝐶
𝑖

and the first 𝑖 − 1 characters of 𝜔
1
are equal to the last 𝑖 − 1

characters of 𝜔
2
, then the two strings can be combined into

8 Mathematical Problems in Engineering

Table 1: Results of keyword extraction for text-based protocols.

System Protocol True keyword Inferred keyword True positive Precision (%) Recall (%)

HsMM HTTP 36 80 33 41.25 91.67
SSDP 24 54 24 44.44 100

Discv HTTP 36 859 25 2.33 69.44
SSDP 24 94 22 23.40 91.67

PI HTTP 22 1 1 100 4.55
SSDP 20 12 4 33.33 20.00

a new string 𝜔

 by merging their overlap; that is, 𝜔[1 : 𝑖] =

𝜔
2
[1 : 𝑖], and 𝜔

[𝑖 + 1] = 𝜔

1
[𝑖]. Lines (24)∼(38) aim to find

out the closed frequent strings by deleting any strings in 𝐶
𝑖
if

and only if they are the substrings of some elements in 𝐶
𝑖+1

.

5.3. Underflow Problem. The joint probabilities of observa-
tion sequence often decay exponentially as the sequence
length increases, which leads to a severe underflow problem
when the forward-backward algorithms are implemented in
a real computer. To the best of our knowledge, there are three
approaches to solve this problem.

Firstly, one can implement the forward-backward algo-
rithm in the logarithmic domain to avoid the underflow
problem [33].

Secondly, one can also refine the forward-backward algo-
rithm based on the notion of posterior probabilities to make
theHsMMrobust against the underflowproblem.The refined
forward-backward algorithms replace the joint probabilities
with conditional ones and automatically avoid the underflow
problem without increasing the computational complexity.
More information about the posterior probabilities and
refined HsMM based on conditional joint probabilities can
be found in the work by Yu [13].

Thirdly, the forward-backward probabilities are adjusted
by multiplying a scaling factor whenever an underflow is
likely to occur [27, 34, 35]. In this paper, we tackle the
underflow problem of HsMM based on this scaling method.
In each 𝑡, we first compute 𝛼

𝑡
(𝑖) based on the procedure of

(12) and then compute the scaling factor in time 𝑡, denoted as
𝑐
𝑡
, as follows:

𝑐
𝑡
=

1

∑

𝑀

𝑖=1
𝛼
𝑡
(𝑖)

, (27)

where 𝑀 is the number of states in the HsMM.
For the 𝛽

𝑡
(𝑖) term in the backward algorithm, we use the

same scaling factors for each time 𝑡 as we used for 𝛼 in the
forward algorithm; that is,

𝛽

𝑡
(𝑖) = 𝑐

𝑡
𝛽
𝑡
(𝑖) . (28)

As stated byRabiner [27], the scaling factorswill not affect
the transition variable 𝐴, initial state probability distribution
𝜋, and the observation matrix 𝐵. However, the procedure for
computing 𝑃(𝑂 |

̂
𝜆) is changed as follows:

𝑃 (𝑂 |
̂
𝜆) =

1

∏

𝑇

𝑡=1
𝑐
𝑡

. (29)

In order to avoid the underflow problem, we prefer to
calculate the logarithmic form of 𝑃(𝑂 |

̂
𝜆):

log𝑃 (𝑂 |
̂
𝜆) = −

𝑇

∑

𝑡=1

log 𝑐
𝑡
. (30)

6. Evaluation

In this section, we evaluate the proposed approach on data
sets captured from the Internet entrance of our department
on 23 December 2013. The data set contains network trace
generated by six protocols, including two text-based pro-
tocols (HTTP and SSDP) and four binary-based protocols
(BitTorrent, QQ, DNS, and NetBIOS).

Existing algorithms such as PI (protocol informatics) and
Discoverer are also applied to analyze the same data set.
The PI project has released an open source Python code for
researchers in the project home page [7], so we apply the code
and perform it to analyze the data set. The Discoverer system
is implemented according to the work presented by Cui et al.
and the parameters are set as reported in their previous work
[15].

6.1. Protocol Keyword Extraction. Since there is no infor-
mation about protocol keywords of binary protocols in
published protocol specifications, we only evaluate protocol
keyword extraction for text-based protocols (i.e., HTTP and
SSDP) in this section. We use the metrics of recall and
precision to evaluate the quality of keyword extraction. The
definition of these metrics is presented in the following:

(i) Recall: the recall rate is defined as the ratio from the
number of true positives of inferred keywords to the
total number of keywords in the data set.

(ii) Precision: the precision rate is defined as the ratio
from the number of true positives of inferred key-
words to the total number of inferred keywords.

We randomly select 100 connections of each protocol
and only consider the first 1460 bytes (it is long enough to
contain the headers of protocol messages) of each message.
The results of protocol keyword extraction are shown in
Table 1, where “Discv” represents Discoverer system and “PI”
represents PI project. The column of “true keyword” records
the true number of protocol keywords that occurred in the
trace, while the column of “inferred keyword” records the
number of inferred keywords. Compared with Discoverer

Mathematical Problems in Engineering 9

SSS
000

SSS
001

SSS
002

SSS
002

SSS
002

AAA
000

x47
AAA
000

x45
AAA
000

x54
Ungapped consensus:
CONS
DT
MT

(a) HTTP

Ungapped consensus:
CONS
DT
MT

CONS
DT
MT

CONS
DT
MT

CONS
DT
MT

CONS
DT
MT

CONS
DT
MT

CONS
DT
MT

CONS
DT
MT

000

x31

x68

x31

x61

x2e

AAA

AAA

007

005

005

003

005

AAA

AAA

AAA

AAA

003

003

SSS

SSS

x55

000

x2e

x3a

x2e

x6c

x32

AAA

AAA

005

005

003

007

005

AAA

AAA

AAA

AAA

SSS
003

003
SSS

x50

000

x2f

x74

x32

x3a

x35

AAA

AAA

005

007

003

007

005

AAA

AAA

AAA

SSS

015

003

AAA

SSS

x31

SSS
000

x68

x3a

x76

x35
AAA
009

005

003

005

003

AAA

AAA

AAA

AAA

AAA
007

x50

x53

000

x31

x35

x68

x35

AAA

007

005

009

007

003

AAA

SSS

AAA

AAA

AAA

AAA
007

003
SSS

x6e

x55

007

x4e

x2e

x74

x31

AAA

AAA

000

007

005

003

SSS

AAA

AAA

AAA

AAA

005

003

005
AAA

x65

x2f

x4e

005

x4f

x32

x74

x2f

x48

AAA

AAA

005

005

007

005

AAA

AAA

AAA

SSS
003

003

005

AAA

AAA

x31

x3a

005

x54

x35

x70

x6f

AAA

AAA

007

007

007

003

003

AAA

SSS

AAA

SSS

003

005

AAA

AAA

x2e

x75

005

x49

x30

x3a

x73

AAA

AAA

007

007

005

003

005

AAA

SSS

AAA

AAA

AAA
003

005
AAA

x6e

x30

x75

005

x46

x3a

x2f

x4e

x74

AAA

AAA

009

007

005

003

011

AAA

AAA

AAA

AAA

003

007

SSS

AAA

x74

x69

005

x59

x31

x2f

x54

x3a

AAA

AAA

003

005

005

003

005

AAA

AAA

AAA

AAA

AAA
007

009
AAA

x72

x44

x64

003

x2a

x30

x37

x3a

x32

AAA

AAA

003

007

005

003

005

AAA

AAA

AAA

AAA

AAA
005

005
AAA

x61

x44

x2d

SSS
003

x30

x32

x33
AAA
005

003

005

003

005

AAA

AAA

SSS

AAA

AAA
005

005
AAA

x78

x31

x34

003

x48

x2e

x73

x39

AAA

003

003

005

003

007

AAA

SSS

AAA

AAA

AAA

005

005

SSS

AAA

x2d

x2d

000

x54

x31

x73

x2e

AAA

005

003

007

003

007

AAA

SSS

AAA

AAA

AAA

AAA
007

003
AAA

x61

x50

x30

SSS
003

x38

x31

x53

SSS
005

007

003

003

003

AAA

AAA

AAA

AAA

AAA
009

003
AAA

x3a

x65

x3a

000

x54

x4c

x38

x64

x32

AAA

AAA

005

003

007

003

005

AAA

AAA

AAA

AAA

AAA
009

005
AAA

x30

x50

x30

000

x50

x61

x2e

x70

x35

AAA

AAA

003

005

005

003

005

AAA

AAA

AAA

AAA

AAA
005

007
AAA

x65

x2f

x34

(b) SSDP

x6f

x31

AAA

AAA

000

008

x63

x30

AAA

AAA

000

014

x74

x32

AAA

AAA

000

014

x6f

x54

AAA

AAA

000

008

x72

x55

AAA

AAA

000

005

x70

x2d

AAA

AAA

000

000

x25

SSS

BBB

000

082

x74
AAA

AAA

000

079

x6e

x05

AAA

BBB

000

005

x65

x00

AAA

ZZZ

000

000

x72

x10

AAA

BBB

000

000

x72

x00

AAA

ZZZ

000

000

x6f

x00

AAA

ZZZ

000

000

x54

x00

AAA

ZZZ

000

000

x74

x00

AAA

ZZZ

000

005

x42

x6c

AAA

AAA

000

000

x2d
AAA
000

x30
AAA
005

x69

x00

AAA

ZZZ

000

005

x13

x6f

BBB

AAA

005

000

Ungapped consensus:
CONS
DT
MT

CONS
DT
MT

CONS
DT
MT

(c) BitTorrent

x80
BBB
000

x81
BBB
000

x34
BBB
024

Ungapped consensus:
CONS
DT
MT

(d) DNS

x02 x03
BBBBBB
001000

CONS
DT
MT

Ungapped consensus:

(e) QQ

x41

x41
AAA

AAA

000

000

x41

x41

AAA

AAA

001

000

x41

x41

AAA

AAA

000

000

x4b

x41

AAA

AAA

000

000

x43

x01

x41

AAA

AAA

BBB

000

000

000

x00

x00

x41

ZZZ

AAA

ZZZ

000

000

000

x00

x00

x41

ZZZ

AAA

ZZZ

000

000

000

x00

x41

x41

ZZZ

AAA

AAA

000

000

000

x00

x41

x41

ZZZ

AAA

AAA

000

001

000

x00

x41

x41

ZZZ

AAA

AAA

000

000

000

x01

x41

x41

BBB

AAA

AAA

000

001

000

x00

x41

x41

ZZZ

AAA

AAA

000

000

000

x00

x41

x41

ZZZ

AAA

AAA

000

000

000

x00

x41

x41

ZZZ

AAA

AAA

000

000

000

xe9

x41

x41

BBB

AAA

AAA

042

000

000

xff

x41

x41

BBB

AAA

AAA

003

000

000

Ungapped consensus:
CONS
DT
MT

CONS
DT
MT

CONS
DT
MT

x00

x41
AAA

ZZZ

000

000

000

SSS
x00

x41

x21

AAA

AAA

000

000

000

ZZZ

(f) NetBIOS

Figure 5: The results output by PI.

10 Mathematical Problems in Engineering

0
10

20
30

40

0
10

20
30

40

State i
State j

−200

−150

−100

−50

0

Lo
ga

rit
hm

ic
 p

ro
ba

bi
lit

y

Logarithmic probability (aij) matrix of state transition

(a) Transition matrix (3D view)

5 10 15 20 25 30 35

5

10

15

20

25

30

35

State i

ij

St
at

e j

Logarithmic probability (aij) matrix of state transition

−180

−160

−140

−120

−100

−80

−60

−40

−20

(b) Transition matrix (2D view)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Probabilities of observations in each state

Pr
ob

ab
ili

ty

50 100 150 200 250
0

Observations
(c) Observation probability distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Probabilities of state duration

Pr
ob

ab
ili

ty

20 40 60 80 1000
Duration of state

(d) State duration distribution

Figure 6: The HsMM-based models for message format. (a) and (b) indicate the transition probability of states. (c) shows the probabilities
of observations for each state; each line is corresponding to a state. (d) illustrates the state duration distribution; each line is corresponding
to a state.

and PI project, HsMM-based method has a higher true
positive, precision, and recall rate. We found that Discov-
erer infers too many keywords, while PI project infers too
little.

Actually, there are far more protocol keywords inferred
by our approach than the true keywords. Most of them are
frequent and indispensable in the protocol messages, such as
some parameters used frequently. So, all of these strings are
also treated as protocol keywords and they play important
role in inferringmessage formats and analyzing protocol state
machine.

We also note that it has been found that the proposed
HsMM-based approach can not only extract frequent key-
words but also extract some keywords whose occurrence
frequency is low.

6.2. Protocol Message Format Inference. We illustrate the
results analyzed by PI in Figure 5. The message formats
are inferred as the longest common substrings of protocol
messages. As shown in Figure 5, only a few protocol keywords
(such as “GET”) and fields are inferred by PI, so PI does not
seem to be expert in generating effective message formats.

As shown in Tables 2–4, we present the results of HTTP
protocol for Discoverer, PI, and HsMM in a similar form
to make it more clear for the readers. Discoverer infers
message format based on token sequence and determines
the attribute of token, such as constant token or variable
token. Far more protocol keywords (such as “HTTP/1.1” and
“Host:”) are inferred by Discoverer than PI. However, some
frequent strings (e.g., “ocspd” and “x86 64”) which are not
protocol keywords are also inferred as keywords.

Mathematical Problems in Engineering 11

Table 2: HTTP message format inferred by Discoverer. 𝑐(𝑡, “XXX”) means a constant field, “𝑐” means constant, “𝑡” means text, and “XXX”
is the value of the field; V(𝑡) means a variable field.

Field ID Token Field ID Token Field ID Token
1 𝑐(𝑡, “GET”) 8 𝑐(𝑡, “User-Agent:”) 15 V(𝑡)
2 V(𝑡) 9 V(𝑡) 16 𝑐(𝑡, “(x86 64)”)
3 𝑐(𝑡, “HTTP/1.1”) 10 𝑐(𝑡, “ocspd”) 17 V(𝑡)
4 𝑐(𝑡, “Host:”) 11 V(𝑡) 18 𝑐(𝑡, “Connection:”)
5 V(𝑡) 12 𝑐(𝑡, “(unknown”) 19 V(𝑡)
6 𝑐(𝑡, “.com”) 13 V(𝑡) 20 ⋅ ⋅ ⋅

7 V(𝑡) 14 𝑐(𝑡, “Darwin”)

Table 3: HTTP message format inferred by PI.

Field ID Token Field ID Token
1 𝑐(𝑡, “GET”) 2 V(𝑡)

1 2 3 T t

s1 s1 s1 s1

s2 s2 s2 s2

s3 s3 s3 s3

sM sM sM sM· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...

Figure 7: The lattice structure for computing 𝛼
𝑡
(𝑖) based on

forwarding algorithm. 𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑀
∈ S represent the state of

observation at time 𝑡.

In this paper, the proposed approach embeds themessage
formats into a HsMM-based protocol model. For each proto-
col, we train a HsMM by recursively reestimating the model
parameters, including initial state probability, state transition
probabilitymatrix, and observation probabilitymatrix. Using
the HsMM, the optimal lengths of protocol keywords are
determined and optimal segmentation of protocol message
is inferred based on the maximal likelihood probability.

The parameter of a trained HsMM-based HTTP model
is shown in Figure 6. In this model, the number of states
is assigned to 35. As shown in Figure 6(c), the observations
are mainly distributed in the area of [10, 127] for each state,
while the probabilities of observations located in [128, 256]

are much smaller. We can also find that the duration of each
state is mainly distributed between 1 and 30, which means
that the lengths of most fields in the message vary from 1 to
30.

When the HsMM is used to analyze an observation
sequence (such as protocol message or network flow), a
lattice, as shown in Figure 7, is constructed to compute
the forward variable 𝛼

𝑡
(𝑖) based on the model parameters.

The state at each time 𝑡 may be in one of 𝑀 states in S,
while each state may emit multiple observations (characters
varying from 0 to 255) with different probabilities, so HsMM
could reveal the characteristics of both sequential fields and
juxtapositional fields and such lattice implies the message
formats. When forward variable computing is finished, the
Viterbi algorithm can be applied to infer an optimal path
which leads to a message field sequence with maximal
likelihood probability. An example of inferringmessage fields
based on our approach is illustrated in Figure 8. In this
illustration, protocol keywords are labeled with states less
than 26, while other fields are labeled with states between 26

and 35. Some 𝑘𝑒𝑦-V𝑎𝑙𝑢𝑒 pairs are found in the message, such
as the 𝑘𝑒𝑦-fields labeled with state 28 (in green) and V𝑎𝑙𝑢𝑒-
fields labeledwith state 33 (in light blue). IP address and some
number sequence are labeledwith state 33.We also found that
the carriage return line feed (i.e., “0D0A” in hex) is labeled
with the state of 32.

6.3. Message Type Inference. The results of message type
inference are important for the future work of constructing
protocol state machine. In our experiment, one type of
messages will be clustered into serval types. However, we
can treat them as serval different types since each inferred
type represents a cluster of messages which share the same
characteristic and have similar message format.

In order to compute the accuracy of message type infer-
ence, we label each cluster as the true type which dominates
the cluster. The accuracy of message type inference is shown
in Table 5.

6.4. Traffic Identification. The proposed technique can be
used for network traffic identification in the application of
network management or network monitoring. Suppose Λ =

{
̂
𝜆
1
,
̂
𝜆
2
, . . . ,

̂
𝜆
𝑛
} is the set of learned HsMM-based protocol

models, where ̂
𝜆
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is the HsMM-based model

of protocol 𝑖. For each session o = 𝑂

𝑇

1
, the class of o = 𝑂

𝑇

1
,

denoted as 𝐶(o), can be inferred as follows:

𝐶 (o) = arg max
𝑖=1,2,...,𝑛

log (𝑃 (o |
̂
𝜆
𝑖
)) , (31)

where 𝑃(o |
̂
𝜆
𝑖
) is the likelihood of o given ̂

𝜆
𝑖
. 𝑃(o |

̂
𝜆
𝑖
) can

be computed by (30).
This scenario is related to previous work by Ma et al. [36]

in the fields of traffic identification based on application-layer

12 Mathematical Problems in Engineering

Table 4: HTTP message format inferred by HsMM.

Field ID Token Field ID Token Field ID Token
1 𝑐(𝑡, “GET”) 6 𝑐(𝑡, “User-Agent:”) 11 V(𝑡)
2 V(𝑡) 7 V(𝑡) 12 𝑐(𝑡, “Referer:”)
3 𝑐(𝑡, “HTTP/1.1”) 8 𝑐(𝑡, “Accept-Language:”) 13 V(𝑡)
4 𝑐(𝑡, “Host:”) 9 V(𝑡) 14 𝑐(𝑡, “Connection:”)
5 V(𝑡) 10 𝑐(𝑡, “Accept:”) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

3 32153328
GET / pa?p=1:364773698:9 HTTP/1.1
16 3218730
Host: wpa.qq
19 3223
Connect ion: keep-alive
25 329113324359173314
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit (KHTML, like Gecko) Chrome/ /537.1
12

21 321333029230
Referer: http:// www.yuanlin.com/ B2B/Sell/ C2/18/59.shtml

12 32301022
Accept-Encoding: gzip, deflate, sdch
20 32731
Accept-Language: zh-CN,zh;q=0.8
12 32735731
Accept-Charset: GBK,utf-8;q=0. ;q=0.3
23 283328332833283328
Cookie: pgv_pvid=8400408728; o_cookie=893810970; ptui_loginuin=893810970; pgv_info=ssid=s5837432496; qz_gdt=v
34
Xec_4tcW9_ISO3ClI2SMRRz!pCbInn6gnu7gzr8EWYNJsA7ZW42aW9!aher9LHu7r4PI_p A1C

s; ptcz=3fed38d0576a5e98f34ea7b26db4ada6900bf5372adf1b099b3cfb3716f7385b;
28 3328302728332833

28 33

pt2gguin=o0893810970; uin=o0893810970; skey=@RRU0pCW li; q m_sid=15638e3ef3c74a3cd5432e69d693f263,
34
qZ3BpZ1VtSHlwa0dicVplbm9ZOTNGeVZ2MXRvTDVtMmw5eGtMcEFIbExjRV8.;
28 322833

qm_username=893810970; ptisp=ctc5?

State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field:
State:
Field: Rh

33

29

7,∗

Accept: ∗/∗
32

/537.1 21.0.1180.89 Safari

.com

ü

Figure 8: Illustration of field segmentation for HTTP message.

payload.Ma et al. buildMarkovmodels from the application-
layer payload and apply them to identifying network traffic.
In this paper, we also implement the Markov model as
stated in [36] and compare their results with ours, as shown
in Figure 9. The results show that the proposed method
outperforms the Markov based method in the field of traffic
identification.

7. Conclusion

The protocol keywords and message fields are inferred
based on hidden semi-Markov model by maximizing the

likelihood probability ofmessage segmentation.The segmen-
tation of messages reveals some semantic information about
the field, such as keyword, IP address, and 𝑘𝑒𝑦-V𝑎𝑙𝑢𝑒 pair.
The proposed technique is shown to be applied to the field
of network traffic identification and outperforms existing
algorithm.

The proposed HsMM-based protocol message format
can be applied to field of intrusion detection or anomaly
detection. One can use the HsMM-based message format of
normal traffic to calculate the average likelihood probability
of the new coming traffic and check whether the average
likelihood probability is deviated from a normal level. Our

Mathematical Problems in Engineering 13

Table 5: The accuracy of message type inference.

Protocol HTTP SSDP BitTorrent QQ DNS NetBIOS
Accuracy (%) 96.63 97.46 100 95.16 96.18 100

HTTP SSDP BitTorrent QQ DNS NetBIOS

HsMM
Markov

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Figure 9: The accuracy of traffic identification. “HsMM” repre-
sents the HsMM-based method proposed in this paper, while the
“Markov” represents the Markov model based method presented by
previous work.

method can also be applicable for traffic identification, fuzz
test, vulnerability discovery, and so on.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

This work was supported by The National Natural Sci-
ence Foundation of China (61571141); Guangdong Natu-
ral Science Foundation (2014A030313637); Guangdong Pro-
vincial Department of Education Innovation Project (2014-
KTSCX149); The Excellent Young Teachers in Universi-
ties in Guangdong (YQ2015105); Guangdong Provincial
Application-Oriented Technical Research and Development
Special Fund Project (2015B010131017).

References

[1] C. Y. Cho, D. Babić, C. E. R. Shin, and D. Song, “Inference
and analysis of formal models of botnet command and control
protocols,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS ’10), pp. 426–439,
ACM, Chicago, Ill, USA, October 2010.

[2] H. C. Kim, Y. H. Choi, and D. H. Lee, “Efficient file fuzz
testing using automated analysis of binary file format,” Journal
of Systems Architecture, vol. 57, no. 3, pp. 259–268, 2011.

[3] A. Tridgell, How Samba Was Written, 2003, http://www.samba
.org/ftp/tridge/misc/french cafe.txt.

[4] Pidgin, Pidgin, 2014, http://www.pidgin.im/.
[5] rdesktop, rdesktop: A Remote Desktop Protocol Client, 2014,

http://www.rdesktop.org/.
[6] G. Maier, F. Schneider, and A. Feldmann, “A first look at mobile

hand-held device traffic,” in Passive and Active Measurement:
11th International Conference, PAM 2010, Zurich, Switzerland,
April 7–9, 2010. Proceedings, A. Krishnamurthy and B. Plattner,
Eds., vol. 6032 of Lecture Notes in Computer Science, pp. 161–170,
Springer, Berlin, Germany, 2010.

[7] M. A. Beddoe, “Network protocol analysis using bioinformatics
algorithms,” 2004, http://www.4tphi.net/∼awalters/PI/PI.html.

[8] C. Kreibich and J. Crowcroft, “Efficient sequence alignment of
network traffic,” in Proceedings of the 6th ACM SIGCOMM on
InternetMeasurement Conference (IMC ’06), pp. 307–312, ACM,
October 2006.

[9] B.-C. Park, Y. Won, M.-S. Kim, and J. Hong, “Towards auto-
mated application signature generation for traffic identifica-
tion,” in Proceedings of the IEEE Network Operations and
Management Symposium (NOMS ’08), pp. 160–167, Salvador,
Brazil, April 2008.

[10] M. Ye, K. Xu, J. Wu, and H. Po, “Autosig-automatically gen-
erating signatures for applications,” in Proceedings of the 9th
IEEE International Conference on Computer and Information
Technology (CIT ’09), vol. 2, pp. 104–109, Xiamen, China,
October 2009.

[11] J.-Z. Luo and S.-Z. Yu, “Position-based automatic reverse
engineering of network protocols,” Journal of Network and
Computer Applications, vol. 36, no. 3, pp. 1070–1077, 2013.

[12] J.-Z. Luo, S.-Z. Yu, and J. Cai, “Capturing uncertainty informa-
tion and categorical characteristics for network payload group-
ing in protocol reverse engineering,”Mathematical Problems in
Engineering, vol. 2015, Article ID 962974, 9 pages, 2015.

[13] S.-Z. Yu, “Hidden semi-Markov models,” Artificial Intelligence,
vol. 174, no. 2, pp. 215–243, 2010.

[14] G. Jacobson and K.-P. Vo, “Heaviest increasing/common sub-
sequence problems,” in Combinatorial Pattern Matching, A.
Apostolico, M. Crochemore, Z. Galil, and U. Manber, Eds., vol.
644 of Lecture Notes in Computer Science, pp. 52–66, Springer,
Berlin, Germany, 1992.

[15] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: automatic pro-
tocol reverse engineering from network traces,” in Proceedings
of the 16th USENIX Security Symposium on USENIX Security
Symposium, pp. 1–14, USENIX Association, Boston, Mass, USA,
August 2007.

[16] Y.Wang, N. Zhang, Y.-M.Wu, B.-B. Su, and Y.-J. Liao, “Protocol
formats reverse engineering based on association rules in
wireless environment,” in Proceedings of the 12th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom ’13), pp. 134–141, Melbourne,
Australia, July 2013.

[17] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid
to bibliographic search,” Communications of the Association for
Computing Machinery, vol. 18, no. 6, pp. 333–340, 1975.

14 Mathematical Problems in Engineering

[18] Y. Wang, X. Li, J. Meng, Y. Zhao, Z. Zhang, and L. Guo,
“Biprominer: automatic mining of binary protocol features,”
in Proceedings of the 12th International Conference on Paral-
lel and Distributed Computing, Applications and Technologies
(PDCAT ’11), pp. 179–184, IEEE, Gwangju, The Republic of
Korea, October 2011.

[19] J. Antunes and N. Neves, Building an Automaton Towards
Reverse Protocol Engineering, 2009, http://www.di.fc.ul.pt/
∼nuno/PAPERS/INFORUM09.pdf.

[20] T. Krueger, N. Krmer, andK. Rieck, “Asap: automatic semantics-
aware analysis of network payloads,” in Privacy and Secu-
rity Issues in Data Mining and Machine Learning: Interna-
tional ECML/PKDDWorkshop, PSDML 2010, Barcelona, Spain,
September 24, 2010. Revised Selected Papers, vol. 6549 of Lecture
Notes in Computer Science, pp. 50–63, Springer, Berlin, Ger-
many, 2011.

[21] Y. Wang, X. Yun, M. Z. Shafiq et al., “A semantics aware
approach to automated reverse engineering unknown proto-
cols,” inProceedings of the 20th IEEE International Conference on
Network Protocols (ICNP ’12), pp. 1–10, IEEE, Austin, Tex, USA,
November 2012.

[22] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: auto-
matic extraction of protocol message format using dynamic
binary analysis,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS ’07), pp. 317–329,
ACM, November 2007.

[23] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz,
“Tupni: automatic reverse engineering of input formats,” in
Proceedings of the 15th ACM conference on Computer and Com-
munications Security (CCS ’08), pp. 391–402, ACM, Alexandria,
Va, USA, October 2008.

[24] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol
format reverse engineering through context-aware monitored
execution,” inProceedings of the 15th SymposiumonNetwork and
Distributed System Security (NDSS ’08), The Internet Society,
San Diego, Calif, USA, February 2008.

[25] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda,
“Prospex: protocol specification extraction,” in Proceedings of
the 30th IEEE Symposium on Security and Privacy, pp. 110–125,
Berkeley, Calif, USA, May 2009.

[26] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dis-
patcher: enabling active botnet infiltration using automatic pro-
tocol reverse-engineering,” in Proceedings of the 16th ACMCon-
ference on Computer and Communications Security (CCS ’09),
pp. 621–634, ACM, Chicago, Ill, USA, November 2009.

[27] L. R. Rabiner, “Tutorial on hiddenMarkov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol.
77, no. 2, pp. 257–286, 1989.

[28] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic
functions of Markov chains,” The Annals of Mathematical
Statistics, vol. 41, no. 1, pp. 164–171, 1970.

[29] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE,
vol. 61, no. 3, pp. 268–278, 1973.

[30] B. J. Frey and D. Dueck, “Clustering by passing messages
between data points,” Science, vol. 315, no. 5814, pp. 972–976,
2007.

[31] Wireshark, Network protocol analyzer, 2012, http://www.wire-
shark.org.

[32] R. Agrawal and R. Srikant, “Fast algorithms for mining associ-
ation rules,” in Proceedings of the 20th International Conference

on Very Large Data Bases (VLDB ’94), pp. 487–499, Santiago de
Chile, Chile, September 1994.

[33] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures
for theMAPalgorithm,” IEEETransactions onCommunications,
vol. 51, no. 2, pp. 175–185, 2003.

[34] Y. Cohen, A. Erell, and Y. Bistritz, “Enhancement of connected
words in an extremely noisy environment,” IEEE Transactions
on Speech and Audio Processing, vol. 5, no. 2, pp. 141–148, 1997.

[35] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduc-
tion to the application of the theory of probabilistic functions
of a Markov process to automatic speech recognition,”The Bell
System Technical Journal, vol. 62, no. 4, pp. 1035–1074, 1983.

[36] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker,
“Unexpected means of protocol inference,” in Proceedings of
the 6th ACM SIGCOMM on Internet Measurement Conference
(IMC ’06), pp. 313–326, ACM, October 2006.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

