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This article presents adaptive integral sliding mode control algorithm for the stabilization of nonholonomic drift-free systems.
First the system is transformed, by using input transform, into a special structure containing a nominal part and some unknown
terms which are computed adaptively. The transformed system is then stabilized using adaptive integral sliding mode control. The
stabilizing controller for the transformed system is constructed that consists of the nominal control plus a compensator control.The
compensator control and the adaptive laws are derived on the basis of Lyapunov stability theory. The proposed control algorithm
is applied to three different nonholonomic drift-free systems: the unicycle model, the front wheel car model, and the mobile robot
with trailer model. The controllability Lie algebra of the unicycle model contains Lie brackets of depth one, the model of a front
wheel car contains Lie brackets of depths one and two, and the model of a mobile robot with trailer contains Lie brackets of depths
one, two, and three. The effectiveness of the proposed control algorithm is verified through numerical simulations.

1. Introduction

Designing feedback control laws for the stabilization of
mechanical control systems has been an interesting sub-
ject for researchers in the field of control theory. These
systems have attracted intensive attention from the control
community because of their wide practical applications in
robotics, industry, and automobiles. Due to mechanical
design and configuration, these systems are classified into
two categories: holonomic and nonholonomic. In holonomic
systems, the control input degrees are equal to total degrees
of freedom, whereas, nonholonomic systems have less con-
trollable degrees of freedom as compared to total degrees of
freedom and have restricted mobility due to the presence of
nonholonomic constraints. Roger Brockett showed that the
nonholonomic systems cannot be stabilized by continuous
static state feedback laws [1]. Later on Murray et al. showed
that the dependence of the stabilizing control on time is
essential [2].

To solve this problem, different control approaches have
been presented in the literature. A detailed survey of stabi-
lization of nonholonomic systems can be found in [3] and
a survey of underactuated mechanical systems is given in
[4]. In the literature, several control techniques have been
developed for stabilization of nonholonomic systems. Some
of these include discontinuous time-invariant techniques
[5–8], time-varying techniques [9–12], adaptive techniques
[13, 14], and sliding mode control technique [15–20]. Sliding
mode control (SMC) is a special nonlinear control technique.
The objective of the SMC technique is to force the system
states to a certain surface, known as the sliding manifold.
Once the surface is reached, the system is forced to remain
on it thereafter.

The main disadvantage of the SMC is the requirement
of discontinuous control law across the sliding manifold. In
practical systems, this leads to an undesirable phenomenon
called chattering. The closed loop dynamics of the system in
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SMC depends only on the design parameters of the switching
sliding manifold. Sliding mode control also offers several
advantages such as simplicity, fast response, and robustness
to external disturbance and parameter variation.

Our objective in this article is to propose a scheme for
the construction of stabilizing control for nonholonomic
mechanical systems. The suggested sliding mode controller
can stabilize systems, which do not fulfill Brockett’s neces-
sary conditions, as the sliding mode control is inherently
discontinuous. Since sliding mode control is insensitive
towards model errors, parametric uncertainties, and other
disturbances; therefore, it is extensively used. Sliding surface
will show system’s behavior when the system reaches the
sliding manifold [21–24].

The integral sliding mode control guarantees the robust-
ness of the motion in the whole state space [25, 26] because
of eliminating the reaching phase. Since the reaching phase
is eliminated, therefore the robustness of the system can be
guaranteed throughout the system response, starting from
the initial time instance. The integral sliding mode control
combines the nominal control that stabilizes the nominal sys-
tem and a discontinuous control that rejects the uncertainty.

The control algorithm presented in this paper is general
and applicable to a large class of nonholonomic control
systems without drift. The proposed algorithm is applied to
three different nonholonomic drift-free systems: the unicycle
model, the front wheel car model, and the mobile robot with
trailer model. The effectiveness of the proposed algorithm is
verified through numerical simulations.

The rest of the article is organized as follows. Section 2
presents problem formulation. Section 3 presents the pro-
posed control methodology in its general form. Section 4
presents application examples of the unicyclemodel, the front
wheel car model, and the car with trailer model. Section 5
presents simulation results for the application examples, and
finally Section 6 concludes the paper.

2. Problem Formulation

2.1. Mathematical Model of Nonholonomic System. The kine-
matic model for a drift-free nonholonomic system is given as

�̇� = 𝑚∑
𝑖=1

𝐺𝑖 (𝑥) 𝑢𝑖, 𝑥 ∈ R
𝑛, (1)

where 𝐺𝑖(𝑥) are linearly independent vector fields onR𝑛, 𝑢𝑖
are locally bounded in 𝑡, and piece-wise continuous control
functions are defined on the interval [0,∞). These systems
are difficult to control as revealed by the fact that linearization
of system (1) is uncontrollable.Themost difficult issue from a
theoretical viewpoint is the design of feedback laws that can
stabilize these systems about an equilibrium position.

2.2. Problem Statement. Given a desired set point 𝑥des ∈ R𝑛,
construct a feedback strategy in presence of the control 𝑢𝑖 :
R𝑛 → R, 𝑖 = 1, 2, . . . , 𝑚, so that the desired set point 𝑥des is
an attractive set for (1), such that 𝑥(𝑡; 0, 𝑥0) → 𝑥des, as 𝑡 → ∞
for any initial condition.

Generally, by appropriate translation of coordinate sys-
tem, 𝑥des = 0 can be achieved.

2.3. Some Assumptions. For steering control problem, the
systems described by (1) must satisfy the following condi-
tions:

(P1) The vector fields 𝐺1(𝑥), . . . , 𝐺𝑚(𝑥) are linearly inde-
pendent.

(P2) System (1) satisfies the Lie algebra rank condi-
tion (LARC) for accessibility, where Lie algebra,𝐿(𝐺1, . . . , 𝐺𝑚)(𝑥), spansR𝑛 at each point 𝑥 ∈ R𝑛.

3. The Proposed Control Algorithm

Step 1. Write system (1) in the following form:

�̇�1 = 𝑔1 (𝑥, 𝑢) ,
�̇�2 = 𝑔2 (𝑥, 𝑢) ,

...
�̇�𝑛−1 = 𝑔𝑛−1 (𝑥, 𝑢) ,
�̇�𝑛 = 𝑔𝑛 (𝑥, 𝑢) ,

(2)

where 𝑔𝑖 : R𝑛 ×R𝑚 → R are nonlinear functions.

Step 2. Using the input transformation, transform system (2)
into the following form:

�̇�1 = ℎ1 (𝑥) ,
�̇�2 = ℎ2 (𝑥) ,

...
�̇�𝑛−1 = ℎ𝑛−1 (𝑥) ,

�̇�𝑛 = V,

(3)

where ℎ𝑖 : R𝑛 ×R𝑚 → R are nonlinear function and V is the
new input.

After some manipulation, system (3) can be rewritten as

�̇�1 = 𝑥2 + 𝐹1,
�̇�2 = 𝑥3 + 𝐹2,

...
�̇�𝑛−1 = 𝑥𝑛 + 𝐹𝑛−1,

�̇�𝑛 = V,

(4)

where 𝐹𝑖 = −𝑥𝑖+1 + ℎ𝑖(𝑥).
Step 3. Assume that 𝐹𝑖 are uncertainties in the system. Let�̂�𝑖, 𝑖 = 1, . . . , 𝑛 be an estimate of 𝐹𝑖, 𝑖 = 1, . . . , 𝑛 − 1,
respectively. Apply the function approximation technique
[27] to represent 𝐹𝑖 and their estimates �̂�𝑖 as 𝐹𝑖 = 𝑤𝑇𝑖 𝜑𝑖(𝑡)
and �̂�𝑖 = �̂�𝑇𝑖 𝜑𝑖(𝑡).𝜑𝑖(𝑡) = [𝜑𝑖1(𝑡) 𝜑𝑖2(𝑡) ⋅ ⋅ ⋅ 𝜑𝑖𝑛(𝑡)]𝑇 is the function of
basis vector and 𝑤𝑖 = [𝑤𝑖1 𝑤𝑖2 ⋅ ⋅ ⋅ 𝑤𝑖𝑛]𝑇 is a vector of
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weightings. Let �̂�𝑖 = [�̂�𝑖1 �̂�𝑖2 ⋅ ⋅ ⋅ �̂�𝑖𝑛]𝑇 be estimate of
𝑤𝑖 = [𝑤𝑖1 𝑤𝑖2 ⋅ ⋅ ⋅ 𝑤𝑖𝑛]𝑇. Therefore, we can estimate 𝐹𝑖 by
estimating the weight vector 𝑤𝑖; that is, �̂�𝑖 = �̂�𝑇𝑖 𝜑𝑖(𝑡). Define�̃�𝑖 = 𝑤𝑖 − �̂�𝑖; then system (4) can be written as

�̇�1 = 𝑥2 + �̂�𝑇1𝜑1 (𝑡) + �̃�𝑇1𝜑1 (𝑡) ,
�̇�2 = 𝑥3 + �̂�𝑇2𝜑1 (𝑡) + �̃�𝑇2𝜑1 (𝑡) ,

...
�̇�𝑛−1 = 𝑥𝑛 + �̂�𝑇𝑛−1𝜑𝑛−1 (𝑡) + �̃�𝑇𝑛−1𝜑𝑛−1 (𝑡) ,

�̇�𝑛 = V.

(5)

Step 4. Choose the nominal system for (5) as

�̇�1 = 𝑥2,
�̇�2 = 𝑥3,

...
�̇�𝑛−1 = 𝑥𝑛,
�̇�𝑛 = V0.

(6)

Step 5. Define the sliding surface for nominal system (6) as

𝑠0 = 𝑥1 + 𝑛−1∑
𝑖=2

𝑐𝑖𝑥𝑖 + 𝑥𝑛, (7)

where 𝑐𝑖 > 0 are chosen in such away that 𝑠0 becomesHurwitz
polynomial. Then

̇𝑠0 = �̇�1 + 𝑛−1∑
𝑖=2

𝑐𝑖�̇�𝑖 + �̇�𝑛 = 𝑥2 + 𝑛−1∑
𝑖=2

𝑐𝑖𝑥𝑖+1 + V0. (8)

Choose

V0 = −𝑥2 − 𝑛−1∑
𝑖=2

𝑐𝑖𝑥𝑖+1 − 𝑘 sign (𝑠0) , 𝑘 > 0. (9)

We have ̇𝑠0 = −𝑘 sign(𝑠0). Therefore, nominal system (6) is
asymptotically stable.

Step 6. Define the sliding surface for system (5) as

𝑠 = 𝑠0 + 𝑧 = 𝑥1 + 𝑛−1∑
𝑖=2

𝑐𝑖𝑥𝑖 + 𝑥𝑛 + 𝑧, (10)

where 𝑧 is an integral term. To avoid the reaching phase,
choose 𝑧(0) such that 𝑠(0) = 0. Choose V = V0 + V𝑠, where
V0 is the nominal input and V𝑠 is compensator term. Then

̇𝑠 = �̇�1 + 𝑛−1∑
𝑖=2

𝑐𝑖�̇�𝑖 + �̇�𝑛 + �̇�
= 𝑥2 + �̂�𝑇𝑖 𝜑1 (𝑡) + �̃�𝑇𝑖 𝜑2 (𝑡)

+ 𝑛−1∑
𝑖=2

𝑐𝑖 {𝑥𝑖+1 + �̂�𝑇𝑖 𝜑𝑖 (𝑡) + �̃�𝑇𝑖 𝜑𝑖 (𝑡)} + V0 + V𝑠 + �̇�

= 𝑥2 + 𝑛−1∑
𝑖=2

𝑐𝑖𝑥𝑖+1 + V0 + V𝑠 + �̇�

+ 𝑛−1∑
𝑖=1

{�̂�𝑇𝑖 𝜑𝑖 (𝑡) + �̃�𝑇𝑖 𝜑𝑖 (𝑡)} ,
(11)

where 𝑐1 = 1.
Step 7. Choose a Lyapunov function as

𝑉 = 12𝑠2 + 12
𝑛−1∑
𝑖=1

�̃�𝑇𝑖 �̃�𝑖. (12)

Design the adaptive laws for �̃�𝑖 & �̂�𝑖, 𝑖 = 1, . . . , 𝑛 and
compute V𝑠 such that �̇� < 0.
Theorem 1. Choose a Lyapunov function as

𝑉 = 12𝑠2 + 12
𝑛−1∑
𝑖=1

�̃�𝑇𝑖 �̃�𝑖. (13)

The following adaptive laws for �̃�𝑖 & �̂�𝑖 and the value of V𝑠 will
guarantee the time derivative of𝑉 in (13) to be strictly negative
(i.e., �̇� < 0)

�̇� = −𝑥2 − 𝑛−1∑
𝑖=2

𝑐𝑖𝑥𝑖+1 − V0,

V𝑠 = −𝑛−1∑
𝑖=1

𝑐𝑖�̂�𝑇𝑖 𝜑𝑖 (𝑡) − 𝑘𝑠,
̇̃𝑤𝑖 = −𝑐𝑖𝑠𝜑𝑖 (𝑡) − 𝑘𝑖�̃�𝑖,
̇̂𝑤𝑖 = − ̇̃𝑤𝑖,

(14)

where 𝑘 and 𝑘𝑖 > 0, 𝑖 = 1, . . . , 𝑛 − 1.
Proof. Since

�̇� = 𝑠 ̇𝑠 + 𝑛−1∑
𝑖=1

�̃�𝑇𝑖 ̇̃𝑤𝑖 = 𝑠{𝑥2 + �̂�𝑇1𝜑1 (𝑡) + �̃�𝑇1𝜑1 (𝑡)

+ 𝑛−1∑
𝑖=2

𝑐𝑖 {𝑥𝑖+1 + �̂�𝑇𝑖 𝜑𝑖 (𝑡) + �̃�𝑇𝑖 𝜑𝑖 (𝑡)} + V0 + V𝑠 + �̇�}

+ 𝑛−1∑
𝑖=1

�̃�𝑇𝑖 ̇̃𝑤𝑖 = 𝑠{𝑥2 + 𝑛−1∑
𝑖=1

{𝑐𝑖𝑥𝑖+1 + 𝑐𝑖�̂�𝑇𝑖 𝜑𝑖 (𝑡)} + V0

+ V𝑠 + �̇�} + 𝑛−1∑
𝑖=1

�̃�𝑇𝑖 { ̇̃𝑤𝑖 + 𝑐𝑖𝑠𝜑𝑖 (𝑡)} ,

(15)

by using

�̇� = −𝑥2 − 𝑛−1∑
𝑖=2

𝑐𝑖𝑥𝑖+1 − V0,

V𝑠 = −𝑛−1∑
𝑖=1

𝑐𝑖�̂�𝑇𝑖 𝜑𝑖 (𝑡) − 𝑘𝑠,
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̇̃𝑤𝑖 = −𝑐𝑖𝑠𝜑𝑖 (𝑡) − 𝑘𝑖�̃�𝑖,
̇̂𝑤𝑖 = − ̇̃𝑤𝑖,

(16)

where 𝑘 and 𝑘𝑖 > 0, 𝑖 = 1, . . . , 𝑛 − 1, we have
�̇� = −𝑘𝑠2 − 𝑛−1∑

𝑖=1

𝑘𝑖�̃�𝑇𝑖 �̃�𝑖. (17)

Choosing

𝑘𝑛 = min (𝑘, 𝑘1, . . . , 𝑘𝑛−1) , (18)

we have

�̇� ≤ −𝑘𝑛(𝑠2 + 𝑛−1∑
𝑖=1

�̃�𝑇𝑖 �̃�𝑖) . (19)

Using the chosen Lyapunov function

𝑉 = 12𝑠2 + 12
𝑛−1∑
𝑖=1

�̃�𝑇𝑖 �̃�𝑖, (20)

we can write

�̇� ≤ −2𝑘𝑛𝑉,
�̇� ≤ −𝛼𝑉𝛽, (21)

where 𝛼 = 2𝑘𝑛 and 𝛽 = 1.
From this we conclude that 𝑠 & �̃�𝑖 → 0, 𝑖 = 1, . . . , 𝑛.

Since 𝑠 → 0, therefore 𝑥 → 0.
In the following section we illustrate the above algorithm

by applying it to three different nonholonomic drift-free
systems.

4. Application Examples

4.1. The Unicycle Model. A unicycle model or a two-wheel
car model, shown in Figure 1, is basically a three-dimensional
nonholonomic systemhaving two inputs and three stateswith
depth-one Lie bracket. A two-wheel car kinematic model is
defined as [12]

[[[
[

�̇�
�̇�
�̇�
]]]
]

= [[
[
1
0
0
]]
]
𝑢1 + [[

[
0

cos 𝜃
sin 𝜃

]]
]
𝑢2. (22)

Introducing a new set of state variables 𝑥 def= [𝑥1, 𝑥2, 𝑥3]𝑇 =[𝜃, 𝑥, 𝑦]𝑇 the kinematics model (22) can be written as

[[
[
�̇�1�̇�2�̇�3

]]
]

= [[
[
1
0
0
]]
]
𝑢1 + [[

[
0

cos𝑥1
sin𝑥1

]]
]
𝑢2 (23)

or

�̇� = 𝐺1 (𝑥) 𝑢1 + 𝐺2 (𝑥) 𝑢2, 𝑥 ∈ R
3, (24)

y

x

𝜃

Figure 1: The unicycle model.

where

𝐺1 (𝑥) = [[
[
1
0
0
]]
]
,

𝐺2 (𝑥) = [[
[

0
cos𝑥1
sin𝑥1

]]
]
.

(25)

The kinematics model (22) satisfies the following assump-
tions:

(P1) The vector fields 𝐺1(𝑥) and 𝐺2(𝑥) are linearly inde-
pendent.

(P2) System (24) satisfies the Lie algebra rank condi-
tion (LARC) for accessibility, where the Lie algebra,𝐿(𝐺1, 𝐺2)(𝑥), spansR3 at each point 𝑥 ∈ R3.

To verify property (P2), it is sufficient to calculate the
following Lie bracket of 𝐺1(𝑥) and 𝐺2(𝑥):

𝐺3 (𝑥) def= [𝐺1, 𝐺2] (𝑥) = [[
[

0
− sin𝑥1
cos𝑥1

]]
]
. (26)

Then the LARC condition, namely, span(𝐺1, 𝐺2, 𝐺3)(𝑥) =
R3, ∀𝑥 ∈ R3, is satisfied.

4.1.1. Application of the Proposed Algorithm to
the Unicycle Model

Step 1. The unicycle model given (24) can be rewritten as

�̇�1 = 𝑢1,
�̇�2 = cos𝑥1𝑢2,
�̇�3 = sin𝑥1𝑢2.

(27)
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Step 2. Choose 𝑢1 = V and 𝑢2 = 𝑥3/ cos𝑥1, where, 𝑥1 ̸= 𝜋/2;
then system (27) becomes

�̇�1 = V,
�̇�2 = 𝑥3,
�̇�3 = 𝑥3 tan𝑥1.

(28)

After somemanipulation the above-mentioned system can be
written as

�̇�2 = 𝑥3,
�̇�3 = 𝑥1 + 𝐹,
�̇�1 = V,

(29)

where 𝐹 = −𝑥1 + 𝑥3 tan𝑥1.
Step 3. Assume 𝐹 as an uncertainty and let �̂� be an estimate
of 𝐹. The estimate of 𝐹 by function approximating technique
[27] is 𝐹 = 𝑤𝑇𝜑. Then �̂� = �̂�𝑇𝜑 and system (29) can be
written as

�̇�2 = 𝑥3,
�̇�3 = 𝑥1 + �̂�𝑇𝜑 + �̃�𝑇𝜑,
�̇�1 = V.

(30)

Step 4. Choose the nominal system for (30) as

�̇�2 = 𝑥3,
�̇�3 = 𝑥1,
�̇�1 = V0.

(31)

Step 5. Define the sliding surface for nominal system (31) as

𝑠0 = 𝑥2 + 2𝑥3 + 𝑥1. (32)

Then

̇𝑠0 = �̇�2 + 2�̇�3 + �̇�1 = 𝑥3 + 2𝑥1 + V0. (33)

By choosing

V0 = −𝑥3 − 2𝑥1 − 𝑘 sign (𝑠0) , 𝑘 > 0, (34)

we have

̇𝑠0 = −𝑘 sign (𝑠0) . (35)

Therefore, nominal system (31) is asymptotically stable.

Step 6. Define the sliding surface for system (30) as

𝑠 = 𝑠0 + 𝑧 = 𝑥2 + 2𝑥3 + 𝑥1 + 𝑧. (36)

Choose V = V0 + V𝑠.
Then

̇𝑠 = �̇�1 + 2�̇�3 + �̇�2 + �̇�
= 𝑥3 + 2𝑥2 + 2�̂�𝑇𝜑 + 2�̃�𝑇𝜑 + V0 + V𝑠 + �̇�. (37)

Step 7. The adaptive laws for �̃�, �̂� and the value of V𝑠 are as
follows: �̇� = −𝑥3 − 2𝑥2 − V0,

V𝑠 = −2�̂�𝑇𝜑 − 𝑘𝑠,
̇̃𝑤 = −2𝑠𝜑 − 𝑘1�̃�,
̇̂𝑤 = − ̇̃𝑤,

(38)

where 𝑘 and 𝑘1 > 0.
Give

�̇� = −𝑘𝑠2 − 𝑘1�̃�𝑇�̃�, (39)

where 𝑉 = (1/2)𝑠2 + (1/2)�̃�𝑇�̃�.
Choosing

𝑘2 = min (𝑘, 𝑘1) , (40)

we have

�̇� ≤ −𝑘2 (𝑠2 + �̃�𝑇�̃�) . (41)

Using the chosen Lyapunov function we can write

�̇� ≤ −2𝑘2𝑉,
�̇� ≤ −𝛼𝑉𝛽, (42)

where 𝛼 = 2𝑘2 and 𝛽 = 1.
From this we conclude that 𝑠 & �̃� → 0. Since 𝑠 → 0,

therefore 𝑥 → 0.
Simulation results are shown in Figure 4.

4.2. The Front Wheel Car Model. A front wheel car model,
shown in Figure 2, is basically a four-dimensional nonholo-
nomic system having two inputs and four states with depth-
two Lie bracket. A front wheel car kinematic model [6] can
be defined as

[[[[[
[

�̇�
�̇�
�̇�
�̇�

]]]]]
]

= [[[[[
[

1
0
0
0

]]]]]
]
𝑢1 +

[[[[[[
[

0
cos 𝜃
1𝑙 tan𝜓
sin 𝜃

]]]]]]
]
𝑢2. (43)

Assuming that 𝑙 = 1 and introducing a new set of state
variables 𝑥 def= (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝜓, 𝑥, 𝑦, 𝜃) the kinematics
model (43) can be written as

[[[[[
[

�̇�1�̇�2�̇�3�̇�4

]]]]]
]

= [[[[[
[

1
0
0
0

]]]]]
]
𝑢1 +

[[[[[
[

0
cos𝑥4
sin𝑥4
tan𝑥1

]]]]]
]
𝑢2 (44)

or

�̇� = 𝐺1 (𝑥) 𝑢1 + 𝐺2 (𝑥) 𝑢2, 𝑥 ∈ R
4, (45)

where 𝐺1(𝑥) = [ 100
0

] and 𝐺2(𝑥) = [ 0cos𝑥4sin𝑥
4

tan𝑥
1

].
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x

y

𝜃

𝜓

Figure 2: The front wheel car model.

The kinematicsmodel (45) satisfies the following assump-
tions:

(P1) The vector fields 𝐺1(𝑥) and 𝐺2(𝑥) are linearly inde-
pendent.

(P2) System (45) satisfies the Lie algebra rank condi-
tion (LARC) for accessibility, where the Lie algebra,𝐿(𝐺1, 𝐺2)(𝑥), spansR4 at each point 𝑥 ∈ R4.

To verify property (P2), it is sufficient to calculate the
following Lie brackets of 𝐺1(𝑥) & 𝐺2(𝑥):

𝐺3 (𝑥) def= [𝐺1, 𝐺2] (𝑥) =
[[[[[[
[

0
0
0

(sec𝑥1)2

]]]]]]
]
,

𝐺4 (𝑥) def= [𝐺2, 𝐺3] (𝑥) =
[[[[[[
[

0
− sin𝑥4 (sec𝑥1)2
cos𝑥4 (sec𝑥1)20

]]]]]]
]
,

(46)

which satisfy the LARC condition: span(𝐺1, 𝐺2, 𝐺3, 𝐺4)(𝑥) =
R4, ∀𝑥 ∈ R4.

4.2.1. Application of the Proposed Algorithm to
the Front Wheel Car Model

Step 1. The front wheel car model as given in (45) can be
rewritten as

�̇�1 = 𝑢1,
�̇�2 = cos𝑥4𝑢2,
�̇�3 = sin𝑥4𝑢2,
�̇�4 = tan𝑥1𝑢2.

(47)

Step 2. Choose 𝑢1 = V and 𝑢2 = 𝑥3/ cos𝑥4, where 𝑥4 ̸= 𝜋/2,
and then system (47) becomes

�̇�1 = V,
�̇�2 = 𝑥3,
�̇�3 = 𝑥3 tan𝑥4,
�̇�4 = 𝑥3 tan𝑥1 sec𝑥4,

(48)

which can be rewritten as

�̇�2 = 𝑥3,
�̇�3 = 𝑥4 + 𝐹3,
�̇�4 = 𝑥1 + 𝐹4,
�̇�1 = V,

(49)

where

𝐹3 = −𝑥4 + 𝑥3 tan𝑥4,
𝐹4 = −𝑥1 + 𝑥3 tan𝑥1 sec𝑥4. (50)

Step 3. Treat 𝐹𝑖, 𝑖 = 3, 4 as uncertainties and let �̂�𝑖, 𝑖 = 3, 4
be an estimate of 𝐹𝑖, 𝑖 = 3, 4, respectively. Using function
approximation technique [27], we can approximate 𝐹𝑖, 𝑖 =3, 4 as 𝐹3 = 𝑤𝑇3 𝜑3, 𝐹4 = 𝑤𝑇4 𝜑4. Then �̂�3 = �̂�𝑇3𝜑3 and�̂�4 = �̂�𝑇4𝜑4.

Then system (49) can be written as

�̇�1 = 𝑥3,
�̇�3 = 𝑥4 + �̂�𝑇3𝜑3 + �̃�𝑇3𝜑3,
�̇�4 = 𝑥2 + �̂�𝑇4𝜑4 + �̃�𝑇4𝜑4,
�̇�2 = V.

(51)

Step 4. Choose the nominal system for (51) as

�̇�1 = 𝑥3,
�̇�3 = 𝑥4,
�̇�4 = 𝑥2,
�̇�2 = V0.

(52)
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Step 5. Define the sliding surface for nominal system (52) as

𝑠0 = 𝑥1 + 3𝑥3 + 3𝑥4 + 𝑥2. (53)

Then

̇𝑠0 = �̇�1 + 3�̇�3 + 3�̇�4 + �̇�2 = 𝑥3 + 3𝑥4 + 3𝑥2 + V0. (54)

By choosing

V0 = −𝑥3 − 3𝑥4 − 3𝑥2 − 𝑘 sign (𝑠0) , 𝑘 > 0, (55)

we have

̇𝑠0 = −𝑘 sign (𝑠0) . (56)

Therefore, nominal system (52) is asymptotically stable.

Step 6. Define the sliding surface for system (51) as

𝑠 = 𝑠0 + 𝑧 = 𝑥1 + 3𝑥3 + 3𝑥4 + 𝑥2 + 𝑧. (57)

Choose V = V0 + V𝑠.
Then

̇𝑠 = �̇�1 + 3�̇�3 + 3�̇�4 + �̇�2 + �̇�
= 𝑥3 + 3𝑥4 + 3�̂�𝑇3𝜑3 + 3�̃�𝑇3𝜑3 + 3𝑥2 + 3�̂�𝑇4𝜑4

+ 3�̃�𝑇4𝜑4 + V0 + V𝑠 + �̇�.
(58)

Step 7. The following adaptive laws for �̃�𝑖, �̂�𝑖, 𝑖 = 3, 4 and
the value of V𝑠 are chosen as

�̇� = −𝑥3 − 3𝑥4 − 3𝑥2 − V0,
V𝑠 = −3�̂�𝑇3𝜑3 − 3�̂�𝑇4𝜑4 − 𝑘𝑠,
̇̃𝑤3 = −3𝑠𝜑3 − 𝑘1�̃�𝑇3 ,
̇̂𝑤3 = − ̇̃𝑤3,
̇̃𝑤4 = −3𝑠𝜑4 − 𝑘2�̃�𝑇4 ,
̇̂𝑤4 = − ̇̃𝑤4,

(59)

where 𝑘, 𝑘1 and 𝑘2 > 0.
Give

�̇� = −𝑘𝑠2 − 𝑘1�̃�𝑇3 �̃�3 − 𝑘2�̃�𝑇4 �̃�4, (60)

where

𝑉 = 12𝑠2 + 12�̃�𝑇3 �̃�3 + 12�̃�𝑇4 �̃�4. (61)

Choosing

𝑘3 = min (𝑘, 𝑘1, 𝑘2) , (62)

we have

�̇� ≤ −𝑘3 (𝑠2 + 𝑘1�̃�𝑇3 �̃�3 + 𝑘2�̃�𝑇4 �̃�4) . (63)

𝜃

𝜓

𝛿

x

y

Figure 3: The mobile robot with trailer model.

Using the chosen Lyapunov function we can write

�̇� ≤ −2𝑘3𝑉,
�̇� ≤ −𝛼𝑉𝛽, (64)

where 𝛼 = 2𝑘3 and 𝛽 = 1.
From this we conclude that 𝑠, �̃�3, �̃�4 → 0. Since 𝑠 → 0,

therefore 𝑥 → 0.
Simulation results are shown in Figure 5.

4.3. The Mobile Robot with Trailer Model. A car with trailer
model, shown in Figure 3, is basically a five-dimensional
nonholonomic system having two inputs and five states with
depth-one, depth-two, and depth-three Lie brackets. A car
with trailer kinematic model [8] can be defined as

�̇�1 = cos𝑥3 cos𝑥4𝑢1,
�̇�2 = cos𝑥3 sin𝑥4𝑢1,
�̇�3 = 𝑢2,
�̇�4 = 1𝑙 sin𝑥3𝑢1,
�̇�5 = 1𝑑 sin (𝑥4 − 𝑥5) cos𝑥3𝑢1.

(65)

By assuming 𝑙 = 𝑑 = 1, system (65) can be written in the
following standard form:

�̇� = 𝐺1 (𝑥) 𝑢1 + 𝐺2 (𝑥) 𝑢2, 𝑥 ∈ R
5, (66)

where

𝐺1 (𝑥) =
[[[[[[[[
[

cos𝑥3 cos𝑥4
cos𝑥3 sin𝑥40

sin𝑥3
cos𝑥3 sin (𝑥4 − 𝑥5)

]]]]]]]]
]
,
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𝐺2 (𝑥) =
[[[[[[[[
[

0
0
1
0
0

]]]]]]]]
]
.

(67)

It can be verified that system (66) satisfies the following
assumptions which are necessary for steering problem.

(P1) The vectors 𝐺𝑖(𝑥), 𝑖 = 1, 2 are linearly independent
and have no singular point for all 𝑥 ∈ 𝑀 ⊆ R5, where𝑀 is some manifold inR5.

(P2) System (66) satisfies the Lie algebraic rank condition
(LARC) for controllability, where the Lie algebra,𝐿(𝐺1, 𝐺2)(𝑥), spans R5 at each point 𝑥 ∈ 𝑀 ⊆ R5:
that is, span(𝐺1(𝑥), 𝐺2(𝑥), . . . , 𝐺5(𝑥)) = R5, ∀𝑥 ∈𝑀.

To verify (P1) and (P2), calculate the linearly independent Lie
brackets.

𝐺3 (𝑥) def= [𝐺1, 𝐺2] (𝑥) =
[[[[[[[[
[

sin𝑥3 cos𝑥4
sin𝑥3 sin𝑥40
− cos𝑥3

sin𝑥3 sin (𝑥4 − 𝑥5)

]]]]]]]]
]
,

𝐺4 (𝑥) def= [𝐺1, [𝐺1, 𝐺2]] (𝑥) =
[[[[[[[[
[

− sin𝑥4
cos𝑥40

0
cos (𝑥4 − 𝑥5)

]]]]]]]]
]
,

𝐺5 (𝑥) def= [𝐺1, [𝐺1, [𝐺1, 𝐺2]]] (𝑥)

=
[[[[[[[[
[

− sin𝑥3 cos𝑥4− sin𝑥3 sin𝑥40
0

− sin𝑥3 sin (𝑥4 − 𝑥5) + cos𝑥3

]]]]]]]]
]
.

(68)

If the motion of system is restricted to manifold,

𝑀 def= (𝑥 ∈ R
5 : 𝑥𝑖 < 𝜋2 , 𝑖 = 3, 4) . (69)

Then the Lie algebra rank condition, namely,
span(𝐺1(𝑥), 𝐺2(𝑥), . . . , 𝐺5(𝑥)) = R5, ∀𝑥 ∈ 𝑀, is satisfied,
hence guaranteeing that system (66) satisfies conditions (P1)
and (P2) on the surface𝑀.

4.3.1. Application of the Proposed Algorithm to
the Mobile Robot with Trailer Model

Step 1. System (65) can be written as

�̇�1 = cos𝑥3 cos𝑥4𝑢1,
�̇�2 = cos𝑥3 sin𝑥4𝑢1,
�̇�3 = 𝑢2,
�̇�4 = sin𝑥3𝑢1,
�̇�5 = sin (𝑥4 − 𝑥5) cos𝑥3𝑢1.

(70)

Step 2. Choose 𝑢1 = 𝑥2/ cos𝑥3 cos𝑥4 and 𝑢2 = V.
And, 𝑥3, 𝑥4 ̸= 𝜋/2. Then system (70) can be written as

�̇�1 = 𝑥2,
�̇�2 = 𝑥2 tan𝑥4,
�̇�3 = V,
�̇�4 = 𝑥2 tan𝑥3 sec𝑥4,
�̇�5 = 𝑥2 sin (𝑥4 − 𝑥5) sec𝑥4.

(71)

Step 3. Assume 𝐹𝑖, 𝑖 = 2, 4, 5 as uncertainties and let�̂�𝑖, 𝑖 = 2, 4, 5 be an estimate of 𝐹𝑖, 𝑖 = 2, 4, 5, respectively.
Approximate 𝐹𝑖 = 𝑤𝑇𝑖 𝜑𝑖, 𝑖 = 2, 4, 5 and let �̂�𝑖 = �̂�𝑇𝑖 𝜑𝑖, 𝑖 =2, 4, 5, respectively. Then system (71) can be written as

�̇�1 = 𝑥2,
�̇�2 = 𝑥4 + �̂�𝑇2𝜑2 + �̃�𝑇2𝜑2,
�̇�4 = 𝑥5 + �̂�𝑇4𝜑4 + �̃�𝑇4𝜑4,
�̇�5 = 𝑥3 + �̂�𝑇5𝜑5 + �̃�𝑇5𝜑5,
�̇�3 = V.

(72)

Step 4. Choose the nominal system for (72) as

�̇�1 = 𝑥2,
�̇�2 = 𝑥4,
�̇�4 = 𝑥5,
�̇�5 = 𝑥3,
�̇�3 = V0.

(73)

Step 5. Define theHurwitz sliding surface for nominal system
(73) as

𝑠0 = 𝑥1 + 4𝑥2 + 6𝑥4 + 4𝑥5 + 𝑥3. (74)

Then

̇𝑠0 = �̇�1 + 4�̇�2 + 6�̇�4 + 4�̇�5 + �̇�3
= 𝑥2 + 4𝑥4 + 6𝑥5 + 4𝑥3 + V0. (75)
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Figure 4: (a) Time response of the system states corresponding to initial condition (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (2, −1, 1). (b) Control input V.
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Figure 5: (a) Time response of the system states corresponding to initial condition (𝑥1(0), . . . , 𝑥4(0)) = (−2, 1, −1, 3). (b) Control input V.

By choosing

V0 = −𝑥2 − 4𝑥4 − 6𝑥5 − 4𝑥3 − 𝑘 sign (𝑠0) , 𝑘 > 0, (76)

we have

̇𝑠0 = −𝑘 sign (𝑠0) . (77)

Therefore, nominal system (73) is asymptotically stable.

Step 6. Define the sliding surface for system (72) as

𝑠 = 𝑠0 + 𝑧 = 𝑥1 + 4𝑥2 + 6𝑥4 + 4𝑥5 + 𝑥3 + 𝑧. (78)

And choose V = V0 + V𝑠.
Then

̇𝑠 = �̇�1 + 4�̇�2 + 6�̇�4 + 4�̇�5 + �̇�3 + �̇�
= 𝑥2 + 4𝑥4 + 4�̂�𝑇2𝜑2 + 4�̃�𝑇2𝜑2 + 6𝑥5 + 6�̂�𝑇4𝜑4

+ 6�̃�𝑇4𝜑4 + 4𝑥3 + 4�̂�𝑇5𝜑5 + 4�̃�𝑇5𝜑5 + V0 + V𝑠 + �̇�.
(79)

Step 7. The following adaptive laws for �̃�𝑖 & �̂�𝑖 and the value
of V𝑠

�̇� = −𝑥2 − 4𝑥4 − 6𝑥5 − 4𝑥3 − V0,
V𝑠 = −4�̂�𝑇2𝜑2 − 6�̂�𝑇4𝜑4 − 4�̂�𝑇5𝜑5 − 𝑘𝑠,
̇̃𝑤2 = −4𝑠𝜑2 − 𝑘1�̃�𝑇2 ,̇̂𝑤2 ≈ − ̇̃𝑤2,
̇̃𝑤4 = −6𝑠𝜑4 − 𝑘2�̃�𝑇4 ,̇̂𝑤4 ≈ − ̇̃𝑤4,
̇̃𝑤5 = −4𝑠𝜑5 − 𝑘3�̃�𝑇5 ,
̇̂𝑤5 ≈ − ̇̃𝑤5,

(80)

with 𝑘 and 𝑘𝑖 > 0, 𝑖 = 1, 2, 3, result in
�̇� = −𝑘𝑠2 − 𝑘1�̃�𝑇2 �̃�2 − 𝑘2�̃�𝑇4 �̃�4 − 𝑘3�̃�𝑇5 �̃�5, (81)
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Figure 6: (a) Time response of the system states corresponding to initial condition (𝑥1(0), . . . , 𝑥5(0)) = (2, −1, 1, −2, 2). (b) Control input V.

where

𝑉 = 12𝑠2 + 12�̃�𝑇2 �̃�2 + 12�̃�𝑇4 �̃�4 + 12�̃�𝑇5 �̃�5. (82)

Choosing

𝑘4 = min (𝑘, 𝑘1, 𝑘2, 𝑘3) , (83)

we have

�̇� ≤ −𝑘4 (𝑠2 + �̃�𝑇2 �̃�2 + �̃�𝑇4 �̃�4 + �̃�𝑇5 �̃�5) . (84)

Using the chosen Lyapunov function we can write

�̇� ≤ −2𝑘4𝑉,
�̇� ≤ −𝛼𝑉𝛽, (85)

where 𝛼 = 2𝑘4 and 𝛽 = 1.
From this we conclude that 𝑠, �̃�𝑇2 , �̃�𝑇4 and �̃�𝑇5 → 0. Since𝑠 → 0, therefore 𝑥 → 0. Simulation results are shown in

Figures 4–6 for different initial conditions.

5. Simulation Results

Figures 4(a) and 4(b) show simulation results of the unicycle
model and represent that the states and the control effort
converge to zero and have settling time of 4 sec and 0.8 sec.
Figures 5(a) and 5(b) show simulation results of the front
wheel car model and represent that the states and the control
effort converge to zero and have settling time of 6 sec and
1 sec. Figures 6(a) and 6(b) show simulation results for the
car with trailer model and represent that the states and
control effort converge to zero and have settling time of 10 sec
and 0.4 sec. Simulation results show the effectiveness of the
proposed scheme.

6. Conclusion

Anadaptive integral slidingmode based control algorithm for
the stabilization of nonholonomic drift-free control systems

was presented.The objective was to steer the system from any
arbitrary initial state to any desired state. The effectiveness of
themethodwas tested on three different nonholonomic drift-
free systems: the unicycle model, the front wheel car model,
and the mobile robot with trailer model.The aim was to steer
the systems to a desired value which was assumed to be zero.
It is evident from the simulation results that the objective has
been achieved. This method is general and can be employed
to steer a variety of mechanical systems with nonholonomic
constraints.
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