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This paper studies the portfolio selection problem in hybrid uncertain decision systems. Firstly the return rates are characterized
by random fuzzy variables. The objective is to maximize the total expected return rate. For a random fuzzy variable, this paper
defines a new equilibrium risk value (ERV) with credibility level beta and probability level alpha. As a result, our portfolio problem
is built as a new random fuzzy expected value (EV) model subject to ERV constraint, which is referred to as EV-ERV model.
Under mild assumptions, the proposed EV-ERV model is a convex programming problem. Furthermore, when the possibility
distributions are triangular, trapezoidal, and normal, the EV-ERV model can be transformed into its equivalent deterministic
convex programming models, which can be solved by general purpose optimization software. To demonstrate the effectiveness
of the proposed equilibrium optimization method, some numerical experiments are conducted. The computational results and
comparison study demonstrate that the developed equilibrium optimization method is effective to model portfolio selection
optimization problem with twofold uncertain return rates.

1. Introduction

Based on mean-variance criterion, Markowitz [1] first estab-
lished portfolio theory. InMarkowitz’smean-variancemodel,
the returns of individual securities are taken as random
variables and the expected value and variance of the ran-
dom return are taken as the investment return and risk,
respectively. The mean-variance theory has been accepted
widely as a tool for building portfolio optimization problems,
and many interesting works have further developed the
mean-variance method. Considering that the situation of the
expected return is lower than the average value, Markowitz
[2] replaced variance with semivariance as the risk measure
to describe the risk. Semivariance is an improvement of vari-
ance, which allows us to obtain the higher expected return
rate under the same level of risk. Konno and Yamazaki [3]
used mean absolute deviation model in Tokyo stock market.
Simaan [4] showed that estimation error is large in both
mean-variance model and mean absolute deviation model
and severe in small samples and for investors with high risk
tolerance. In order to describe the normal fluctuations in

the market, the concept of value-at-risk (VaR) was taken
as the risk measure. VaR is the maximum possible loss of
a financial asset or portfolio of securities. In recent years,
VaR gradually progresses as a positive risk management tool
and plays an increasingly important role in the portfolio
optimization problems. Jorion [5] studied VaR as a risk
measure and applied mean-VaR model in finance industry.
Mean-variance-skewness models [6, 7] were also proposed
to study portfolio selection problem. In addition, there are
other measures used to characterize the risk [8]. When the
restriction that an asset cannot be traded for intervals of
uncertain duration results in risk, a model of optimal allo-
cation to liquid and illiquid assets was presented by Ang et al.
[9]. Shen et al. [10] discussed amean-variance portfolio selec-
tion problem under a constant elasticity of variance model
and expressed explicit expressions of the optimal portfolio
strategy, the value function, and the efficient frontier of the
mean-variance problem.

The conventional portfolio methods assume that the
security returns are random variables. Probability distribu-
tions of random variables are usually derived from historical
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data. However, in the real investment environment, the
security returns often present vagueness and ambiguity. Since
the seminal works of Zadeh [11, 12], many achievements have
been made based on fuzzy theory. Watada [13] discussed
portfolio selection by using fuzzy decision theory. Tanaka and
Guo [14] used possibility distributions tomodel the uncertain
returns. Inuiguchi and Ramı́k [15] exemplified the advan-
tages and disadvantages of fuzzymathematical programming
approaches in the setting of an optimal portfolio selection
problem. When the returns of assets are taken as trapezoidal
fuzzy numbers, a possibilistic approach for selecting portfo-
lios with the highest utility value was introduced by Carlsson
et al. [16]. Considering transaction costs, Fang et al. [17] pro-
posed a portfolio rebalancing model based on fuzzy decision
theory. Mean-variance models were constructed for fuzzy
portfolio selection problems by Chen et al. [18] and Zhang et
al. [19].Qin et al. [20] discussed theKapur cross-entropymin-
imization model for portfolio selection problem under fuzzy
environment. Dastkhan et al. [21] studied a linguistic-based
portfolio selectionmodel by weightedmax-min operator.Wu
and Liu [22] developed a robust method to describe fuzzy
returns by employing parametric possibility distributions.
Chen et al. [23] applied the absolute semideviation as a
new risk measure and developed three classes of fuzzy port-
folio optimization models. Kamdem et al. [24] introduced
notions of moments and semimoments for credibilistic port-
folio problems to measure the leptokurtocity of credibilistic
portfolio return and presented a mean-variance-skewness-
semikurtosis model. Mehlawat and Gupta [25] addressed
fuzzy portfolio selection problem from a perspective of
chance constrained multiobjective programming. Deng and
Li [26] proposed a biobjective nonlinear portfolio selection
model, which aimed to maximize the future expected return
and minimize the future expected risk. They also proposed a
gradually tolerant constraint method to solve this model. Li
et al. [27] developed a fuzzy portfolio selection model with
background risk. Vercher and Bermúdez [28] introduced
a cardinality constrained multiobjective optimization prob-
lem for generating efficient portfolios within a fuzzy mean
absolute deviation framework. Considering transaction cost,
Chen and Wang [29] proposed a two-stage fuzzy model
for portfolio selection problem. For fuzzy portfolio selection
problems, there are many other different optimization meth-
ods.

In modern financial markets, there is not only random-
ness but also fuzziness that affects the total decision-making
process. Based on the above works, this paper models the
portfolio selection problem where randomness and fuzziness
are considered simultaneously. Huang [30] studied portfolio
selection in a random fuzzy environment and proposed two
portfolio selection models with random fuzzy returns. We
adopt the equilibrium optimization method [31] to model
portfolio selection problems. In order to integrate uncertain-
ties resulting from both subjective consciousness and objec-
tive factors, random fuzzy variables [32] are used to charac-
terize the return rates. In this situation, the security return
rates are assumed to be random variables with fuzzy infor-
mation. This paper employs the expected value (EV) [33] to
represent the investment return and introduces a new index

called ERV for random fuzzy return rate to measure the
investment risk. Then a random fuzzy EV-ERV model is
proposed for portfolio selection problem. Since optimization
models with twofold uncertainty are difficult to solve, the
heuristic algorithms are often designed to solve the proposed
optimization models. An advantage of the proposed equilib-
rium optimization framework is to turn the original equi-
librium portfolio optimization problem to a computationally
tractable problem. Firstly, the proposed model is translated
into an equivalent credibilistic optimization model. Then the
credibilistic model is reduced to its equivalent deterministic
convex programming models under mild assumptions on
fuzzy parameters.

Compared with the existing literature, the main contri-
butions of this paper consist of the following three aspects.
Firstly, this paper defines a new ERV with credibility level
beta and probability level alpha to measure the investment
risk. The adopted risk measure quantifies the uncertainties
of randomness and fuzziness simultaneously. This method
shows the qualitative and quantitative analysis about the
uncertainty of return rate. The proposed EV-ERV model is a
useful optimizationmethod for a practical investor. Secondly,
the global optimal solution of the proposed EV-ERVmodel is
obtained. In the case that the randomness of uncertain return
rates follows normal distributions with deterministic covari-
ance matrix, and the fuzziness is characterized by trapezoidal
fuzzy variables, triangular fuzzy variables, or normal fuzzy
variables, the proposed EV-ERV model is transformed into
its deterministic convex programming models, which can
be solved by general purpose optimization software. Thirdly,
when the randomness of uncertain return rate vector follows
multivariate normal distribution, the covariance matrix can
reflect the interactions and correlation degrees among secu-
rities.

This paper is organized as follows. In Section 2, after
introducing a new index called ERV for random fuzzy vari-
able, the random fuzzy EV-ERV model is proposed for port-
folio selection problems. In Section 3, under mild assump-
tions on possibility and probability distributions, the EV-ERV
equilibrium optimization model is proved to be a convex
programming. Section 4 deals with the equivalent determin-
istic convex programming models under three situations. In
Section 5, we perform some comparison study via numerical
experiments, give the sensitivity analysis aboutmodel param-
eters, and show the relationship betweenERVandEV.The last
section gives the conclusions of the paper.

2. Equilibrium Portfolio Selection Problem

2.1. Random Fuzzy Variable. Let Γ be an abstract space of
generic elements 𝛾 andP(Γ) the power set of Γ. If Pos is a pos-
sibility measure on P(Γ), then the credibility measure Cr is
defined as follows [34]:

Cr (𝐴) = 1

2
(1 + Pos (𝐴) − Pos (𝐴𝑐)) , 𝐴 ∈ P (Γ) , (1)

where 𝐴
𝑐

= Γ \ 𝐴. The triplet (Γ,P(Γ),Cr) is called a
credibility space.
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Definition 1 (see [32]). Let (Γ,P(Γ),Cr) be a credibility space
and (Ω, Σ,Pr) a probability space. If 𝜉 is amapdefined on Γ×Ω
such that, for each fixed 𝛾 ∈ Γ, 𝜉(𝛾, 𝜔) as a function of 𝜔 is a
random variable defined on the probability space (Ω, Σ,Pr),
then one calls 𝜉 a random fuzzy variable.

If 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
are random fuzzy variables defined on the

space Γ, then 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) is a random fuzzy vector

defined on the space Γ.
A multivariate normal distribution N(𝜇, Σ) with uncer-

tain mean 𝜇 and covariance Σ is an example of random fuzzy
vector. In this case, the components of𝜇 andΣ are represented
as fuzzy variables with known possibility distributions.

Definition 2 (see [33]). Let 𝜉 be a random fuzzy variable. The
expected value 𝐸[𝜉] of 𝜉 is defined as the following fuzzy
integral:

𝐸 [𝜉] = ∫

+∞

0

Cr {𝛾 ∈ Γ | 𝐸 [𝜉
𝛾
] ≥ 𝑟} 𝑑𝑟

− ∫

0

−∞

Cr {𝛾 ∈ Γ | 𝐸 [𝜉
𝛾
] ≤ 𝑟} 𝑑𝑟,

(2)

where 𝐸[𝜉
𝛾
] is the expected value of random variable 𝜉

𝛾
for

any given 𝛾 ∈ Γ.

Definition 3 (see [31]). Let 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) be a random

fuzzy vector, and let𝑓
𝑗
: Rn

→ R be continuous function for
𝑗 = 1, 2, . . . , 𝑚. Then the equilibrium chance Ch of a random
fuzzy event is defined as

Ch {𝑓
𝑗
(𝜉) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚} = sup

(𝛼,𝛽)∈[0,1]
2

{𝛼 ∧ 𝛽 |

Cr {𝛾 ∈ Γ | Pr {𝑓
𝑗
(𝜉 (𝛾)) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚} ≥ 𝛼}

≥ 𝛽} .

(3)

Equation (3) can be rewritten as the following equivalent
form:

Ch {𝑓
𝑗
(𝜉) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚} = sup

𝛼∈[0,1]

{𝛼 ∧ Cr {𝛾

∈ Γ | Pr {𝑓
𝑗
(𝜉 (𝛾)) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚} ≥ 𝛼}} .

(4)

According to the property of equilibrium chance, in the
case of 𝛼 = 𝛽, one has

Cr {𝛾 | Pr {𝜉
𝛾
≥ 𝑧} ≥ 𝛼} ≥ 𝛼 ⇐⇒

Ch {𝜉 ≥ 𝑧} ≥ 𝛼.

(5)

We next introduce the equilibrium risk value for a ran-
dom fuzzy variable.

Definition 4. Let 𝜉 be a random fuzzy variable. The equilib-
rium risk value of 𝜉 is defined as

VaR
(𝛼,𝛽)

(𝜉)

= sup {𝑧 | Cr {𝛾 | Pr {𝜔 | 𝜉
𝛾
(𝜔) ≥ 𝑧} ≥ 𝛼} ≥ 𝛽} ,

(6)

where 𝛼, 𝛽 are prescribed confidence levels and take their
values in the unit interval [0, 1].

In (6), the meanings of parameters 𝛼 and 𝛽 are different:
the parameter𝛼 represents probability level, while the param-
eter 𝛽 represents credibility level.

If the random fuzzy variable 𝜉 reduces to a random
variable, then the equilibrium risk value defined by (6)
reduces to

𝜉sup (𝛼) = sup {𝑧 | Pr {𝜔 | 𝜉 (𝜔) ≥ 𝑧} ≥ 𝛼} , (7)

which is the 𝛼-optimistic value of random variable 𝜉. On
the other hand, if the random fuzzy variable 𝜉 reduces to a
fuzzy variable, then the equilibrium risk value defined by (6)
reduces to

𝜉sup (𝛽) = sup {𝑧 | Cr {𝛾 | 𝜉 (𝛾) ≥ 𝑧} ≥ 𝛽} , (8)

which is the 𝛽-optimistic value of fuzzy variable 𝜉. Therefore,
the equilibrium risk value of random fuzzy variable is a natu-
ral extension of both the optimistic value of random variable
and the optimistic value of fuzzy variable.

2.2. Formulation of Equilibrium Optimization Model. With
the rapid development of the economic and society, more and
more investors realize the importance of portfolio optimiza-
tion problem under uncertainty.They hope to use the limited
funds to get the maximum benefit and, at the same time, to
minimize the investment risk as much as possible. However,
under the market economy, there are various uncertain
factors to affect investment market. Thus, the uncertainties
should be taken into account during the modeling process.

A rational investor should pursuit the maximum profit
with the minimum risk. However, in real investment process,
increasing the return, the investors have to tolerate greater
risk; the lower risk corresponds to the less return. That is,
investors need to make a trade-off between return and risk.
Assume that the investor has a collection of 𝑛 optional risky
assets. The return rate of investment refers to the result of
the net income divided by the initial funds. We use random
fuzzy variable 𝜂

𝑖
to denote the return rate of risky asset 𝑖,

𝑖 = 1, 2, . . . , 𝑛. Then 𝜂 = (𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑛
) is the return rate

vector. When the return rates of assets are characterized by
joint normal distributionN(𝜇, Σ), the fuzzy parameters𝜇 and
Σ stand for the average return rate vector and the correlations
among the return rates of assets, respectively. Since the
parameters𝜇 andΣ often cannot be determined exactly due to
the lack of the historical data, it is appropriate to represent the
components of 𝜇 and Σ as fuzzy variables with known
possibility distributions.

Let 𝑥
𝑖
be the investment ratio for risky asset 𝑖 and let

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) be the investment ratio vector such that

∑
𝑛

𝑖=1
𝑥
𝑖
= 1, where 𝑥

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛. The vector 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is called a portfolio. So 𝜂

𝑇

𝑥 is the return rate
during the holding period. We take 𝐸[𝜂

𝑇

𝑥] as objective
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function. Then, based on Definition 2, the objective function
is computed by

𝐸 [𝜂
𝑇

𝑥] = ∫

+∞

0

Cr {𝛾 ∈ Γ | 𝐸 [𝜂
𝑇

𝛾
𝑥] ≥ 𝑟} 𝑑𝑟

− ∫

0

−∞

Cr {𝛾 ∈ Γ | 𝐸 [𝜂
𝑇

𝛾
𝑥] ≤ 𝑟} 𝑑𝑟.

(9)

We take ERV as the risk index to measure the investment
risk. Based on Definition 4, the risk of portfolio 𝑥 is

VaR
(𝛼,𝛽)

(𝜂
𝑇

𝑥)

= sup {𝑧 | Cr {𝛾 | Pr {𝜔 | 𝜂
𝑇

𝛾
(𝜔) 𝑥 ≥ 𝑧} ≥ 𝛼} ≥ 𝛽} ,

(10)

where 𝛼, 𝛽 ∈ [0, 1] are prescribed confidence levels.
Based on the notations above, if the investor wants to

maximize the expected return rate, the equilibrium portfolio
optimization problem in hybrid uncertain decision systems is
built as the following EV-ERV model:

max 𝐸 [𝜂
𝑇

𝑥]

s.t. VaR
(𝛼,𝛽)

(𝜂
𝑇

𝑥) ≥ 𝜅

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(11)

where parameter 𝜅 is the prescribed level of ERV.
Introducing an additional variable 𝑧, the original EV-ERV

model (11) can be equivalently represented as

max 𝐸 [𝜂
𝑇

𝑥]

s.t. Cr {𝛾 | Pr {𝜂𝑇
𝛾
𝑥 ≥ 𝑧} ≥ 𝛼} ≥ 𝛽

𝑧 ≥ 𝜅

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(12)

3. Analysis of the Equilibrium Portfolio Model

In this section, we discuss the properties of the objective func-
tion and constrains in equilibrium portfolio optimization
model (12), which facilities finding the appropriate algorithm
to solve the model.

3.1. Computing Expected Return Rate. Since the return rates
are denoted by the random fuzzy vector 𝜂, for any given
𝛾 ∈ Γ, 𝜂

𝛾
is the random vector (𝜂

1,𝛾
, 𝜂
2,𝛾
, . . . , 𝜂

𝑛,𝛾
). Thus, the

expected return rate is calculated by the following formula:

𝐸 [𝜂
𝑇

𝑥] = 𝐸
𝛾
[𝐸
𝜔
[𝜂
𝑇

𝛾
𝑥]] = 𝐸

𝛾
[

𝑛

∑

𝑖=1

𝑥
𝑖
𝐸
𝜔
[𝜂
𝑖,𝛾
]] . (13)

The first equality in (13) holds true due to the definition
of expected value operator of random fuzzy variable [33],
and the second equality in (13) is based on the linearity
of expected value operator of random variable. Note that
∑
𝑛

𝑖=1
𝑥
𝑖
𝐸[𝜂
𝑖,𝛾
] is the linear combination of fuzzy variables

𝐸[𝜂
𝑖,𝛾
], 𝑖 = 1, 2, . . . , 𝑛. To further compute𝐸

𝛾
[∑
𝑛

𝑖=1
𝑥
𝑖
𝐸
𝜔
[𝜂
𝑖,𝛾
]],

the independence condition or comonotonicity condition for
fuzzy variables 𝐸

𝜔
[𝜂
𝑖,𝛾
], 𝑖 = 1, 2, . . . , 𝑛 is required. We next

discuss the two situations, respectively.

Case 1 (independence condition [35]). According to [35],
the expected value operator of fuzzy variable has the prop-
erty of independence linearity. Based on this property, if
𝐸[𝜂
1,𝛾
], 𝐸[𝜂
2,𝛾
], . . . , 𝐸[𝜂

𝑛,𝛾
] are mutual independent, one has

𝐸
𝛾
[

𝑛

∑

𝑖=1

𝑥
𝑖
𝐸
𝜔
[𝜂
𝑖,𝛾
]] =

𝑛

∑

𝑖=1

𝑥
𝑖
𝐸
𝛾
[𝐸
𝜔
[𝜂
𝑖,𝛾
]]

=

𝑛

∑

𝑖=1

𝑥
𝑖
𝐸 [𝜉
𝑖
] .

(14)

Case 2 (comonotonicity condition [34]). According to [34,
Theorem 1], the expected value operator of fuzzy variable has
the property of comonotonic linearity. Based on this property,
if 𝐸[𝜂
1,𝛾
], 𝐸[𝜂
2,𝛾
], . . . , 𝐸[𝜂

𝑛,𝛾
] are comonotonic, one has

𝐸
𝛾
[

𝑛

∑

𝑖=1

𝑥
𝑖
𝐸
𝜔
[𝜂
𝑖,𝛾
]] =

𝑛

∑

𝑖=1

𝑥
𝑖
𝐸
𝛾
[𝐸
𝜔
[𝜂
𝑖,𝛾
]]

=

𝑛

∑

𝑖=1

𝑥
𝑖
𝐸 [𝜉
𝑖
] .

(15)

In the above two cases, the expected value operator of
fuzzy variable has linear property, 𝐸[𝜂𝑇𝑥] = ∑

𝑛

𝑖=1
𝑥
𝑖
𝐸[𝜂
𝑖
].

In general case, we may compute 𝐸
𝛾
[∑
𝑛

𝑖=1
𝑥
𝑖
𝐸
𝜔
[𝜂
𝑖,𝛾
] by using

fuzzy simulation or approximation method [33, 36] based on
the possibility distributions of fuzzy variables 𝐸

𝜔
[𝜂
𝑖,𝛾
], 𝑖 =

1, 2, . . . , 𝑛.

3.2. Processing Equilibrium Risk Value. In this subsection, we
will handle the following probability constraint inmodel (12):

Pr {𝜂𝑇
𝛾
𝑥 ≥ 𝑧} ≥ 𝛼, (16)

where the fuzzy parameter 𝛾 ∈ Γ is given in advance.
It is assumed that random vector 𝜂

𝛾
follows amultivariate

normal distribution N(𝜇
𝛾
, Σ
𝛾
). The covariance matrix Σ

𝛾

is a symmetric positive semidefinite matrix. So there exists
a lower triangular and nonsingular matrix 𝐷

𝛾
, 𝜇
𝛾

∈ 𝑅
𝑛,

and a random vector 𝜉 with components being independent
standard normal random variables such that 𝜂

𝛾
= 𝐷
𝛾
𝜉 + 𝜇
𝛾
.

Thus, one has 𝐸[𝜂
𝛾
] = 𝜇

𝛾
and Σ

𝛾
= 𝐷
𝛾
𝐷
𝑇

𝛾
. If Σ
𝛾
is positive

definite, then the multivariate normal distribution is nonde-
generate.This case appears if and only if𝐷

𝛾
has full row rank.

Otherwise the distribution is degenerate or singular.Themul-
tivariate normal distribution is uniquely determined by the
expected value vector 𝜇

𝛾
and the covariance matrix Σ

𝛾
.
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If the multivariate normal distribution is nondegenerate,
then it is absolutely continuous.Thus, one has 𝜂𝑇

𝛾
𝑥 ∼ N(𝜇

𝑇

𝛾
𝑥,

𝑥
𝑇

𝐷
𝛾
𝐷
𝑇

𝛾
𝑥).

Let 𝐺(𝑥) = Pr{𝜂𝑇
𝛾
𝑥 ≥ 𝑧}. If√𝑥𝑇𝐷

𝛾
𝐷𝑇
𝛾
𝑥 > 0, by standard-

ization, 𝐺(𝑥) has the following equivalent representation:

Pr {𝜂𝑇
𝛾
𝑥 ≥ 𝑧} = Pr

{{

{{

{

𝜂
𝑇

𝛾
𝑥 − 𝜇
𝑇

𝛾
𝑥

√𝑥𝑇𝐷
𝛾
𝐷𝑇
𝛾
𝑥

≥

𝑧 − 𝜇
𝑇

𝛾
𝑥

√𝑥𝑇𝐷
𝛾
𝐷𝑇
𝛾
𝑥

}}

}}

}

= Φ(

𝜇
𝑇

𝛾
𝑥 − 𝑧

√𝑥𝑇𝐷
𝛾
𝐷𝑇
𝛾
𝑥

) .

(17)

Taking all the cases of 𝐺(𝑥) into account, the following
analytical expression is obtained:

𝐺 (𝑥)

=

{{{{{{{{{

{{{{{{{{{

{

1, if 𝑥𝑇𝐷
𝛾
𝐷
𝑇

𝛾
𝑥 = 0, 𝜇

𝑇

𝛾
𝑥 ≥ 𝑧,

0, if 𝑥𝑇𝐷
𝛾
𝐷
𝑇

𝛾
𝑥 = 0, 𝜇

𝑇

𝛾
𝑥 < 𝑧,

Φ(

𝜇
𝑇

𝛾
𝑥 − 𝑧

√𝑥𝑇𝐷
𝛾
𝐷𝑇
𝛾
𝑥

) , if 𝑥𝑇𝐷
𝛾
𝐷
𝑇

𝛾
𝑥 ̸= 0.

(18)

For any given 𝛾 ∈ Γ, if 𝑥𝑇𝐷
𝛾
𝐷
𝑇

𝛾
𝑥 ̸= 0, then one has

𝐺 (𝑥) ≥ 𝛼 ⇐⇒

Φ(

𝜇
𝑇

𝛾
𝑥 − 𝑧

√𝑥𝑇𝐷
𝛾
𝐷𝑇
𝛾
𝑥

) ≥ 𝛼 ⇐⇒

𝜇
𝑇

𝛾
𝑥 − 𝑧

√𝑥𝑇𝐷
𝛾
𝐷𝑇
𝛾
𝑥

≥ Φ
−1

(𝛼) ⇐⇒

𝜇
𝑇

𝛾
𝑥 ≥ Φ

−1

(𝛼)√𝑥𝑇𝐷
𝛾
𝐷𝑇
𝛾
𝑥 + 𝑧.

(19)

From the above analysis, if 𝐸[𝜂
1,𝛾
], 𝐸[𝜂
2,𝛾
], . . . , 𝐸[𝜂

𝑛,𝛾
] are

comonotonic or mutual independent, then model (12) can be
turned into the following credibilistic programming problem:

max
𝑛

∑

𝑖=1

𝑥
𝑖
𝐸 [𝜇
𝑖
]

s.t. Cr {𝛾 | 𝜇
𝑇

𝛾
𝑥 ≥ Φ

−1

(𝛼)√𝑥𝑇𝐷
𝛾
𝐷𝑇
𝛾
𝑥 + 𝑧} ≥ 𝛽

𝑧 ≥ 𝜅

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(20)

3.3. The Convexity of Feasible Region. Section 3.2 has dealt
with the probability risk. In this subsection, we will address
the equivalent representation of credibilistic constraint and
discuss the convexity of feasible region.

Let C = {𝑥 | Cr{𝜇𝑇𝑥 ≥ Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧} ≥ 𝛽}. In
real-life portfolio selection problems, small confidence levels
are meaningless. Thus, in this paper, we consider the case
where 𝛼, 𝛽 are in the interval [0.5, 1].

Theorem 5. Assume that 𝜂 ∼ N(𝜇, Σ), where Σ is determin-
istic matrix, 𝜇

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are mutual independent fuzzy

variables, and 𝜇
𝑇

𝑥 is continuous. In the case of 𝛼, 𝛽 ≥ 0.5, the
following results hold.

(i) Cr{𝜇𝑇𝑥 ≥ Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧} ≥ 𝛽 ⇔

Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 − (𝜇
𝑇

𝑥)sup(𝛽) ≤ 0.

(ii) C = {𝑥 | Cr{𝜇𝑇𝑥 ≥ Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧} ≥ 𝛽} is a
convex set.

Proof. We first prove the necessity of assertion (i). By the
definition of the optimistic value of fuzzy variable 𝜇𝑇𝑥, one
has

(𝜇
𝑇

𝑥)sup (𝛽) ≥ Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧, (21)

which implies

Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 − (𝜇
𝑇

𝑥)sup (𝛽) ≤ 0. (22)

The necessity of assertion (i) holds true.
We next prove the sufficiency of assertion (i). According

to the definition of optimistic value, we know the credibilistic
constraint Cr{𝜇𝑇𝑥 ≥ (𝜇

𝑇

𝑥)sup(𝛽)} ≥ 𝛽 holds. Since

(𝜇
𝑇

𝑥)sup (𝛽) ≥ Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 (23)

is equivalent to

Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 − (𝜇
𝑇

𝑥)sup (𝛽) ≤ 0, (24)

we have

Cr {𝜇𝑇𝑥 ≥ Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧} ≥ 𝛽 (25)

due to the continuity of 𝜇𝑇𝑥. The sufficiency is proved.
In what follows, we prove assertion (ii).
According to the property of optimistic value, the equality

(𝜇
𝑇

𝑥)sup(𝛽) = ∑
𝑛

𝑖=1
𝑥
𝑖
𝜇
𝑖,sup(𝛽) holds. According to assertion

(i), the setC is equivalent to

{𝑥 | Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 −

𝑛

∑

𝑖=1

𝑥
𝑖
𝜇
𝑖,sup (𝛽) ≤ 0} . (26)

It is easy to know thatΦ−1(𝛼) ≥ 0 for 𝛼 ≥ 0.5,√𝑥𝑇𝐷𝐷𝑇𝑥

is a convex function with respect to 𝑥, and ∑
𝑛

𝑖=1
𝑥
𝑖
𝜇
𝑖,sup(𝛽)

is a linear function with respect to 𝑥
𝑖
. According to the

properties of convex function, {𝑥 | Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 −

∑
𝑛

𝑖=1
𝑥
𝑖
𝜇
𝑖,sup(𝛽) ≤ 0} is a convex set.The proof of assertion (ii)

is complete.
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Based on the above theoretical analysis, the following
theorem gives the deterministic equivalent model of model
(20).

Theorem 6. Assume that 𝜂 ∼ N(𝜇, Σ), where Σ is a determin-
istic matrix, 𝜇

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are mutual independent fuzzy

variables, and 𝜇
𝑇

𝑥 is continuous. Then, in the case of 𝛼, 𝛽 ≥

0.5, EV-ERVmodel (20) is equivalent to the following program-
ming model:

max
𝑛

∑

𝑖=1

𝑥
𝑖
𝐸 [𝜇
𝑖
]

s.t. Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 −

𝑛

∑

𝑖=1

𝑥
𝑖
𝜇
𝑖,sup (𝛽) ≤ 0

𝑧 ≥ 𝜅

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(27)

On the basis of Theorems 5 and 6, we arrive at the
following result.

Theorem 7. Assume that 𝜂 ∼ N(𝜇, Σ), where Σ is a deter-
ministic matrix, 𝜇

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are mutual independent

fuzzy variables, and 𝜇
𝑇

𝑥 is continuous. Then, in the case of 𝛼,
𝛽 ≥ 0.5, model (27) is a convex programming model.

Proof. In the case of 𝛼, 𝛽 ≥ 0.5, by Theorem 5, C = {𝑥 |

Cr{𝜇𝑇𝑥 ≥ Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧} ≥ 𝛽} is a convex set.
Then the feasible region is convex. Due to the linearity of the
objective function and the convexity of the feasible region,
model (27) is a convex programming model.

4. Equivalent Deterministic Convex
Programming Models

In this section, we specify the possibility distributions of
fuzzy parameters 𝜇

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, so that the analytical

expressions of 𝐸[𝜇
𝑖
] and 𝜇

𝑖,sup(𝛽) are available. We consider
the cases that fuzzy parameters 𝜇

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are

characterized by trapezoidal, triangular, and normal fuzzy
variables, respectively.

Case 1 (trapezoidal fuzzy variables). Let 𝜂 ∼ N(𝜇, Σ), 𝜇
𝑖
=

(𝑟
(1)

𝑖
, 𝑟
(2)

𝑖
, 𝑟
(3)

𝑖
, 𝑟
(4)

𝑖
), 𝑖 = 1, 2, . . . , 𝑛, be mutual independent

trapezoidal fuzzy variables. According to [34], the expected
return of 𝜇𝑇𝑥 is

𝐸 [𝜇
𝑇

𝑥]

=
1

4
(

𝑛

∑

𝑖=1

𝑟
(1)

𝑖
𝑥
𝑖
+

𝑛

∑

𝑖=1

𝑟
(2)

𝑖
𝑥
𝑖
+

𝑛

∑

𝑖=1

𝑟
(3)

𝑖
𝑥
𝑖
+

𝑛

∑

𝑖=1

𝑟
(4)

𝑖
𝑥
𝑖
) .

(28)

The optimistic value of 𝜇𝑇𝑥 is

𝑛

∑

𝑖=1

𝑥
𝑖
𝜇
𝑖,sup (𝛽) = 2 (1 − 𝛽)

𝑛

∑

𝑖=1

𝑟
(2)

𝑖
𝑥
𝑖

+ (2𝛽 − 1)

𝑛

∑

𝑖=1

𝑟
(1)

𝑖
𝑥
𝑖
,

(29)

where 𝛽 ≥ 0.5.
As a consequence, for any given parameters 𝛼, 𝛽 ≥ 0.5,

by Theorem 6, model (27) is equivalent to the following
deterministic convex programming model:

max 1

4
(

𝑛

∑

𝑖=1

𝑟
(1)

𝑖
𝑥
𝑖
+

𝑛

∑

𝑖=1

𝑟
(2)

𝑖
𝑥
𝑖
+

𝑛

∑

𝑖=1

𝑟
(3)

𝑖
𝑥
𝑖
+

𝑛

∑

𝑖=1

𝑟
(4)

𝑖
𝑥
𝑖
)

s.t. Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧

− 2 (1 − 𝛽)

𝑛

∑

𝑖=1

𝑟
(2)

𝑖
𝑥
𝑖
− (2𝛽 − 1)

𝑛

∑

𝑖=1

𝑟
(1)

𝑖
𝑥
𝑖
≤ 0

𝑧 ≥ 𝜅

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(30)

Triangular fuzzy variable is a special case of trapezoidal
fuzzy variable. The following remark is about the result
related to triangular possibility distributions.

Remark 8. Let 𝜂 ∼ N(𝜇, Σ), 𝜇
𝑖

= (𝑟
(1)

𝑖
, 𝑟
(2)

𝑖
, 𝑟
(3)

𝑖
), 𝑖 =

1, 2, . . . , 𝑛, be mutual independent triangular fuzzy variables.
According tomodel (30), for any given parameters 𝛼, 𝛽 ≥ 0.5,
the equivalent deterministic convex programming model of
model (27) is

max 1

4
(

𝑛

∑

𝑖=1

𝑟
(1)

𝑖
𝑥
𝑖
+ 2

𝑛

∑

𝑖=1

𝑟
(2)

𝑖
𝑥
𝑖
+

𝑛

∑

𝑖=1

𝑟
(3)

𝑖
𝑥
𝑖
)

s.t. Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 − 2 (1 − 𝛽)

𝑛

∑

𝑖=1

𝑟
(2)

𝑖
𝑥
𝑖

− (2𝛽 − 1)

𝑛

∑

𝑖=1

𝑟
(1)

𝑖
𝑥
𝑖
≤ 0

𝑧 ≥ 𝜅

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(31)

Case 2 (normal fuzzy variables). Let 𝜂 ∼ N(𝜇, Σ), 𝜇
𝑖
= 𝑛(𝑚

𝑖
,

𝜎
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, be mutual independent normal fuzzy
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variables. According to [34], the expected return of 𝜇𝑇𝑥 is
𝐸[𝜇
𝑇

𝑥] = ∑
𝑛

𝑖=1
𝑚
𝑖
𝑥
𝑖
. The optimistic value of 𝜇𝑇𝑥 is

𝑛

∑

𝑖=1

𝑥
𝑖
𝜇
𝑖,sup (𝛽) =

𝑛

∑

𝑖=1

𝑚
𝑖
𝑥
𝑖
+ √−2 ln 2 (1 − 𝛽)

𝑛

∑

𝑖=1

𝑥
2

𝑖
𝜎
𝑖
, (32)

where 𝛽 ≥ 0.5.
Therefore, according toTheorem 6, for any given param-

eters 𝛼, 𝛽 ≥ 0.5, the equivalent deterministic convex
programming model of model (27) reads

max
𝑛

∑

𝑖=1

𝑚
𝑖
𝑥
𝑖

s.t. Φ
−1

(𝛼)√𝑥𝑇𝐷𝐷𝑇𝑥 + 𝑧 −

𝑛

∑

𝑖=1

𝑚
𝑖
𝑥
𝑖

− √−2 ln 2 (1 − 𝛽)

𝑛

∑

𝑖=1

𝑥
2

𝑖
𝜎
𝑖
≤ 0

𝑧 ≥ 𝜅

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(33)

5. Numerical Experiments and
Comparison Study

In this section, we will conduct some numerical experiments
to demonstrate the feasibility and effectiveness of the devel-
oped equilibrium optimization method. We first give some
descriptions about our portfolio selection problem in the next
subsection.

5.1. Problem Description. Assume that there are 20 poten-
tial risky assets for an investor. In this portfolio selection
problem, the return rates have twofold uncertainty and
are represented by random fuzzy variables. For the sake
of presentation, we suppose that the prescribed confidence
levels 𝛼, 𝛽 take their values from the interval [0.5, 1].

Let 𝜂 = (𝜂
1
, 𝜂
2
, . . . , 𝜂

20
) ∼ N(𝜇, Σ) and 𝜇

𝑖
= (𝑟
(1)

𝑖
, 𝑟
(2)

𝑖
,

𝑟
(3)

𝑖
, 𝑟
(4)

𝑖
), 𝑖 = 1, 2, . . . , 20, be mutual independent trapezoidal

fuzzy variables. The possibility distributions of 𝜇
𝑖
, 𝑖 = 1, 2,

. . . , 20, are provided in Table 1, and the covariancematrixΣ =

(𝜎
𝑖𝑗
)
20×20

is expressed as 10−2(Σ
1
Σ
2
), where the matrices Σ

1

and Σ
2
are defined as follows:

Σ
1
=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0.6198 0.1155 0.1096 −0.0685 0.0038 0.1222 0.0049 −0.0770 0.0319 −0.0368

0.1155 0.5989 −0.0937 0.0757 0.0531 0.1086 −0.0041 0.0598 0.1067 0.0351

0.1096 −0.0937 0.6824 0.0215 0.0389 −0.0539 −0.0004 0.0912 −0.0550 −0.0010

−0.0685 0.0757 0.0215 0.6481 0.0718 0.0130 0.1047 −0.0651 −0.0494 −0.0673

0.0038 0.0531 0.0389 0.0718 0.6583 −0.1011 −0.0604 −0.0524 −0.0097 0.0441

0.1222 0.1086 −0.0539 0.0130 −0.1011 0.5062 0.0014 −0.0576 −0.0785 −0.0182

0.0049 −0.0041 −0.0004 0.1047 −0.0604 0.0014 0.5376 −0.0959 −0.0997 −0.0202

−0.0770 0.0598 0.0912 −0.0651 −0.0524 −0.0576 −0.0959 0.7562 0.0317 −0.0862

0.0319 0.1067 −0.0550 −0.0494 −0.0097 −0.0785 −0.0997 0.0317 0.5243 −0.0096

−0.0368 0.0351 −0.0010 −0.0673 0.0441 −0.0182 −0.0202 −0.0862 −0.0096 0.8199

0.0536 −0.0566 0.0058 −0.0055 −0.0926 0.1329 −0.1258 −0.0200 −0.1145 0.1264

0.0596 −0.0767 0.0744 −0.0118 −0.0230 −0.0668 −0.1022 −0.1742 0.0360 −0.0647

0.0506 −0.1416 −0.1521 0.0506 0.0718 −0.0597 −0.0279 −0.0599 0.1710 0.0026

0.0278 0.0399 −0.1190 0.1091 −0.0933 −0.0491 −0.0045 0.0752 −0.0981 0.0230

0.1505 −0.0353 0.0332 −0.0742 −0.0080 −0.0379 0.0743 0.0630 0.0547 0.1186

0.0356 −0.0105 0.0371 −0.0214 0.0032 −0.1460 −0.0696 −0.0514 0.0008 −0.0655

0.0969 −0.0331 −0.1452 0.0123 0.0205 −0.0958 0.0567 0.0483 −0.0491 −0.0479

−0.0039 −0.0670 −0.0077 −0.0698 −0.0421 −0.0514 0.1034 0.0345 0.0241 0.0215

−0.0289 −0.0619 0.0332 −0.0900 −0.0145 −0.0699 −0.1032 −0.0703 −0.0612 0.0326

0.0825 0.0193 0.0145 0.0466 0.1161 0.1231 −0.0721 0.0214 0.0432 0.0527

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,
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Σ
2
=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0.0536 0.0596 0.0506 0.0278 0.1505 0.0356 0.0969 −0.0039 −0.0289 0.0825

−0.0566 −0.0767 −0.1416 0.0399 −0.0353 −0.0105 −0.0331 −0.0670 −0.0619 0.0193

0.0058 0.0744 −0.1521 −0.1190 0.0332 0.0371 −0.1452 −0.0077 0.0332 0.0145

−0.0055 −0.0118 0.0506 0.1091 −0.0742 −0.0214 0.0123 −0.0698 −0.0900 0.0466

−0.0926 −0.0230 0.0718 −0.0933 −0.0080 0.0032 0.0205 −0.0421 −0.0145 0.1161

0.1329 −0.0668 −0.0597 −0.0491 −0.0379 −0.1460 −0.0958 −0.0514 −0.0699 0.1231

−0.1258 −0.1022 −0.0279 −0.0045 0.0743 −0.0696 0.0567 0.1034 −0.1032 −0.0721

−0.0200 −0.1742 −0.0599 0.0752 0.0630 −0.0514 0.0483 0.0345 −0.0703 0.0214

−0.1145 0.0360 0.1710 −0.0981 0.0547 0.0008 −0.0491 0.0241 −0.0612 0.0432

0.1264 −0.0647 0.0026 0.0230 0.1186 −0.0655 −0.0479 0.0215 0.0326 0.0527

0.4256 −0.0703 −0.0141 −0.0424 −0.1122 0.0907 0.0171 0.0920 0.0471 0.0074

−0.0703 0.6835 −0.0655 0.0812 −0.0195 −0.0830 0.0498 0.0173 −0.0454 0.0768

−0.0141 −0.0655 0.5884 0.0405 0.0640 0.0214 −0.1060 0.0359 −0.0390 −0.0281

−0.0424 0.0812 0.0405 0.7222 0.0276 0.0692 −0.0715 −0.0177 0.1222 0.0913

−0.1122 −0.0195 0.0640 0.0276 0.6265 −0.0079 0.0838 −0.0921 −0.0681 −0.0301

0.0907 −0.0830 0.0214 0.0692 −0.0079 0.7695 −0.0283 0.0249 −0.0601 0.0567

0.0171 0.0498 −0.1060 −0.0715 0.0838 −0.0283 0.7537 0.0280 0.0667 0.0550

0.0920 0.0173 0.0359 −0.0177 −0.0921 0.0249 0.0280 0.7757 −0.1008 0.0996

0.0471 −0.0454 −0.0390 0.1222 −0.0681 −0.0601 0.0667 −0.1008 0.5766 −0.0101

0.0074 0.0768 −0.0281 0.0913 −0.0301 0.0567 0.0550 0.0996 −0.0101 0.5674

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(34)

In this case, model (30) becomes the following determin-
istic convex programming model:

max 0.03175𝑥
1
+ 0.0315𝑥

2
+ 0.03325𝑥

3

+ 0.03325𝑥
4
+ 0.0315𝑥

5
+ 0.0345𝑥

6

+ 0.03175𝑥
7
+ 0.03175𝑥

8
+ 0.0325𝑥

9

+ 0.03225𝑥
10
+ 0.0315𝑥

11
+ 0.03125𝑥

12

+ 0.033𝑥
13
+ 0.03325𝑥

14
+ 0.03125𝑥

15

+ 0.03425𝑥
16
+ 0.03175𝑥

17
+ 0.0315𝑥

18

+ 0.03225𝑥
19
+ 0.031975𝑥

20

s.t. 10
−1

Φ
−1

(𝛼)(

20

∑

𝑖=1

20

∑

𝑗=1

𝜎
𝑖𝑗
𝑥
𝑖
𝑥
𝑗
)

1/2

+ 𝑧

− 2 (1 − 𝛽)𝑉
2
(𝑥) − (2𝛽 − 1)𝑉

1
(𝑥) ≤ 0

𝑧 ≥ 𝜅

20

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 20,

(35)

where the coefficient of 𝑥
𝑖
in the objective function is the

expected value of trapezoidal fuzzy variable 𝜇
𝑖
, 𝜎
𝑖𝑗
in the ERV

constraint is the element of matrix Σ at the 𝑖th row and the
𝑗th column, and the analytical expressions of functions𝑉

1
(𝑥)

and 𝑉
2
(𝑥) in the ERV constraint are defined as follows:

𝑉
1
(𝑥) =

20

∑

𝑖=1

𝑟
(1)

𝑖
𝑥
𝑖

= 0.005𝑥
1
+ 0.006𝑥

2
+ 0.007𝑥

3
+ 0.004𝑥

4

+ 0.005𝑥
5
+ 0.006𝑥

6
+ 0.004𝑥

7
+ 0.005𝑥

8

+ 0.006𝑥
9
+ 0.005𝑥

10
+ 0.004𝑥

11

+ 0.005𝑥
12
+ 0.006𝑥

13
+ 0.004𝑥

14

+ 0.004𝑥
15
+ 0.005𝑥

16
+ 0.004𝑥

17

+ 0.004𝑥
18
+ 0.005𝑥

19
+ 0.004𝑥

20
,

𝑉
2
(𝑥) =

20

∑

𝑖=1

𝑟
(2)

𝑖
𝑥
𝑖

= 0.036𝑥
1
+ 0.037𝑥

2
+ 0.039𝑥

3
+ 0.038𝑥

4

+ 0.037𝑥
5
+ 0.041𝑥

6
+ 0.036𝑥

7
+ 0.038𝑥

8

+ 0.038𝑥
9
+ 0.038𝑥

10
+ 0.036𝑥

11
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Table 1: The distributions of trapezoidal fuzzy parameters 𝜇
𝑖
.

Optional risky assets Possibility distributions
1 𝜇

1
= (0.005, 0.036, 0.038, 0.048)

2 𝜇
2
= (0.006, 0.037, 0.038, 0.045)

3 𝜇
3
= (0.007, 0.039, 0.040, 0.047)

4 𝜇
4
= (0.004, 0.038, 0.040, 0.051)

5 𝜇
5
= (0.005, 0.037, 0.039, 0.045)

6 𝜇
6
= (0.006, 0.041, 0.042, 0.049)

7 𝜇
7
= (0.004, 0.036, 0.039, 0.048)

8 𝜇
8
= (0.005, 0.038, 0.039, 0.045)

9 𝜇
9
= (0.006, 0.038, 0.040, 0.046)

10 𝜇
10
= (0.005, 0.038, 0.040, 0.046)

11 𝜇
11
= (0.004, 0.036, 0.039, 0.047)

12 𝜇
12
= (0.005, 0.037, 0.0385, 0.0445)

13 𝜇
13
= (0.006, 0.039, 0.0405, 0.0465)

14 𝜇
14
= (0.004, 0.038, 0.041, 0.050)

15 𝜇
15
= (0.004, 0.037, 0.0392, 0.0448)

16 𝜇
16
= (0.005, 0.041, 0.0425, 0.0485)

17 𝜇
17
= (0.004, 0.036, 0.040, 0.047)

18 𝜇
18
= (0.004, 0.038, 0.0385, 0.0455)

19 𝜇
19
= (0.005, 0.038, 0.0395, 0.0465)

20 𝜇
20
= (0.004, 0.038, 0.0395, 0.0464)

Table 2: Computational results with𝛼 = 0.8,𝛽 = 0.8, and 𝜅 = 0.006.

Investment ratios

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

𝑥
9

𝑥
10

𝑥
11

𝑥
12

𝑥
13

𝑥
14

𝑥
15

𝑥
16

𝑥
17

𝑥
18

𝑥
19

𝑥
20

Values

0 0 0.06599 0.03981 0.03508
0.19412 0.07107 0.06188 0.07594 0.04273

0 0.05974 0.07214 0.02827 0
0.11136 0.04525 0.00917 0.08748 0

+ 0.037𝑥
12
+ 0.039𝑥

13
+ 0.038𝑥

14

+ 0.037𝑥
15
+ 0.041𝑥

16
+ 0.036𝑥

17

+ 0.038𝑥
18
+ 0.038𝑥

19
+ 0.038𝑥

20
.

(36)

5.2. Computational Results. Firstly, we set the confidence
levels 𝛼 = 0.8, 𝛽 = 0.8 and the prescribed value of ERV
𝜅 = 0.006 and solve model (35) by LINGO software. After 31
iterations, we obtain the distributive investment ratios among
20 risky assets, which are reported in Table 2. Due to the
convexity of model (35), the obtained investment scheme is
the global optimal solution, and its corresponding optimal
objective value is 0.03293.

Secondly, considering that investors may have different
attitudes towards risk, model (35) is solved under various
values of parameters 𝛼, 𝛽, and 𝜅.The obtained computational
results are provided in Table 3, from which we observe the
effect of model parameters on the solution quality of the
EV-ERV model. The computational results demonstrate that

0.0342

0.034

0.0338

0.0336

0.0334

0.0332

0.033

0.0328

EV

0 0.002 0.004 0.006 0.008 0.01 0.012

ERV

Figure 1: Relationship between ERV and EV under 𝛼 = 0.7 and
𝛽 = 0.8.

when the values of parameters 𝛼, 𝛽, and 𝜅 are changed,
the investment ratios and objective values are also changed
accordingly. If we fix two of the parameters 𝛼, 𝛽, and 𝜅, the
objective value will decrease with respect to the remaining
parameter. For example, when 𝛼 = 0.8 and 𝜅 = 0.006, the
objective values are EV = 0.03329, 0.03302, 0.03261, corre-
sponding to 𝛽 = 0.75, 0.79, 0.82, respectively. In addition,
the value of 𝑧 is always equal to that of 𝜅; that is, the ERV is
attainable and equal to 𝜅, which is evident from theoretical
analysis.

Thirdly, we demonstrate the relationship between ERV
and EV in our equilibrium optimizationmodel via numerical
experiments. For this purpose, we set the confidence levels
𝛼 = 0.7 and 𝛽 = 0.8. The computational results are plotted
in Figure 1, from which we observe that all the points under
the line satisfy the constraints in our problem, and are called
feasible solutions. The points on the line are the optimal
solutions for the given 𝛼 and 𝛽. The area under the line is the
effective coverage.

5.3. Comparing with Stochastic Optimization Method. In this
subsection, we compare the proposed equilibrium optimiza-
tion method with classical stochastic optimization method.
For the sake of comparison, we also employ the data provided
in Section 5.1, and replace the trapezoidal fuzzy variables
in Table 1 by their expected values. As a result, the return
rate of each asset is characterized by random variable. In
this case, the random fuzzy return vector 𝜂 degenerates
into a random return vector 𝜂 ∼ N(𝜇, Σ), where 𝜇, Σ are
deterministic vector and matrix. That is, the return rates 𝜂

𝑖
,

𝑖 = 1, 2, . . . , 20, are considered as normal random variables,
and their dependence are characterized by covariance matrix
Σ.

By calculation, the expected return rate vector is

𝜇 = (0.03175, 0.0315, 0.03325, 0.03325, 0.0315,

0.0345, 0.03175, 0.03175, 0.0325, 0.03225, 0.0315,

0.03125, 0.033, 0.03325, 0.03125, 0.03425,

0.03175, 0.0315, 0.03225, 0.031975)
𝑇

.

(37)
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Table 3: The optimal solutions of equilibrium optimization model under various values of parameters.

Parameters Investment ratios Objective values

𝛼 𝛽 𝜅

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

EV𝑥
6

𝑥
7

𝑥
8

𝑥
9

𝑥
10

𝑥
11

𝑥
12

𝑥
13

𝑥
14

𝑥
15

𝑥
16

𝑥
17

𝑥
18

𝑥
19

𝑥
20

0.78 0.8 0.006

0 0 0.08332 0.04127 0.02539

0.033080.21540 0.05473 0.04693 0.07931 0.03955
0 0.04148 0.07848 0.04074 0

0.12020 0.05187 0.00402 0.07731 0

0.8 0.8 0.006

0 0 0.06599 0.03981 0.03508

0.032930.19412 0.07107 0.06188 0.07594 0.04273
0 0.05974 0.07214 0.02827 0

0.11136 0.04525 0.00917 0.08748 0

0.82 0.8 0.006

0 0.01039 0.04343 0.03564 0.04671

0.032710.16033 0.09309 0.08176 0.06673 0.04612
0.00108 0.08616 0.06753 0.00916 0
0.09753 0.03613 0.01668 0.10153 0

0.8 0.75 0.006

0 0 0.10802 0.04491 0.01061

0.033290.24738 0.02916 0.02402 0.08360 0.03457
0 0.01334 0.08674 0.05983 0

0.13391 0.06153 0 0.06240 0

0.8 0.79 0.006

0 0 0.07626 0.04095 0.02916

0.033020.20703 0.06120 0.05276 0.07790 0.04081
0 0.04857 0.07578 0.03599 0

0.11685 0.04931 0.06131 0.08131 0

0.8 0.82 0.006

0 0.01762 0.03796 0.03247 0.05033

0.032610.14456 0.09980 0.08373 0.06536 0.04170
0.01818 0.09175 0.06540 0.00562 0.00613
0.08971 0.03125 0.01620 0.10224 0

0.78 0.78 0.006

0 0 0.10076 0.04330 0.01526

0.033230.23748 0.03741 0.03131 0.08249 0.03619
0 0.02234 0.08461 0.05375 0

0.12957 0.05859 0 0.06693 0

0.78 0.78 0.008

0 0 0.07275 0.04044 0.03112

0.032990.20291 0.06426 0.05606 0.07705 0.04148
0 0.05253 0.07474 0.03300 0

0.11520 0.04764 0.00727 0.08355 0

0.78 0.78 0.009

0 0 0.05231 0.03833 0.04272

0.032820.17766 0.08354 0.07411 0.07299 0.04528
0 0.07457 0.06753 0.01768 0

0.10462 0.03948 0.01339 0.09579 0

Theobjective function is𝐸[𝜂𝑇𝑥] = ∑
𝑛

𝑖=1
𝑥
𝑖
𝜇
𝑖
, and the ERV

constraint is expressed as

Φ
−1

(𝛼)√𝑥𝑇Σ𝑥 + 𝑧 − 𝜇
𝑇

𝑥 ≤ 0. (38)

As a consequence, our equilibrium portfolio optimiza-
tion problem reduces to the following convex programming
model:
max 0.03175𝑥

1
+ 0.0315𝑥

2
+ 0.03325𝑥

3
+ 0.03325𝑥

4

+ 0.0315𝑥
5
+ 0.0345𝑥

6
+ 0.03175𝑥

7
+ 0.03175𝑥

8

+ 0.0325𝑥
9
+ 0.03225𝑥

10
+ 0.0315𝑥

11
+ 0.03125𝑥

12

+ 0.033𝑥
13
+ 0.03325𝑥

14
+ 0.03125𝑥

15
+ 0.03425𝑥

16

+ 0.03175𝑥
17
+ 0.0315𝑥

18

+ 0.03225𝑥
19
+ 0.031975𝑥

20

s.t. 10
−1

Φ
−1

(𝛼)(

20

∑

𝑖=1

20

∑

𝑗=1

𝜎
𝑖𝑗
𝑥
𝑖
𝑥
𝑗
)

1/2
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Table 4: Computational results with 𝛼 = 0.8 and 𝜅 = 0.006.

Investment ratios

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

𝑥
9

𝑥
10

𝑥
11

𝑥
12

𝑥
13

𝑥
14

𝑥
15

𝑥
16

𝑥
17

𝑥
18

𝑥
19

𝑥
20

Values

0 0 0.11689 0.04596 0
0.41539 0 0 0.01806 0

0 0 0.08538 0.07634 0
0.24198 0 0 0 0

+ 𝑧 − (0.03175𝑥
1
+ 0.0315𝑥

2

+ 0.03325𝑥
3
+ 0.03325𝑥

4
+ 0.0315𝑥

5
+ 0.0345𝑥

6

+ 0.03175𝑥
7
+ 0.03175𝑥

8
+ 0.0325𝑥

9
+ 0.03225𝑥

10

+ 0.0315𝑥
11
+ 0.03125𝑥

12
+ 0.033𝑥

13

+ 0.03325𝑥
14
+ 0.03125𝑥

15
+ 0.03425𝑥

16
+ 0.03175𝑥

17

+ 0.0315𝑥
18
+ 0.03225𝑥

19
+ 0.031975𝑥

20
) ≤ 0

𝑧 ≥ 𝜅

20

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 20.

(39)

To solve model (39) by LINGO software, we set the
confidence level 𝛼 = 0.8 and the prescribed value of ERV
𝜅 = 0.006. The obtained optimal portfolio is collected in
Table 4, with the optimal objective value 0.03398.

To identify the influences of model parameters on solu-
tion quality, the stochastic model (39) is also solved under
various values of parameters 𝛼 and 𝜅.The optimal investment
solutions are reported in Table 5, from which we find that the
solution results are different under various values of 𝛼 and 𝜅.
If we set parameter 𝜅 = 0.006, then the objective function
is decreasing with respect to confidence level 𝛼. Given the
parameter 𝛼, the objective function is also decreasing with
respect to parameter 𝜅.

We now compare the computational results reported in
Tables 2 and 4 as well as their optimal objective values. When
model parameters are set to the same values, our equilibrium
optimization method and stochastic optimization method
produce different investment schemes. The equilibrium
method selects 15 risky assets, while stochasticmethod selects
7 risky assets. In addition, two optimization methods suggest
different investment ratios for the same risky asset. For
example, the equilibrium method provides investment ratio
0.06599 for the third risky asset, while the stochastic method
provides investment ratio 𝑥

3
= 0.11689. From the viewpoint

of distributive investment, we conclude that our equilibrium
method is superior to the classical stochastic method.

We continue to compare the computational results
reported in Tables 3 and 5, from which we observe that

the equilibrium method and stochastic method provide dif-
ferent combinations of risky assets and different optimal
return rates. For example, when we set probability level 𝛼 =

0.82, credibility level 𝛽 = 0.8, and 𝜅 = 0.006, the equilibrium
method provides the following optimal investment plan:

𝑥 = (0, 0.01039, 0.04343, 0.03564, 0.04671, 0.16033,

0.09309, 0.08176, 0.06673, 0.04612, 0.00108,

0.08616, 0.06753, 0.00916, 0, 0.09753, 0.03613,

0.01668, 0.10153, 0)
𝑇

,

(40)

whose objective value is 0.03271. The stochastic method only
selects 9 risky assets 𝑖, 𝑖 = 3, 4, 6, 9, 13, 14, 16, 17, 19. The cor-
responding investment ratios are 0.12286, 0.04955, 0.37902,
0.04157, 0.08867, 0.08131, 0.21614, 0.01161, and 0.00927, respec-
tively. The optimal return rate provided by the stochastic
method is 0.03386.

On the other hand, under the same values of model
parameters, we observe that the optimal objective values in
Table 5 are larger than those provided inTable 3. For example,
when 𝛼 = 0.78, 𝛽 = 0.8, and 𝜅 = 0.006, the equilibrium
method provides the optimal value 0.03308, while stochastic
method provides the optimal value 0.03408. This is because
the credibilistic constraints are relaxed when the random
fuzzy return rates degenerate into random ones. Therefore,
we may obtain higher expected return rate. Nevertheless, the
superiority of our equilibriummethod is reflected in terms of
diversification.

Finally, we want to point out that an investor may
often encounter a hybrid uncertain environment in modern
financialmarkets. In this situation, the investor cannot ignore
the influence of fuzzy uncertainty on the solution quality.The
computational results support our arguments. For example,
when probability level 𝛼 = 0.78 and 𝜅 = 0.006, the stochas-
tic model (39) suggests the optimal investment scheme
𝑥
∗

= (0, 0, 0.09906, 0.03658, 0, 0.46099, 0, 0, 0, 0, 0, 0, 0.0670,

0.06212, 0, 0.27424, 0, 0, 0, 0)
𝑇. However, 𝑥∗ is not the fea-

sible solution to equilibrium optimization model (35) with
probability level 𝛼 = 0.78, credibility level 𝛽 = 0.78, and
𝜅 = 0.006. In order to keep 𝑥∗ feasible to model (35), we have
to reduce the value of parameter 𝜅 from 0.006 to −0.00717.
By the definition of 𝜅, the optimal solution corresponding to
−0.00717 is meaningless from a practical viewpoint.

As a consequence, we conclude from the computational
results that our equilibrium optimization method is effective
in modeling practical portfolio selection problem under
hybrid uncertain environment, where randomness and fuzzi-
ness are the state of affairs.

6. Conclusions

On the basis of probability and credibility measures, a new
risk index called the ERV of random fuzzy variable was
introduced. Under the equilibrium risk criterion, a new EV-
ERV portfolio optimization model was built for portfolio
selection problems, where the return rates are characterized
by both probability distributions and possibility distribu-
tions. In the case where both subjective consciousness and
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Table 5: The optimal solutions of random model under various values of parameters.

Parameters Investment ratios Objective values

𝛼 𝜅

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

EV𝑥
6

𝑥
7

𝑥
8

𝑥
9

𝑥
10

𝑥
11

𝑥
12

𝑥
13

𝑥
14

𝑥
15

𝑥
16

𝑥
17

𝑥
18

𝑥
19

𝑥
20

0.78 0.006

0 0 0.09906 0.03658 0

0.034080.46099 0 0 0 0
0 0 0.06700 0.06212 0

0.27424 0 0 0 0

0.8 0.006

0 0 0.11689 0.04596 0

0.033980.41539 0 0 0.01806 0
0 0 0.08538 0.07634 0

0.24198 0 0 0 0

0.82 0.006

0 0 0.12286 0.04955 0

0.033860.37902 0 0 0.04157 0
0 0 0.08867 0.08131 0

0.21614 0.01161 0 0.00927 0

0.78 0.008

0 0 0.11519 0.04488 0

0.033990.42154 0 0 0.01284 0
0 0 0.08459 0.07455 0

0.24641 0 0 0 0

0.78 0.009

0 0 0.12044 0.04822 0

0.033940.40256 0 0 0.02893 0
0 0 0.08701 0.08010 0

0.23274 0 0 0 0

objective factors affect the current financial markets, the
developed equilibrium framework provided a novel opti-
mization method for depicting real-life portfolio selection
problem.

When the randomness of uncertain return rates follows
normal distributions, the proposed equilibrium portfolio
selection model was turned into an equivalent credibilistic
portfolio optimizationmodel.The convexity of the credibilis-
tic portfolio optimizationmodel was discussed inTheorem 7,
which facilitates finding the desired global optimal portfolio.
Furthermore, when the fuzziness of uncertain return rates
follows trapezoidal, triangular, and normal distributions, the
credibilistic portfolio optimization model was turned into its
equivalent deterministic convex programming models.

We compared the proposed equilibrium optimization
method with traditional stochastic optimization method via
a portfolio selection problem. The computational results
demonstrated that both optimization methods can provide
diversified investment schemes. However, the obtained equi-
libriumoptimal solutions aremore superior in terms of diver-
sification.That is, when the fuzziness of uncertain return rates
is considered, the equilibrium optimal solution usually diver-
sified the optimal solutions obtained by stochastic method.
As a consequence, when the exact probability distributions of
return rates are unavailable, the proposed equilibrium opti-
mization method provided an effective way to model practi-
cal portfolio selection problems with hybrid uncertain return
rates.
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