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Aiming at complicated faults detection of distillation column industrial process, it has faced a grave challenge. In this paper, a new
indiscernibility dynamic kernel principal component analysis (I-DKPCA) method is presented and applied to distillation column.
Compared with traditional statistical techniques, I-DKPCA not only can capture nonlinear property and dynamic characteristic of
processes but also can extract relevant variables from all the variables. Applying this new method to distillation column process (a
hardware-in-the-loop simulation system), the results prove the proposed method has great advantages, that is, lower missing rate
and higher detection rate for the faults, compared with KPCA and DPCA.

1. Introduction

With the emergence and development of industrial 4.0,
modern industrial processes are more complicated in both
structure and automatic degree.The safety and reliable issues
about the industrial processes have become the most critical
problems for system design [1–14]. To avoid abnormal acci-
dents and losses, the processmonitoring problemhas become
a severe topic in the area of process control. Among different
process models, multivariate statistical process monitoring
provides a data-driven framework for monitoring the indus-
trial process. With the wide use of smart sensors, a large
amount of data is collected in industrial processes; process
information can be extracted directly from the huge amounts
of the process data without considering complicated system
models by data-driven methods, which lead to data-driven
methods that have attracted much attention in the recent
research works. Principal component analysis (PCA) is one
of most widely used models in statistical process monitoring
[15–20].

PCA is a basic multivariate statistical method which can
extract useful information from large amount of process data
by reducing dimensions. And the process data is divided into

systematic part that reflects normal data change and noisy
part that reflects the variation of noise. Hotelling’s 𝑇

2 statistic
and SPE statistic are used for chemical process monitoring to
detect the changes of process variation in the principal com-
ponent subspace and residual, respectively. And it is applied
to petroleum and chemical industry widely.The conventional
PCA has been well performed in only steady-state linear
processes. However, dynamic and nonlinear characteristics
are widespread in many industrial processes.

To handle nonlinearity, a lot of methods have been
proposed (Kramer, 1991;Dong andMcAvoy, 1996; andChiang
et al., 2001), such as neural network PCA and kernel PCA
(KPCA) [23–29]. And neural network PCA needs training
to determine the number of principal components; KPCA
was developed to overcome this problem. The basic idea of
KPCA is that the mapped data are analyzed by conventional
PCA method in feature space. The traditional PCA is a static
method. It is difficult to acquire the serial correlation of
data [30]. But industrial processes are dynamic, which will
lead to fault missing. To handle this problem, the dynamic
characteristics should be taken into consideration when
developing a monitoring model [31]. Ku et al. developed
dynamic PCA which takes into account serial correlation in
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the data by augmenting each observation vector with the
previous 𝑠 observations. After years of research, DPCA has
been applied to many fields [30, 32, 33].

In this paper, to improve the PCA, we propose a new
nonlinear dynamic process monitoring method based on
indiscernibility dynamic kernel PCA (I-DKPCA). The pro-
posed method can not only capture nonlinear property and
dynamic characteristic of industrial processes but also sim-
plify the process data by extracting valid data. We compare
the results of DPCA, KPCA, and I-DKPCA for detecting
various faults in distillation column industrial process.

The remaining sections of this paper are organized as
follows. Section 2 explains the new I-DKPCA algorithm in
detail. In Section 3, we applied the fourmethods to distillation
column. At last conclusions are drawn in Section 4.

2. Algorithm of New I-DKPCA

There are strong dynamic and nonlinear characteristics in the
industrial processes; the I-DKPCA was a nonlinear dynamic
method and proposed aiming at these two characteristics.
For the I-DKPCA algorithm, some faults may not affect all
the operating and process variables. To a given fault, some
variables are not influenced. The proposed indiscernibility
dynamic kernel PCA finds the variables which are affected
by the faults severely, and these variables are extracted to
form new sample matrix and test matrix. Therefore the
proposed method has higher sensitivity and accuracy for
process monitoring. The new method consists of three parts.

2.1. Indiscernibility and the Cross-Degree (𝜇 and 𝜂). In process
industry, for a complex system, there are a lot of process and
operation variables; these variables are collected and stored;
in the traditional multivariate statistical process monitoring,
the selection of control variable often considered all the
process variables, which caused a lot of inconvenience for
process monitoring; for an actual fault, only a few variables
are affected in the process. So a new dynamic kernel principal
component analysis method is put forward in this paper. Two
parameters are proposed, the indiscernibility degree and the
degree of cross. The new method can get rid of irrelevant
variables, reduce the data dimension, simplify the calculation
algorithm, and improve the efficiency and accuracy of fault
diagnosis.
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where 𝑛
󸀠 is the number of samples and 𝑚

󸀠 is the number of
variables.

To determine the threshold,
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, (3)

where the threshold value is to distinguish the abnormal data
of the train data and the abnormal data of the fault data; if
there are data which are beyond (below) the threshold in the
train data, those data would be considered the abnormal data.
If there are datawhich are below (beyond) the threshold in the
fault data, these data would also be considered the abnormal
data. Take all the abnormal data of train data and fault data
in a set of fault samples; the wrong points are called samples
of fault point, shown as follows:

𝑈
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𝑖1
, 𝑢
𝑖2
, . . . , 𝑢

𝑖𝑘
} , 0 ≤ 𝑘 ≤ 2𝑛, 𝑖 = 1, 2, . . . , 𝑚

󸀠
, (4)

where𝑚
󸀠 is the number of variables. 𝑘 is the number of wrong

points; for different variable, 𝑘 is different.
The parameter of the indiscernibility degree which is

proposed in this paper is represented by 𝜇
𝑖
as follows:
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Parameter of the degree of cross is the ratio of the number
of wrong points and the number of all samples in each
variable and is represented by 𝜂

𝑖
as follows:

𝜂
𝑖
=

𝑘

2𝑛
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󸀠
. (6)

For each known fault, we need to set a limit of 𝜇 and 𝜂 to
choose the variables; in this paper, the author obtained the
best value of 𝜇 and 𝜂 by many simulation results; in general,
as the value of 𝜇 and 𝜂 is smaller, the effort is better, and
get rid of irrelevant variables, and make the monitor data
more concise. Because of reducing the irrelevant variables
and simplifying the computation, according to the selected
variables to monitor the production processes, the effect of
diagnosis is better.

2.2. Dynamic Characteristic Analysis. To consider the
dynamic of the new data 𝑋 = [𝑥
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PCA methods can be extended to take the serial correlations
into account by augmenting each observation vector with
the previous 𝑠 observations and stacking the data matrix in
the following manner [3, 34]:
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where 𝑥
𝑡
is the 𝑚-dimensional observation vector in the

training set at the time instance 𝑡. As shown in Figure 1. The
number of lags 𝑠 is selected by [32, 35, 36].The DPCA can get
rid of the correlation of the data in some degree and improve
the accuracy of diagnosis.
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Figure 1: Online monitoring of I-DKPCA.

2.3. Kernel Principal Component Analysis. Assuming the new
augmented matrix 𝑋(𝑠) is mapped nonlinearly into a high
dimensional feature space Φ : 𝑅

𝑛
→ 𝐹. The original data

𝑥
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into the feature space is centered; that is,
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To performPCA in the feature space wemake eigenvalues (𝜆)
and eigenvectors (]) that satisfy
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Defining a kernel matrix 𝐾 ∈ 𝑅
𝑁×𝑁,
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Inserting (12) into (11), (7) can be represented by the following
simple form:

𝜆𝛼 = (
1

𝑛
)𝐾𝛼. (15)

For ∀𝜆 > 0, 𝛼 = [𝛼
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𝑇. The kernel matrix, 𝐾, is

centered in the feature space using the formula
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By projecting Φ(𝑥) onto eigenvectors ]
𝑘
in the feature space,

principal components are extracted:
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For 𝑘 = 1, . . . , 𝑝, 𝑝 is the number of principal components
in KPCA. By (17), we obtain a score vector 𝑡new,𝑘 =

[𝑡new,1, 𝑡new,2, . . . , 𝑡new,𝑝]
𝑇 for 𝑥new.

At present, a number of kernel functions are used in
KPCA. In our study, only a Gaussian function is selected for
it is widely used. Consider

𝐾(𝑥, 𝑥
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) = exp(−

󵄩󵄩󵄩󵄩𝑥 − 𝑥
𝑖

󵄩󵄩󵄩󵄩

2

𝜎2
) . (20)

After obtaining 𝑡
𝑘
, two complementary multivariate control

charts can be applied to process fault diagnosis. The first is
Hotelling’s 𝑇

2 chart which can monitor the variation in the
space of the principal components, and it is defined as

𝑇
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where Λ = diag{𝜆
1
, . . . , 𝜆

𝑛
} is the diagonal matrix consisting

of the eigenvalues of 𝐾. The upper control limit based on 𝑇
2

is obtained using 𝐹 distribution and is given by
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where 𝐹
𝑝,𝑛−𝑝;𝛼

is the upper 𝛼 critical point of 𝐹 distribution
with (𝑝, 𝑛 − 𝑝) degrees of freedom.

The SPE chart represents Euclidean distance from the
model space and it is defined as
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where 𝜙
𝑝
(𝑥) is the reconstructed feature vector with 𝑝

principal components in the feature space; 𝜙(𝑥) is identical to
𝜙
𝑝
(𝑥) if 𝑝 equals 𝑛. The details of formula (21) can be found

in [27].
Assuming that the prediction errors are normally dis-

tributed, the upper control limit on the SPE at significance
level 𝛼 is obtained using 𝜒

2 distribution and is given by

SPE
𝛼

= 𝑔𝜒
2

ℎ
, (24)

where 𝑔 = 𝑏/2𝑎, ℎ = 2𝑎
2
/𝑏, and 𝑎 and 𝑏 are the mean and

variance of the SPE at each time interval.

2.4. I-DKPCA Based Monitoring. Figure 1 shows the flow-
chart used for the necessary calculation of monitoring based
on I-DKPCA.

The first step is setting up model by off-line training:

(1) Acquire train data 𝑍 = [𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
󸀠], 𝑧
𝑖

∈ 𝑅
𝑛
󸀠

and known faults data 𝑍
𝑓
, where 𝑛 is the number of

samples and 𝑚
󸀠 is the number of variables.

(2) Calculate 𝜇 and 𝜂 by (5) and (6).
(3) Determine the number of kept variables.
(4) Construct new train data 𝑋.
(5) Construct augmented matrix 𝑋(𝑠) by (7).
(6) Apply KPCA to augmented matrix 𝑋(𝑠).
(7) Calculate 𝑇

2

𝛼
and SPE

𝛼
.

The second step is on-line monitoring:

(1) Acquire the new test data 𝑋new by first step.
(2) Calculate 𝑇

2

new and SPEnew.

(3) If 𝑇
2

new < 𝑇
2

𝛼
and SPEnew < SPE

𝛼
the process is

normal; else the process is abnormal.

3. Fault Diagnosis of Distillation Column

Distillation column is very important in the field of chemical
industry, which has been widely applied to chemical and oil
refining enterprises. Mixed liquid is separated into various
components by distillation column. The principle of distil-
lation process is separating mixture by the different features
such as temperature and volatile liquid separation (boiling
point) so as to achieve the purpose of purification.

Distillation column is an indispensable device of chemical
process and oil refining enterprise; once faults appear, they
will bring great losses to enterprise, so the fault detection and
diagnosis of distillation column are important to chemical
production. There are many factors which impact the dis-
tillation column production operation and product quality;
distillation column is a complex system of more than one
parameter in the process of distillation. Physical phenomena
occur, such as flow and heat transfer; there aremany practical
difficulties to truly understand the actual process, and, in
the development of early fault diagnosis, many scholars put
forward the mathematical model to describe the process of
actually solving the problem of fault diagnosis of the distil-
lation column, mainly divided into static kind and dynamic
kind of mathematical simulation model. These models have
a lot of defects; however, they do not meet the needs of
diagnosis.

Mathematical model of distillation column cannot be
instead of the actual process really; before the modeling,
the researchers have to come up with some assumptions to
simplify model, because it is difficult to solve complicated
mathematical model, which leads to vast differences between
model and actual process. So, considering these problems,
multivariate statistical process monitoring provides a data-
driven framework for monitoring the industrial process



Mathematical Problems in Engineering 5

OPC
server

OPCDA

Industrial Ethernet

Server
Fault diagnosis 

station

Industrial Ethernet

PROFIBUS-DP

Other process simulation systems

Unit controller

Distillation column (PCS 7 unit template)

PCS7
engineer station

PCS7
operation station 1

PCS7
operation station n

DCS controller

Unit controller Unit controller Unit controller Unit controller Unit controller

Industrial Ethernet

PROFIBUS-DP

Unit controller

DCS controller

Unit controller Unit controller Unit controller Unit controller Unit controll

· · ·

(1)

(2)

(3) (6)

(5)

(4)

Figure 2: The process industry integrated automation hardware-in-the-loop simulation system.

without accurate physical models, which is convenient for
implementation.

In industrial production, due to the huge scale of the
object, complex of production raw material, equipment
maintenance difficult, and the risk of high temperature and
high pressure of the production processes, it is difficult to
carry out experimental study of industrial fault monitoring
for theory researchers. So the hardware-in-the-loop simula-
tion system is developed in this paper, using real hardware
controller and industrial control network to build distributed
control system (DCS). Develop computer simulation model
as controlled object. In this paper, distillation column system
(PCS 7Unit Template) of Siemens as one of controlled objects
has been studied, as shown in Figure 2.

Based on hardware-in-the-loop simulation system the
valve faults, concentration faults, flow faults, and so on can
be set. For the same fault, different fault parameters can be
set; fault and disturbance in the distillation column also can
be set according to the actual situation; for example, feed
concentration can be reduced or increased 0.01; these faults
are unable to simulate in the Tennessee Eastman process
and other simulation processes. Satisfy our research of fault
diagnosis, and there is no need to worry about the limitations
of the factory.

Traditional fault diagnosis methods can not accurately
and quickly detect the faults. With the development of
the Internet and wide use of smart and wireless sensors
and wireless communications and mobile devices, a large

amount of process data has been produced; how to use the
process data to determine whether the industrial process is
normal is a hot topic. In this paper data-driven methods
(especially dynamic kernel PCA) are presented for applying
to monitoring of distillation column. According to the data
of the distillation column system, a framework about process
data hierarchy can be seen in Figure 3.

The distillation column consists of six components, as
shown in Figure 4: 1 represents distillation column, 2 rep-
resents feed, 3 represents vaporizer (“Vapor”), 4 represents
condenser with reflux (“Reflux”), 5 represents extraction of
the head product (“Light end”), and 6 represents extraction
of the bottom product (“Heavy end”).

A flowchart of distillation column process is given in
Figure 4. Distillation column is an indispensable device of
chemical industrials and oil refining enterprises; once the
system shows valve faults, concentration faults, and flow
faults, the enterprises would suffer a great loss. Thus the
fault detection and diagnosis of distillation tower become an
important link in chemical production. This section studies
the application of data-driven algorithms in the distillation
column; the author selected the 14 monitoring variables,
as shown in Table 1, and collected 960 groups of sample
data under normal condition for off-line training model. Set
faults as shown in Table 2; the faults mainly included three
categories, respectively: the valve faults, concentration faults,
and flow faults; the author collected 960 pieces of observation
data from distillation column process for on-line testing.The
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faults were introduced to the process at t = 5 h and the faults’
effect persisted until 16 hours.

Faults 4, 5, and 6 are valve faults which are large change,
so these faults could be detected by the data-driven methods
and the alarm system of DCS. Because the valve faults were
similar, the author has only given the results of fault 6. As
shown in Figure 5,𝑇2 index and SPE index ofDPCAhad poor
results that the false rates were significantly high. 𝑇

2 index
and SPE index of KPCA perform better than DPCA. But, in
this connection, 𝑇2 index and SPE index of I-DKPCA were
better than KPCA and DPCA obviously.

Fault 1 is a big deviation of feed concentration. As shown
in Figure 6, we can see that KPCA and I-DKPCA could detect
fault more quickly than DPCA. The early detection can help
the industries avoid greater loss. Besides, the false alarm rates
of I-DKPCA were lower than DPCA and KPCA. In a word,
compared with DPCA and KPCA, I-DKPCA shows the best
performance.

Fault 2 was also a fault of feed concentration and fault 3
was a flow fault. Compared with fault 1, fault 2 was a small
deviation; concentration value only changes 0.01, and fault
3 was also a small deviation; flow value changes 0.1. These
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Table 1: Fourteen variables used for monitoring.

Number Symbol Variable
1 TI Head Temperature at the head of the distillation column
2 PI Head Pressure at the head of the distillation column
3 TI Above Temperature above the feed
4 TI Below Temperature below the feed
5 TI Bottom Temperature at the bottom of the distillation column
6 FI Vapor The steam flow
7 FI Feed Feed flow
8 FV ColuHead Cooling water valve
9 LI Reflux Level of reflux
10 FV Vapor Vapor valve
11 FV Reflux Reflux valve
12 FI Reflux Head product flow
13 FV Bottom The bottom of the distillation column valve
14 LI Bottom Level at the bottom of the distillation column
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Figure 5: Monitoring charts for fault 6. (a) DPCA, (b) KPCA, and (c) I-DKPCA.



8 Mathematical Problems in Engineering

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

Samples

SP
E

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Samples

T
2

(a) DPCA

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

Samples

SP
E

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

Samples

T
2

(b) KPCA

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Samples

SP
E

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Samples

T
2

(c) I-DKPCA

Figure 6: Monitoring charts for fault 1. (a) DPCA, (b) KPCA, and (c) I-DKPCA.

Table 2: Process faults for distillation column.
Number Disturbances Location

1 Increasing concentration
Parameter: 0.5–0.6 at 𝑡 = 0.5 h Feed

2 Increasing concentration
Parameter: 0.5–0.51 at 𝑡 = 0.5 h Feed

3 Increasing flow rate
Parameter: 20–20.1 at 𝑡 = 0.5 h Feed

4 Increase valve opening
Parameter: 12.5%–18% at 𝑡 = 0.5 h Feed

5 Decrease valve opening
Parameter: 50%–45% at 𝑡 = 0.5 h Reflux

6 Decrease valve opening
Parameter: 50%–45% at 𝑡 = 0.5 h Vapor

small deviations could not be detected by the alarm system
of DCS. Some monitoring charts for fault 2 and 3 are shown

in Figures 7 and 8. SPE chart of DPCA could detect the faults,
but 𝑇
2 index of DPCA had big missed detection rates. Both

𝑇
2 index and SPE index of KPCA give very high detection

rates, but the false alarm rates were also high. Only the SPE
index and 𝑇

2 index of I-DKPCA perform the best results
which had the lowest false alarm rates and highest detection
rates.

In conclusion, the data-driven methods could apply to
distillation columnwell, and the I-DKPCA basedmonitoring
performs highest detection rate and smallest missed rates for
all faults, in particular, when the small deviation happens.

4. Conclusion

In this paper, process industry integrated automation
hardware-in-the-loop simulation system has been developed,
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Figure 7: Monitoring charts for fault 2. (a) DPCA, (b) KPCA, and (c) I-DKPCA.

using real hardware controller and industrial control network
to build distributed control system and distillation column
system (PCS 7 Unit Template) of Siemens as one of con-
trolled objects for fault diagnosis research, which made us
get wanted data easily regardless of the loss. Realize the
simulation of fault diagnosis from purely simulation object
to the hardware-in-the-loop simulation system and promote
the application of the data-driven technique in the actual
industrial system.

A new indiscernibility dynamic kernel principal com-
ponent analysis (I-DKPCA) method was proposed; the
new method not only considered dynamic and nonlinear
characteristics of industrial processes but also reduced the
data dimension by indiscernibility and the cross-degree, got
rid of irrelevant variables, simplified the calculation, and

improved the efficiency and accuracy of fault diagnosis.
Through the applications of DPCA, KPCA, and I-DKPCA in
the distillation column, the results showed that the proposed
I-DKPCA performed better than DPCA and KPCA for all
faults, especially for small faults.
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