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The celebrated Cahn–Hilliard (CH) equation was proposed to model the process of phase separation in binary alloys by Cahn and
Hilliard. Since then the equation has been extended to a variety of chemical, physical, biological, and other engineering fields such as
spinodal decomposition, diblock copolymer, image inpainting, multiphase fluid flows, microstructures with elastic inhomogeneity,
tumor growth simulation, and topology optimization. Therefore, it is important to understand the basic mechanism of the CH
equation in each modeling type. In this paper, we review the applications of the CH equation and describe the basic mechanism of
each modeling type with helpful references and computational simulation results.

1. Introduction

The Cahn–Hilliard (CH) equation is a mathematical model
of the process of a phase separation in a binary alloy [1, 2].
Its physical applications have been extended to many areas of
scientific fields such as spinodal decomposition [1, 3], diblock
copolymer [4–6], image inpainting [7],multiphase fluid flows
[8–10], microstructures with elastic inhomogeneity [11, 12],
tumor growth simulation [13, 14], and topology optimization
[15, 16]. In this paper, we review and describe the basic
mechanism of eachmodel.The basic building-block equation
of the mathematical modeling and dynamical model is the
CH equation:

𝜕𝜙𝜕𝑡 (x, 𝑡) = ∇ ⋅ [𝑀 (𝜙 (x, 𝑡)) ∇𝜇 (x, 𝑡)] , x ∈ Ω, 𝑡 > 0,𝜇 (x, 𝑡) = 𝐹 (𝜙 (x, 𝑡)) − 𝜖2Δ𝜙 (x, 𝑡) ,𝜕𝜙𝜕𝑛 (x, 𝑡) = 𝜕𝜇𝜕𝑛 (x, 𝑡) = 0, x ∈ 𝜕Ω,
(1)

where Ω ⊂ R𝑑 (𝑑 = 1, 2, 3) is a bounded domain with a
boundary 𝜕Ω. The quantity 𝜙(x, 𝑡) = 𝑚𝛼 −𝑚𝛽 is a phase-field
defined as the difference between themole fractions of binary
mixtures, where 𝑚𝛼 and 𝑚𝛽 are the mole fractions of phases𝛼 and 𝛽. 𝐹(𝜙) = 0.25(𝜙2 − 1)2 is a double-well potential of a
homogeneous system of composition 𝜙 as shown in Figure 1.𝑀(𝜙(x, 𝑡)) is a positive mobility, 𝜖 is a positive constant,
and 𝜕/𝜕𝑛 is the outward normal derivative at the domain
boundary. Originally, the concentration-dependent mobility
has a form𝑀(𝜙) = 𝑀0(1 − 𝜙)(1 + 𝜙), where𝑀0 is a constant.
This form has the same property in diseases transmission in
that transmission happens by contact.

TheCHequation can be derived from the total free energy
functional

E (𝜙) = ∫
Ω
(𝐹 (𝜙) + 𝜖22 ∇𝜙2)𝑑x. (2)

Now, we get the chemical potential from (2): 𝜇 = 𝛿E/𝛿𝜙 =𝐹(𝜙)−𝜖2Δ𝜙.Then, by themass conservation, we have the CH
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Figure 1: Double-well potential function 𝐹(𝜙) = 0.25(𝜙2 − 1)2.
equation:𝜙𝑡 = −∇⋅J, where the flux is defined asJ = −𝑀∇𝜇.
The CH system (1) possesses the following two properties:𝑑𝑑𝑡 ∫Ω 𝜙𝑑x = 0,𝑑𝑑𝑡E (𝑡) ≤ 0. (3)

See [18] for more details about the physical, mathematical,
and numerical derivations of the binary Cahn–Hilliard equa-
tion.

The objective of this paper is to review the physical
applications of the CH equation. This paper is organized as
follows. In Section 2, we present spinodal decomposition of
a binary alloy, which is the original application of the CH
equation. By adding a long-range nonlocal energy, we have a
mathematical model for the diblock copolymers in Section 3.
A slightly modified CH equation is applied to the inpainting
of binary images in Section 4. In Section 5, we present a
two-phase immiscible fluid flow model which uses the CH
equation to represent two distinct fluids. Elastic strain energy
takes an important role in a solid-state phase transformation.
When the free energy functional includes this additional
effect, themicrostructure evolution can bemodeled using the
CH equation. We consider this in Section 6. In Section 7,
we review tumor growth model in which the CH equation
accounts for the cell species. In Section 8, we consider struc-
ture optimization problem in which we need to minimize
mean compliance of the multimaterial structures. Finally,
conclusions are drawn in Section 9.

2. Spinodal Decomposition

A system of the CH equations (1) is the leadingmodel of spin-
odal decomposition in binary alloys. Spinodal decomposition
is a process by which a mixture of two materials can separate
into distinct regions with different material concentrations
[1]. Morphological patterns during spinodal decomposition

and subsequent coarsening for interface-diffusion-controlled
dynamics are shown in Figure 2.

The simulation is performed on a two-dimensional
domain Ω = (0, 1) × (0, 1) with 128 × 128 mesh grid; that
is, the spatial step size ℎ = 1/128. The initial condition is
given by 𝜙(𝑥, 𝑦) = 𝜙 + 0.05 rand(𝑥, 𝑦), where 𝜙 is an average
value of 𝜙(𝑥, 𝑦) and rand(𝑥, 𝑦) is a random number function
distributed uniformly in [−1, 1]. The temporal step size Δ𝑡 =ℎ2 and 𝜖 = 0.0075 are used. As shown in Figure 2, we can see
two different patterns with respect to 𝜙. The upper and lower
rows in Figure 2 represent the time evolution of numerical
results with 𝜙 = −0.4 and 𝜙 = 0, respectively. In these
tests, we used the nonlinearly stabilized splitting scheme [19].
There aremany other numerical methods [20–27] that can be
applied to the CH equations.

3. Diblock Copolymer

A diblock copolymer is a linear-chain molecule consisting
of two subchains joined covalently to each other [4]. Let𝜙(x, 𝑡) = 𝜌𝐴(x, 𝑡) − 𝜌𝐵(x, 𝑡) be the order parameter which is
defined as the difference between the local volume fractions
of 𝐴 and 𝐵 monomers at point x and time 𝑡. Then, the
governing equation by the Ohta–Kawasaki model [28] is as
follows: 𝜕𝜙 (x, 𝑡)𝜕𝑡 = Δ (𝐹 (𝜙 (x, 𝑡)) − 𝜖2Δ𝜙 (x, 𝑡))− 𝛼 (𝜙 (x, 𝑡) − 𝜙) , x ∈ Ω, (4)

where Ω ⊂ R𝑑 (𝑑 = 1, 2, 3) is a domain, 𝜙 = ∫
Ω
𝜙𝑑x/|Ω|

is the spatial average of 𝜙, and 𝛼 is inversely proportional to
the square of the total chain length of the copolymer [29].
Equation (4) can be derived from the following free energy
functional:

E (𝜙)
= ∫
Ω
(𝐹 (𝜙 (x)) + 𝜖22 ∇𝜙 (x)2)𝑑x

+ 𝛼2 ∬Ω 𝐺 (x, y) (𝜙 (x) − 𝜙) (𝜙 (y) − 𝜙) 𝑑x 𝑑y,
(5)

where 𝐹(𝜙) = 0.25(𝜙2 − 1)2 and 𝐺(x, y) denotes Green’s
function of −Δ onΩ with periodic boundary conditions [4].

As a test problem, we perform a numerical test with
respect to 𝜙 on the domain Ω = (0, 𝐿) × (0, 𝐿). In this test,
we set the initial condition as 𝜙(𝑥, 𝑦, 0) = 𝜙 + 0.1 rand(𝑥, 𝑦),
where rand(𝑥, 𝑦) ∈ [−1, 1] is a randomly generated number.
The other parameters used are ℎ = 0.03, Δ𝑡 = 0.1, 𝛼 = 100,𝜖 = 0.035, 𝐿 = 128ℎ, and 128 × 128 mesh grid. Figures 3(a)
and 3(b) show the evolution of the numerical solutions with𝜙 = −0.3 and 𝜙 = 0, respectively. As shown in Figure 3(a),
figures in the first row change to the hexagonal geometry as
time increases. Unlike this, we can see the lamellar geometry
in Figure 3(b) at the equilibrium state.
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t = 32h2 t = 80h2 t = 2400h2 t = 8000h2

(a)
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Figure 2:Morphological patterns during spinodal decomposition and subsequent coarsening.The upper and lower rows represent the results
with (a) 𝜙 = −0.4 and (b) 𝜙 = 0, respectively. Times are shown below each figure.
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Figure 3: (a) Hexagonal pattern when 𝜙 = −0.3 and (b) lamella pattern when 𝜙 = 0with ℎ = 0.03, Δ𝑡 = 0.1, 𝛼 = 100, 𝜖 = 0.035, and 128×128
mesh grid. Times are shown below each column.

4. Image Inpainting

Image inpainting is the filling in of damaged or missing
regions of an image with the use of information from sur-
rounding areas [7]. In [7], authors modified the CH equation
to achieve fast inpainting of a binary image. Let 𝑓(x), where
x = (𝑥, 𝑦), be a given binary image in a domain Ω and𝐷 ⊂ Ω be the inpainting domain. The image is scaled so that

0 ≤ 𝑓 ≤ 1. Let 𝑐(x, 𝑡) be a phase-field which is governed by
the following modified CH equation:𝑐𝑡 (x, 𝑡) = Δ𝜇 (x, 𝑡) + 𝜆 (x) (𝑓 (x) − 𝑐 (x, 𝑡)) ,

x ∈ Ω, 𝑡 > 0,𝜇 (x, 𝑡) = 𝐹 (𝑐 (x, 𝑡)) − 𝜖2Δ𝑐 (x, 𝑡) , (6)
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(a) (b)

(c) (d)

Figure 4: (a) Initial data with inpainting region in gray. (b), (c), and (d) are numerical solutions at 𝑡 = 40, 500, and 1300, respectively.
where 𝐹(𝑐) = 0.25𝑐2(1 − 𝑐)2 and 𝜆(x) = 0 if x ∈ 𝐷; otherwise𝜆(x) = 𝜆0.

We perform a test of the inpainting of a double stripe
as shown in Figure 4(a). Here, gray region in the initial
configuration denotes the inpainting region. In this test, we
start the numerical test with the following parameters: 𝜆0 =10, 𝜖 = 10, ℎ = 1/128, andΔ𝑡 = 0.1. And thenwe switch these
values to 𝜆0 = 0.1, 𝜖 = 0.1, and Δ𝑡 = 1 after 3000 iterations
and stop the simulation after 4000 iterations. Figures 4(b),
4(c), and 4(d) are numerical solutions at 𝑡 = 40, 500,
and 1300, respectively. The final inpainting result represents
the completed stripe. Numerical solution algorithms can be
found in [7, 30].

5. Two-Phase Fluid Flows

In the two-phase fluid flow problem, we use the CH equation
for capturing the interface location between two immiscible
fluids. The CH equation provides a good mass conservation
property. We model the variable quantities such as viscosity
and density by using the phase-field. Also, we model the
surface tension effect with the phase-field. The velocity field
is governed by the modified Navier–Stokes equation. The

phase-field is advected by the bulk velocity. A typical coupled
model is𝜌 (𝜙) (𝜕u𝜕𝑡 + u ⋅ ∇u) = −∇𝑝 + 1

Re
Δu + 1

We
SF

+ 𝜌 (𝜙)
Fr

g,∇ ⋅ u = 0,𝜕𝜙𝜕𝑡 + ∇ ⋅ (𝜙u) = 1
Pe
∇ ⋅ (𝑀 (𝜙) ∇𝜇) ,𝜇 = 𝐹 (𝜙) − 𝐶Δ𝜙,

(7)

where u is the velocity, 𝑝 is the pressure, 𝜌(𝜙) is the density,
SF is the surface tension force, g is the gravitational force, 𝜙 is
the phase-field function,𝑀(𝜙) is the mobility function, and𝜇 is the chemical potential.The dimensionless parameters are
used as Reynolds number Re = 𝜌∗𝐿∗𝑉∗/𝜂∗, Weber number
We = 𝜌∗𝐿∗𝑉2∗/𝜎, Froude number Fr = 𝑉2∗ (𝑔𝐿∗), Cahn num-
ber 𝜖2/𝜇∗, and diffusional Peclet number Pe = 𝐿∗𝑉∗/(𝑀∗𝜇∗),
where𝑉∗ is the characteristic velocity, 𝐿∗ is the characteristic
length, 𝜂 is the viscosity, 𝜎 is the surface tension coefficient, 𝑔
is the gravitational constant, 𝜖 is the interfacial parameter, and
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Figure 5: Schematic diagram of a two-phase fluid domain.

subscript ∗ denotes the corresponding characteristic values.
See [8, 31, 32] for numerical solution algorithms.

As a test problem,we consider a drop falling test under the
gravity. A schematic diagramof a two-phase domain is shown
in Figure 5. Figure 6 shows the interfaces of the falling drop
at time 𝑡 = 0, 1, 2, and 2.7 from left to right.The simulation is
performed on the domainΩ = (0, 1) × (0, 2) with a 128 × 256
mesh grid.The temporal and spatial step sizes areΔ𝑡 = 0.0005
and ℎ = 1/128, respectively. We use 𝜖 = 0.00151, 𝜌1/𝜌2 = 3,
Re = 100, We = 12.5, and Fr = 1. Also, the radius of the
initial circle is set to 0.25.
6. Microstructure with Elastic Inhomogeneity

Strain energy stored by the elastic deformation of the object
is called the elastic strain energy. This energy performs
an important function in determining the transformation
path and the corresponding microstructure evolution [12].
Chen and Khachaturyan [33] and Wang et al. [34] have first
derived the phase-field model from the microscopic theory
of Khachaturyan [35, 36]. The standard phase-field model
is combined with the microelasticity theory that allows us
to express the elastic energy as a function of composition
and order parameters [37]. This model has been applied to
a variety of solid-state phase transformations [37, 38] and
used to investigate the effect of elastic strain energy on the
morphological evolution of the microstructure. For more
details, see [12].

Now, we derive the phase-field model for microstructural
evolution. Let us consider a two-phase microstructure with a
composition field 𝑐(x) and elastic strain 𝜖el𝑖𝑗 (x). The total free
energy in an inhomogeneous system is defined as

F = ∫
𝑉
[𝐹 (𝑐) +Eel + 𝜅2 |∇𝑐|2] 𝑑𝑉. (8)

Here, 𝐹(𝑐) is the local chemical free energy density defined
by a quartic polynomial 𝐹(𝑐) = 2.5(𝑐 − 𝑐𝛼)2(𝑐 − 𝑐𝛽)2 with
two local minima 𝑐𝛼 and 𝑐𝛽. Assuming that materials are

cubic anisotropy, the elastic strain energy density Eel(𝑐, u) is
defined as

Eel (𝑐, u) = − (𝐶11 + 𝐶12) 𝑒 (𝑐) (𝐸11 + 𝐸22 − 𝑒 (𝑐))+ 2𝐶44𝐸212 + 0.5𝐶11 (𝐸211 + 𝐸222)+ 𝐶12𝐸11𝐸22,
(9)

where u = (𝑢, V) is the displacement and 𝐶11, 𝐶12, and𝐶44 are the cubic elastic parameters and are dependent on
the order parameter 𝑐. Here, 𝐶𝑘 = 𝐶1𝑘𝑐 + 𝐶0𝑘(1 − 𝑐) for𝑘 = 11, 12, and 44, where 𝐶0𝑘 and 𝐶1𝑘 are elastic constants of
matrix and precipitate, respectively. The eigenstrain is 𝑒(𝑐) =𝜂(𝑐 − 𝑐𝑠), which obeys Vegard’s law. Here, 𝑐𝑠 is the average
composition and 𝜂 is a constant. And 𝐸11 = 𝑢𝑥, 𝐸22 = V𝑦,
and 𝐸12 = 0.5(𝑢𝑦 + V𝑥). 𝜅 is the gradient energy coefficient
which can be related to interatomic interaction parameters.
By the variational derivative 𝛿F/𝛿𝑐, we obtain the following
equation: 𝛿F𝛿𝑐 = 𝐹 (𝑐) − 𝜅Δ𝑐 + 𝜕Eel𝜕𝑐 . (10)

From the total free energy functional (8), we derive the mod-
ified CH equation for the two-dimensional microstructure
evolution with strong elastic inhomogeneity:𝜕𝑐𝜕𝑡 = 𝑀Δ𝜇,

𝜇 = 𝐹 (𝑐) − 𝜖2Δ𝑐 + 𝜕Eel𝜕𝑐 , (11)

where𝑀 is the mobility. From the definition, we get𝜕Eel𝜕𝑐= − (𝐶111 − 𝐶011 + 𝐶112 − 𝐶012) 𝑒 (𝑐) (𝐸11 + 𝐸22 − 𝑒 (𝑐))− 𝜂 (𝐶11 + 𝐶12) (𝐸11 + 𝐸22 − 2𝑒 (𝑐))+ 2 (𝐶144 − 𝐶044) 𝐸212+ 0.5 (𝐶111 − 𝐶011) (𝐸211 + 𝐸222)+ (𝐶112 − 𝐶012) 𝐸11𝐸22.

(12)

Under the condition for plain strain and the quasi-static
approximation, we have(𝐶11𝑢𝑥 + 𝐶12V𝑦)𝑥 + (𝐶44𝑢𝑦 + 𝐶44V𝑥)𝑦= [(𝐶11 + 𝐶12) 𝑒 (𝑐)]𝑥 ,(𝐶11V𝑦 + 𝐶12𝑢𝑥)𝑦 + (𝐶44V𝑥 + 𝐶44𝑢𝑦)𝑥= [(𝐶11 + 𝐶12) 𝑒 (𝑐)]𝑦 ,

(13)
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Figure 6: Evolution of falling drop shapes with 𝜌1/𝜌2 = 3, Re = 100, We = 12.5, and Fr = 1. Times are shown below in each figure.

where the subscripts 𝑥 and 𝑦 denote partial derivatives with
respect to the corresponding arguments.

Now, we perform a numerical test with 𝜅 = 1.2247, 𝑐𝛼 =0.053, 𝑐𝛽 = 0.947, the composition expansion coefficient 𝜂 =0.05, spatial step size ℎ = 1, temporal step size Δ𝑡 = 1, and
the computational domain Ω = (0, 256) × (0, 256). With an
initial condition,

𝑐 (𝑥, 𝑦, 0)
= {{{{{

0.947, if √(𝑥 − 128)2 + (𝑦 − 128)2 ≤ 400.060, otherwise,
(14)

we investigate the effect of elastic inhomogeneity 𝜅. We take
the elastic constants 𝐶011 = 232, 𝐶012 = 153, and 𝐶044 = 117 in
the same values in [39, 40], which have a cubically anisotropic
system. In order to show the effect of elastic inhomogeneity,
we keep the same bulk modulus 𝐵 = 𝐶11 + 𝐶12 and the same
ratio of anisotropy 𝛿 = 2𝐶44/(𝐶11 − 𝐶12), while changing
the ratio of shear modulus 𝜅 = 𝐶𝑃44/𝐶𝑀44 in the matrix and
precipitate phases, respectively [39].

Figures 7(a)–7(f) show the numerical results at time 𝑡 =1700 with the ratio of shear modulus 𝜅 = 1.7, 1.35, 1, 0.6,0.45, and 0.3, respectively.The decrease of 𝜅means that𝐶𝑃44 =𝜅𝐶𝑀44 ; that is, the stiffness of the precipitate is less than the
matrix [41–43]. Therefore, the precipitate phase is easy to
deform to star shape when 𝜅 < 1 as shown in Figures 7(e)
and 7(f). For a comparison study of the effect of free energies
(polynomial and logarithmic functions) on the dynamics, see
[44].

7. Tumor Growth Simulation

To provide optimal strategies for treatments, a mathematical
modeling is very useful since it gives systematic investigation.
LetΩ be a computational domain. LetΩ𝐻,Ω𝑉, andΩ𝐷 be the
healthy, viable, and dead tumor tissues, respectively. We also
define Ω𝑇 = Ω𝑉 ∪ Ω𝐷 as the tumor cell. See Figure 8 for the
schematic of these definitions.

Let 𝜙𝑇 and 𝜙𝐷 be the volume fractions of tumor and dead
tumor tissues. Then, the nondimensional equations for the
volume fraction of tumor cells are𝜕𝜙𝑇𝜕𝑡 = 𝑀∇ ⋅ (𝜙𝑇∇𝜇) + 𝑆𝑇 − ∇ ⋅ (𝜙𝑇u𝑆) ,

𝜇 = 𝐹 (𝜙𝑇) − 𝜖2Δ𝜙𝑇,𝑆𝑇 = 𝑛𝐺 (𝜙𝑇) (𝜙𝑇 − 𝜙𝐷) − 𝜆𝐿𝜙𝐷,
(15)

where𝐺(𝜙𝑇) is a continuous cut-off function.The nondimen-
sional equations for the volume fraction of necrotic cells are𝜕𝜙𝐷𝜕𝑡 = 𝑀∇ ⋅ (𝜙𝐷∇𝜇) + 𝑆𝐷 − ∇ ⋅ (𝜙𝐷u𝑆) ,

𝑆𝐷 = (𝜆𝐴 + 𝜆𝑁H (𝑛𝑁 − 𝑛)) (𝜙𝑇 − 𝜙𝐷) − 𝜆𝐿𝜙𝐷, (16)

whereH is the Heaviside function. The nondimensional cell
velocity is

u = −𝜅 (𝜙𝑇, 𝜙𝐷) (∇𝑝 − 𝛾𝜖 𝜇∇𝜙𝑇) , (17)

where 𝛾 is a nondimensional measure of the adhesion force.
The velocity satisfies ∇ ⋅ u = 𝑆𝑇. (18)
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(a) 𝜅 = 1.7 (b) 𝜅 = 1.35 (c) 𝜅 = 1

(d) 𝜅 = 0.6 (e) 𝜅 = 0.45 (f) 𝜅 = 0.3

Figure 7: Morphologies of a circular precipitate with different shear modulus 𝜅 at time 𝑡 = 1700.
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ΩT = ΩV ∪ ΩD

Ω

Figure 8: Schematic of the domain for tumor simulation. Ω, Ω𝐻,Ω𝑉, Ω𝐷, and Ω𝑇 are the computational domain, healthy cell, viable
cell, dead cell, and tumor, respectively.

The nondimensional quasi-steady nutrient equation is

0 = ∇ ⋅ (𝐷 (𝜙𝑇) ∇𝑛) + 𝑇𝑐 (𝜙𝑇, 𝑛) − 𝑛 (𝜙𝑇 − 𝜙𝐷) , (19)

where the diffusion coefficient and nutrient capillary source
term are𝐷(𝜙𝑇) = 𝐷𝐻 (1 − 𝑄 (𝜙𝑇)) + 𝑄 (𝜙𝑇) ,𝑇𝐶 (𝜙𝑇, 𝑛) = (]𝐻𝑃 (1 − 𝑄 (𝜙𝑇)) + ]𝑇𝑃𝑄 (𝜙𝑇)) (𝑛𝐶 − 𝑛) , (20)

where 𝐷𝐻 is the nutrient diffusivity in the healthy tissue
and 𝑄(𝜙𝑇) is an interpolation function. For more details
about the functions and parameters, see [17]. Also, numerical
simulation using phase-fieldmethod can be found in [45–47].

Figures 9(a)–9(c) show the numerical results at times 𝑡 =0, 𝑡 = 50, and 𝑡 = 100, respectively [17]. The parameters are
]𝐻𝑃 = 0.5, 𝑛𝐶 = 1, 𝐷𝐻 = 1, 𝜆𝐴 = 0, 𝜆𝐿 = 1,𝑀 = 10, ]𝑇𝑃 = 0,𝜅 = 1, 𝑛𝑁 = 0.4. 𝜆𝑁 = 3, 𝛾 = 0, and 𝜖 = 0.1.
8. Topology Optimization

Zhou and Wang [16] extended the phase-field approach
to the problem of minimizing the mean compliance of a
multimaterial structure. For a four-phase system, we have𝜕𝑐𝜕𝑡 = ∇ ⋅ (𝑀 (𝑐) ∇𝜇) ,𝜇 = 𝐹 (𝑐) − Γ𝜖Δ𝑐 + 𝑤 (𝑐) , (21)
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(c) 𝑡 = 100

Figure 9: Evolution of the 𝜙𝑇 = 0.5 isosurface during the growth of an asymmetrical 3D tumor (reprinted from Wise et al. [17], with
permission from Elsevier).

where

𝑐 = (𝛼𝛽𝛾) ,
𝜇 = (𝜉𝜁𝜓) ,

Γ𝜖 = (2𝜖2 𝜖2 𝜖2𝜖2 2𝜖2 𝜖2𝜖2 𝜖2 2𝜖2),
𝑓 (𝑐) =(

(
𝜕𝐹𝜕𝛼𝜕𝐹𝜕𝛽𝜕𝐹𝜕𝛾

)
)

,
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F F

Figure 10: Design domain of topology optimization.

(a) 𝑚 = 0 (b) 𝑚 = 100 (c) 𝑚 = 1000

(d) 𝑚 = 2000 (e) 𝑚 = 5000 (f) 𝑚 = 10000

Figure 11: Solution results for the four-material bridge structure at given time steps 𝑚: material 1 in 𝑔𝑟𝑒𝑒𝑛 (softest), material 2 (softer) in𝑏𝑙𝑢𝑒, material 3 (hardest) in 𝑟𝑒𝑑, and the void in 𝑏𝑙𝑎𝑐𝑘 (reprinted from Zhou and Wang [16], with permission from Springer).

𝑤 (𝑐) =((
(

𝜕𝑊∗𝜕𝛼𝜕𝑊∗𝜕𝛽𝜕𝑊∗𝜕𝛾
))
)

.
(22)

The bulk energy is defined as𝐹 (𝑐) = 𝜅 [𝛼2 (𝛽2 + 𝛾2 + ]2) + 𝛽2 (𝛾2 + ]2) + 𝛾2]2+ 𝛼2𝛽2 (𝛾2 + ]2) + 𝛽2𝛾2]2] , (23)

where ] = 1−𝛼−𝛽−𝛾 is the fourth phase and 𝜅 is a constant.
Here,𝑊∗(𝑢(𝑐)) is defined as𝑊∗ (𝑢 (𝑐)) = 12 ∫Ω 𝜖𝑖𝑗 (𝑢) : 𝐸𝑖𝑗𝑘𝑙 (𝑐) 𝜖𝑘𝑙 (𝑢) 𝑑Ω. (24)

More details about themodeling and simulation can be found
in [16].

Figure 10 shows a schematic of a bridge structure. The
design domain has a length to height ratio of 2 : 1. The left
bottom corner is fixedwhile the right bottom corner is simply
supported.

Figure 11 shows the system changes from a random initial
mix to a final optimal bridge structure. The volume ratio for
the three hard material phases is 0.1 : 0.1 : 0.2 and the ratio of
Young’s modulus is 1 : 3 : 9. Δ𝑡 = 0.1ℎ, 𝜂 = 0.05, and 𝜖 = 0.005
are used. The FEMmesh is of 64 × 64 quadrilateral elements.

9. Conclusions

In this article, we reviewed and described the basic mech-
anism of the phase-field modeling with the CH equation.
It is important to understand the fundamental dynamics of
the CH equation in various models since we can use it to
model physical phenomena involving deformable interfaces.
As a future work, it would be interesting to review the
multicomponent CH equation.
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