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The Yuan-Agrawal (YA) memory-free approach is employed to study fractional dynamical systems with freeplay nonlinearities
subjected to a harmonic excitation, by combining it with the precise integration method (PIM). By the YA method, the original
equations are transformed into a set of first-order piecewise-linear ordinary differential equations (ODEs). These ODEs are
further separated as three linear inhomogeneous subsystems, which are solved by PIM together with a predictor-corrector
process. Numerical examples show that the results by the presented method agree well with the solutions obtained by the Runge-
Kutta method and a modified fractional predictor-corrector algorithm. More importantly, the presented method has higher
computational efficiency.

1. Introduction

Recently, fractional derivative (FD) has been widely inves-
tigated because such mathematical model has merits over
integer derivative in describing complex behaviors of some
real systems. It has been confirmed that FD can model
the realistic phenomena arising in various disciplines such
as physics [1], materials science [2], solid mechanics [3],
mechanical vibrations [4], biology [5], economics [6], and
control theory [7].

Many numerical solution techniques were developed to
obtain analytical, semianalytical, and/or numerical solutions
of fractional dynamical systems, for example, the finite
difference method [8, 9], predictor-corrector approach [10,
11], operational matrix method [12, 13], variational iteration
method [14, 15], homotopy perturbation method [16, 17],
Adomian’s decomposition method [18, 19], to mention a few.
Due to the nonlocal character of the fractional derivative,
storing the past responses requires a large amount of com-
puter memory. Moreover, a large amount of computational
resources is spent on repeat processing of the convolution
that describes FD. Accordingly, it is cumbersome to search

for even numerical solutions of fractional dynamical systems
in a long time duration.

In order to eliminate the drawback of long memory
requirement, Yuan and Agrawal proposed a nonclassical
approach [20]. In their scheme, the fractional differential
equation can be converted into a set of first-order ordinary
differential equations which can be solved by the Runge-
Kutta (RK)method or the trapezoidal integration rule, and so
forth. As there are no convolutions in the converted system,
this method is called the Yuan-Agrawal (YA) memory-free
approach. Later, Singh and Chatterjee [21] extended the
memory-free principle introduced in the YA method, which
can improve the computation accuracy.

It is worthy of noting that a troublesome problem in a
freeplay model lies in determining switching points. Though
the switching points can be approximated as the step length is
chosen to be refined enough, the computation is very ineffi-
cient because refining the time step will lead to exponentially
increasing computation cost. Therefore, it is necessary and
worthwhile to propose some more efficient approaches to
tackle this problem.
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Figure 1: Sketch of a freeplay nonlinearity.

The precise integration method (PIM) initiated by Zhong
and Williams [22] has been widely applied to various prob-
lems modeled by ordinary differential equations such as
structural dynamics, optimal control, and flexible multibody
dynamics problems [23, 24]. This method is famous for its
high accuracy and computation efficiency. We are motivated
by its high precision and efficiency to apply this technique
to Bagley-Torvik equation [2] with a piecewise linearity. A
predictor-corrector technique will be applied to determine
the time for switching from one subsystem to another sub-
system. A modified fractional predictor-corrector (MFPC)
method [25] will be utilized to validate the presented scheme.
Numerical examples show that very accurate numerical
results can be provided. Moreover, it is much more efficient
than the MFPC or the YA method with RK scheme.

2. Mathematical Model

2.1. Equations of Motions. Considering the freeplay non-
linearity of a nonlinear spring, the dynamic equation of a
single-degree-of-freedom spring-mass-damping system with
fractional derivative is described as

𝑚𝐷
2
𝑥 (𝑡) + 𝑐𝐷

𝛼
𝑥 (𝑡) + 𝑘𝑀 (𝑥) = 𝑓 sin (𝜔𝑡) , (1)

where 𝑚, 𝑐, and 𝑘 denote the mass, damping coefficient, and
stiffness, respectively, 𝐷𝛼𝑥(𝑡), 0 < 𝛼 < 1, is the derivative
of order 𝛼 of the displacement function 𝑥(𝑡), and 𝑓 sin(𝜔𝑡)
is the externally applied force. Figure 1 shows the sketch of
the nonlinear stiffness,𝑀(𝑥), which is a freeplay nonlinearity
usually referred to as a bilinear nonlinearity [26]:
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where𝑀
0
, 𝑎
𝑓
,𝑀
𝑓
, and 𝛿 are constants.

Under the transformation of a nondimensional time
scale 𝜏 = 𝜔𝑡, (1) can be transformed into the following

equation containing the fractional derivative with respect to
nondimensional time 𝜏:

𝑚𝜔
2
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2
𝑥 (𝜏) + 𝑐𝜔

𝛼
𝐷
𝛼
𝑥 (𝜏) + 𝑘𝑀 (𝑥) = 𝑓 sin 𝜏. (3)

By means of gamma function and Laguerre integral formula,
the fractional derivative term in (3) can be eliminated, and it
becomes
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(4)

where 𝜑(𝑦, 𝜏) and 𝜇 are introduced variables as
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𝜇 =

2 sin (𝜋𝛼)
𝜋
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Taking derivative of (5) with respect to 𝜏, we can get
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The integral in (4) can be approximated using the Laguerre
integral formula [20] as
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where 𝑤
𝑖
and 𝑦

𝑖
(𝑖 = 1, . . . , 𝑛) are the Laguerre weights and

node points, respectively.Therefore, (4) and (7) can bewritten
as a set of first-order ordinary differential equations as
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with
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where A
𝑖
, C
𝑖
(𝑖 = 1, 2, 3), and F are constant matrixes and

the superscript denotes derivative with respect to nondimen-
sional time 𝜏.
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For further simplification and convenience, we expand
the dimension by adding two auxiliary variables 𝜉

1
(𝜏) =

cos(𝜏) and 𝜉
2
(𝜏) = sin(𝜏) satisfying [27]
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Rewrite X = [𝑥, ], 𝜑(𝑦
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2
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𝑇, and (11)

becomes

X = B
𝑖
X + C

𝑖
, 𝑖 = 1, 2, 3, (13)

where B
𝑖
is the coefficient matrix of subsystem 𝑖 (𝑖 = 1, 2, 3)

and C
𝑖
is a constant matrix.

According to the theories of the ordinary differential
equations, the analytical solution of (13) can be given as

X (𝜏) = exp [(𝜏 − 𝜏
0
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(14)

The initial conditions for X(0) are given as 𝑥(0) = 𝑥
0
, ](0) =

]
0
, 𝜑(𝑦
𝑖
, 0) = 0 (𝑖 = 1, . . . , 𝑛), 𝜉

1
(0) = 1, and 𝜉

2
(0) = 0.

Once a time step (Δ𝜏) is chosen, the solutions for a given time
series denoted as [0, Δ𝜏, 2Δ𝜏, . . . , 𝑁Δ𝜏] can be generated. For
example, at the 𝑛th time point, the solution is

X (𝑛Δ𝜏) = exp (𝑛Δ𝜏 ⋅ B
𝑖
) ⋅ X (𝜏

0
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𝑖

⋅ [exp (𝑛Δ𝜏 ⋅ B
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𝑖
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𝑛

− I} ⋅ C
𝑖
.

(15)

Thus, the key to solve (13) is the computation of the exponen-
tial matrix for one time step, denoted as T = exp(Δ𝜏 ⋅ B

𝑖
).

2.2. Precise Integration Method. In the precise integration
method (PIM), there is a simple yet efficient algorithm to
compute the exponential matrix. The small time step, Δ𝜏, is
further split uniformly as 𝜂 = Δ𝜏/2

𝑛 with 𝑛 as large positive
number (usually as 20 in real practice). By this means, the
exponential matrix can be calculated recursively by

T = exp (Δ𝜏 ⋅ B
𝑖
) = exp(
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2
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Expanding exp(B
𝑖
⋅ 𝜂) as a series and retaining several lower-

order terms,
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Figure 2: Illustration of the predictor-corrector algorithm for
detecting the vibration state at a switching point.

The matrix T
𝑎
is introduced to distinguish the higher-order

terms from I. Substitution of (17) into (16) results in

T = (I + T
𝑎
)
2
𝑛

= (I + T
𝑎
)
2
𝑛−1

⋅ (I + T
𝑎
)
2
𝑛−1

. (18)

The factorization should be iterated 𝑛 times, that is, for (iter =
0; iter < 𝑛, iter++) T

𝑎
= 2T
𝑎
+T
𝑎
⋅T
𝑎
. After these iterations,

the exponential matrix for one time step (Δ𝜏) can be finally
given as T = I + T

𝑎
.

2.3. A Predictor-Corrector Technique to Determine Switching
Points. Note that (13) is a piecewise-linear system consisting
of three subsystems, and (15)–(18) are based on the fact that
the vibration state remains to be located at the same subsys-
tem. Generally, the state will finally leave one subsystem to
another as the displacement 𝑥 passes through 𝑥

𝑓
(𝑥
𝑓
= 𝑎
𝑓

or 𝑎
𝑓
+ 𝛿), which indicates a switching point, as shown in

Figure 2.
A predictor-corrector algorithm is applied to accurately

find the time when the vibration state is passing one of the
switching points. Denote 𝜎𝑛 = 𝑥𝑛 − 𝑥

𝑓
and introduce a ratio

𝜆 =

𝜎
𝑛

𝜎
𝑛
− 𝜎
𝑛+1

. (19)

If 𝑥𝑛+1 is exactly at the switching point, we have 𝜎𝑛+1 = 0 and
𝜆 = 1. It is predicted that the time needed for 𝑥𝑛 to approach
the switching point is about 𝜆Δ𝜏. Then the predicted state is
further corrected as

X𝑛+1 = exp (𝜆Δ𝜏 ⋅ B
𝑖
) ⋅ X𝑛 + B−1

𝑖

⋅ [exp (𝜆Δ𝜏 ⋅ B
𝑖
) − I] ⋅ C

𝑖

= T𝜆 ⋅ X𝑛 + B−1
𝑖
⋅ (T𝜆 − I) ⋅ C

𝑖
.

(20)

Repeating (19) and (20) until 𝜆 approaches 1 closely enough
with a very small tolerance error such as 10−12, the vibration
state happening at switching points can be detected accurately
and efficiently.
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Figure 3: Displacements 𝑥(𝜏) obtained by PIM and RK.
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Figure 4: Absolute errors of the displacements 𝑥(𝜏) obtained by
PIM, RK, and MFPC.

3. Numerical Example

3.1. A Single-Degree-of-Freedom Dynamical System. To vali-
date the feasibility and accuracy of the presented algorithm,
the parameters in (1) are chosen to be nondimensional values
as 𝛼 = 0.5, 𝑚 = 1, 𝑐 = 1, 𝑘 = 1, 𝜔 = 1, 𝑀

0
= 1,

𝑎
𝑓
= −1, 𝑀

𝑓
= 0, 𝛿 = 2, and 𝑓 = 5. And the initial

conditions are chosen as 𝑥
0
= ]
0
= 0. The results obtained

by PIM and RK will be compared with those obtained by
MFPC. And the results obtained by MFPC with a very small
time step, Δ𝜏 = 0.001, are regarded as the standard solutions.
Figure 3 shows the displacements 𝑥(𝜏) obtained by PIM and
RK with the time step Δ𝜏 = 0.1 and 0.01, respectively, when
the number of Laguerre points is chosen as 𝑛 = 30. It can
be seen that both the PIM and RK results agree well with the
standard solutions.

In order to further check the accuracy, the absolute errors
of the displacements obtained by PIM, RK, and MFPC with
Δ𝜏 = 0.1 and 0.01 are shown in Figure 4. It shows that the
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Figure 5: Comparison of absolute errors of displacements 𝑥(𝜏)
obtained by PIM and RK for 15, 20, and 30 Laguerre node points.
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Figure 6: Comparison of the amplitudes versus the external force 𝑓
obtained by the MFPC and PIM.

results obtained by PIM and RK can reach almost the same
accuracy. The accuracy of both methods should be about
1% for the amplitude of displacement. Figure 5 presents the
absolute errors of results using PIM and RK for Δ𝜏 = 0.01

when the number of Laguerre points is chosen as 𝑛 = 15,
20, and 30, respectively. It clearly shows that the PIM and
RK results converge as the number of Laguerre node points
is increasing.

Figure 6 shows the characteristic of the amplitude of the
displacement versus the external force amplitude 𝑓. Obvi-
ously, the amplitude is linearly related to the force amplitude.
Furthermore, the amplitude-frequency characteristic of the
system is also shown in Figure 7. The amplitude reaches its
maximum when the frequency 𝜔 is close to 1.20 and then
decreases as the frequency increases. It indicates a resonance
as frequency is varying. By theway, both Figures 6 and 7 verify
the accuracy and availability of the PIM results.

The computing times for the PIM, RK, and MFPC to
calculate the responses of the system in 100 seconds are shown
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Table 1: Comparison of the computing times.

Number of Laguerre node points Nondimensional time step PIM (second) RK (second) MFPC (second)

𝑛 = 15

Δ𝜏 = 0.1 0.1217 13.76 4.3314
Δ𝜏 = 0.01 1.1055 24.05 381.05

𝑛 = 20

Δ𝜏 = 0.1 0.1509 25.24 4.3314
Δ𝜏 = 0.01 1.2516 40.77 381.05

𝑛 = 30

Δ𝜏 = 0.1 0.2551 59.85 4.3314
Δ𝜏 = 0.01 1.8333 72.60 381.05
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Figure 7: Comparison of the amplitude-frequency curve versus the
external force 𝜔 obtained by the MFPC and PIM.

in Table 1. The computing times for PIM are much less than
that for RK and MFPC. Moreover, the PIM computing times
increase very slightly but the RK computing times roughly
increase linearly with the increasing number of Laguerre
node points.

3.2. A Two-Degrees-of-Freedom Dynamical System. In order
to further examine the effectiveness, the presented algorithm
is employed to solve a two-degrees-of-freedom dynamical
system with fractional derivatives as

M𝐷
2X + C𝐷𝛼X + KX + G (X) = F cos (𝜔𝑡) , (21)

whereM,C, andK represent themass, damping, and stiffness
matrixes, respectively, X = [𝑥

1
, 𝑥
2
]
𝑇 is the displacement

matrix, F is the amplitude matrix of the applied harmonic
force, and G(X)means the freeplay nonlinearity. While con-
sidering the freeplay nonlinearity of one degree of freedom,
such as 𝑥

1
, G(X) can be expressed as

G (X) = [
𝑔
1
(𝑥
1
)

0

] ,

𝑔
1
(𝑥
1
) =

{
{
{
{

{
{
{
{

{

𝑀
0
+ 𝑥
1
− 𝑎
𝑓
, 𝑥

1
< 𝑎
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obtained by PIM, RK, and MFPC, respectively.

In this case, the numerical values are chosen as M = [
1 0

0 1
],

K = [
3 −2

−2 3
], C = [

0.6 0

0 0.6
], F = [

10

0
], 𝛼 = 0.5, 𝜔 = 1,

𝑀
0
= 1, 𝑎

𝑓
= −1, 𝑀

𝑓
= 0.5, and 𝛿 = 3. Choosing

the number of Laguerre points as 𝑛 = 30, the time history
curves of displacements 𝑥

1
obtained by MFPC, PIM, and

LK with different time steps are shown in Figure 8. The
PIM and RK results coincide very well with the MFPC
results, respectively. Figure 9 shows the absolute errors of
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Table 2: Comparison of the computing times for solving system (2) over [0, 100].

Number of Laguerre node points Nondimensional time step PIM (second) RK (second) MFPC (second)

𝑛 = 10

Δ𝜏 = 0.1 0.1783 6.486 8.3587
Δ𝜏 = 0.01 1.3452 23.11 773.25

𝑛 = 20

Δ𝜏 = 0.1 0.5004 27.90 8.3587
Δ𝜏 = 0.01 2.6063 32.62 773.25

𝑛 = 30

Δ𝜏 = 0.1 0.9130 68.27 8.3587
Δ𝜏 = 0.01 4.3939 72.61 773.25

displacements 𝑥
1
obtained byMFPC, PIM, and LKwithΔ𝜏 =

0.1 and 0.01, respectively, compared with the results obtained
by MFPC with Δ𝜏 = 0.001. The attained PIM and RK results
almost have the same accuracy.

Table 2 shows the comparison of the computing times of
the MFPC, PIM, and RK upon calculating the responses of
system (2) over [0, 100]. Obviously, the PIM still possesses
substantial advantages over the other two methods for highly
dimensional systems.

4. Conclusions

This paper has presented an effective algorithm for solv-
ing the dynamic responses of fractional dynamical system
with a freeplay nonlinearity. According to the YA memory-
free method, the system is transformed into a set of
piecewise first-order ordinary differential equations without
fractional derivative terms. And the transformed system
is further separated into three subsystems. The switching
points between subsystems are determined accurately by a
predictor-corrector algorithm. Compared with the Runge-
Kutta method and MFPC, the PIM is able to obtain very
accurate solutions much more efficiently.
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