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A new type of dynamic vibration absorber (DVA) with negative stiffness is studied in detail. At first, the analytical solution of the
system is obtained based on the established differential motion equation. Three fixed points are found in the amplitude-frequency
curves of the primary system.The design formulae for the optimum tuning ratio and optimum stiffness ratio of DVA are obtained
by adjusting the three fixed points to the same height according to the fixed-point theory. Then, the optimum damping ratio
is formulated by minimizing the maximum value of the amplitude-frequency curves according to 𝐻

∞
optimization principle.

According to the characteristics of negative stiffness element, the optimum negative stiffness ratio is also established and it could
still keep the system stable. In the end, the comparison between the analytical and the numerical solutions verifies the correctness
of the analytical solution. The comparisons with three other traditional DVAs under the harmonic and random excitations show
that the presented DVA performs better in vibration absorption.This result could provide theoretical basis for optimumparameters
design of similar DVAs.

1. Introduction

Vibration control is becoming important in many engineer-
ing practices. One of the common devices for vibration
control is dynamic vibration absorber (DVA), which is widely
used due to its properties such as efficiency, reliability, and
low cost. Researches on DVA had been developed for more
than 100 years since the first DVA without damping was
invented by Frahm [1] in 1911. In 1928, Ormondroyd and
Den Hartog [2] found that a DVA with damping element
could suppress the amplitude of primary system in broader
frequency range, which had been recognized as the typical
Voigt typeDVA.Ormondroyd andDenHartog [2] also found
that the amplitude-frequency curves of the primary system
with damped DVA would pass through two fixed points
which were independent of the absorber damping, and they
proposed an optimization criterion to designVoigt typeDVA.
Hahnkamm [3] derived the optimum natural frequency
ratio according to the optimization criterion and described
this method as the fixed-point theory. Later, the optimum
damping ratio was obtained by Brock [4] in 1946. Currently,
the results based on the fixed-point theory have become

the classic conclusions which were recorded in vibration
engineering textbooks [5, 6]. However, the conclusions were
approximate optimal solutions of Voigt type DVA relative to
the exact solutions. Nishihara et al. [7, 8] derived the exact
series solution for the stiffness and damping coefficient of
Voigt type DVA and found that the results according to the
fixed-point theory were very close to the exact series solution
and the approximate forms were much simpler. Accordingly,
the approximate optimization formulae were still used in
engineering practices.

To further improve the control performance of DVA,
Ren [9] presented a DVA where the damping element was
not connected to the primary system but to the earth (a
base structure) in 2001. The results indicated it could present
better control performance than Voigt type DVA under the
same parameter conditions. In 2005, K. Liu and J. Liu [10]
got the same result for this DVA by another method. A
large number of viscoelastic materials were used in vibration
control engineering, and the viscoelastic materials had both
damping and stiffness properties. Asami and Nishihara [11,
12] presented a three-element type DVA, which was used
to model the viscoelasticity of the devices. They finished
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its optimization design and found the three-element type
DVA had better control performance under the same mass
ratio. Shen et al. [13, 14] studied the approximate analytical
solution for four types of semiactive DVAs, and the effects
of time delay on the control performance were also investi-
gated.

Stiffness is the ability of resistance to external force. The
positive stiffness means that the deformation is in the same
direction as the applied external force. On the contrary, the
negative stiffness means that the direction of deformation
is opposite to that of the applied external force. Researches
show that a single bulk solid object with negative stiffness is
not stable. Many researches about the properties and stability
conditions of the negative stiffness system had been reported
in [15–21]. When the positive and negative springs are put
in parallel, the system will show nonlinear characteristic
near the equilibrium position. The load-bearing capacity of
the system with negative stiffness may be better than the
positive stiffness and its natural frequency will be reduced
simultaneously.The systemwith negative stiffness has a better
vibration control performance when it is stable. Thus, the
introduction of negative stiffness to the vibration control
system is necessary and meaningful. Platus [22] produced
negative stiffness around equilibrium using the buckling
of beams with axial load and got an isolation system by
combining it with a linear positive spring. Trimboli et al. [23]
proposed the application of negative stiffness in mechanical
vibration isolator, where the negative stiffness and the positive
stiffness springs were arranged in parallel. Park and Luu [24]
studied the active control vibration isolator with negative
stiffness, and the basic system characteristics were experi-
mentally verified. Mizuno et al. [25–28] studied an active
vibration isolation system combining zero-power magnetic
suspensions analytically and experimentally.They found that
a zero-power system behaved like negative stiffness system
and could generate infinite stiffness if it was connected
with a normal spring in series. Then, they proposed a new
vibration isolation system using negative stiffness which was
realized by active control technique [29]. In 2013, Acar and
Yilmaz [30] studied a new adaptively passive DVA with a
negative stiffness mechanism analytically and experimentally
and found that it could suppress the amplitude of the system
by appropriately adjusting the parameters. Yang et al. [31]
investigated a nonlinear vibration isolation system with a
negative stiffness mechanism. Zhu et al. [32] invented a
kind of negative stiffness system used in gravity compen-
sation for tiny vibration machines. In 2015, Li et al. [33]
studied a kind of passively negative stiffness device based
on preload of three springs. Many scholars had studied the
application of negative stiffness in vibration isolation system
for its advantages, but little work has been done about the
optimal parameters of the DVA with negative stiffness. In
2015, Peng et al. [34] studied a new type of DVA with
negative stiffness, finished its parameter optimization, and
found that the DVA with negative stiffness had good control
performance.

In this paper, the effect of negative stiffness on the
amplitude of the primary system is studied by intro-
ducing the negative stiffness connected to the grounded
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Figure 1: The model of dynamic vibration absorber.

three-element type DVA. The model is established and the
optimum parameters are obtained based on the fixed-point
theory in Section 2.The comparison of the analytical solution
with the numerical one is fulfilled, and the result shows that
the analytical solution is correct and satisfactorily precise.
Then, the presented DVA is compared with other existing
DVAs under harmonic excitation in Section 3 and random
excitation in Section 4. It could be concluded that the system
with the DVA in this paper has better control performance
than the traditional Voigt typeDVA, theDVAby Ren, and the
DVA by Asami, whenever the primary system is subjected to
harmonic or random excitations. This research may provide
a new theoretical basis for designing new type of DVAs.

2. The Model of DVA and Parameters
Optimization

2.1. The Analytical Solution. The grounded three-element
type DVA with negative stiffness is shown in Figure 1.

According to Newtonian’s second law, the differential
motion equation can be established as
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are the masses and linear stiffness

coefficients of the primary system and DVA, respectively.
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Using the following parametric transformation
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Letting 𝑓 sin(𝜔𝑡) in (3) be represented by 𝑓𝑒𝑗𝜔𝑡, the steady-
state solutions take the forms as
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Substituting (4) into (3), one can obtain
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where 𝑗 is the imaginary unit and the other parameters are as
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Introducing the parameters
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and supposing 𝐴 is the normalized amplitude amplification
factor of the primary system, one could obtain
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2.2. Parameters Optimization. By simple deduction of (8),
it can be found that the normalized amplitude-frequency
curve will pass through three points which are independent
of the damping ratio. Some normalized amplitude-frequency
curves under different damping ratios as 0.4, 0.5, and 0.9 are
shown in Figure 2. It could be clearly seen that there exist
three common fixed points 𝑃, 𝑄, and 𝑅 on all the curves,
which are independent of the damping ratio. In order to find
the values of the fixed points, the following equation should
hold:
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Substituting (9) into (10), one can get
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Because the three fixed points have nothing to dowith the
damping ratio, one could obtain
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Optimum tuning of DVA will be accomplished with the
condition that the three fixed points are adjusted to equal
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Figure 2: The amplitude-frequency curves with parameters as 𝜇 =

0.1, 𝜐 = 1.3, 𝛼
1
= 0.6, and 𝛼

2
= −0.6.

Secondly, adjusting the points 𝑃 (or 𝑅) and 𝑄 to equal
height, that is to say, |𝑋

1
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obtain the optimum tuning condition with respect to 𝜐:
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Substituting (21) into (17), the optimum value of 𝛼
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established:
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At the fixed points, the normalized amplitude amplification
factor of the primary system will be

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
1

𝛿st

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃,𝑄,𝑅

=
1 + 𝛼
2
+ √𝜇 − 𝜇

√𝜇
. (23)

For the condition of the three fixed points with equal
height, optimum damping ratio 𝜉opt is achieved when the two
resonance peaks are adjusted to equal height, as shown in
Figure 3.

In order to obtain the optimumdamping ratio, one should
know the abscissa values at the two resonance peaks, namely,
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. That means

𝜕𝐴

𝜕𝜆
1

= 0,

𝜕𝐴

𝜕𝜆
2

= 0.

(24)

Substituting (8) into (24), the values of 𝜉
1
and 𝜉

2
can be

obtained. Then, one could get 𝜉opt = (𝜉
1
+ 𝜉
2
)/2 through

the similar way by Den Hartog [5]. However, it is difficult to
obtain the analytical results due to the complicated forms in
(24).

𝜉 = 0.2

𝜉 = 0.398 𝜉 = 1

𝜉 = 0.5
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Figure 3: The amplitude-frequency curve with parameters as 𝜇 =

0.1, 𝜐 = 1.370, 𝛼
1
= 0.632, and 𝛼

2
= −0.684.

When the two resonance peaks are at the same height, one
could observe that the point 𝑄 is almost the area where the
slope of the amplitude-frequency curve is zero. The abscissa
value of point 𝑄 in (19) has been obtained, so that the
approximate optimumdamping ratio can be solved according
to the abscissa value of point 𝑄; namely,

𝜕𝐴
2

𝜕𝜆2
= 0,

𝛼
1
= 2√𝜇,

𝜐 = √
1

1 + 𝛼
2
+ √𝜇 − 𝜇

,

𝜆
2

𝑄
= 1 + 𝜇𝜐

2

.

(25)

Solving (25), one can get

√𝜇 [−𝜉
4

(1 + 𝛼
2
+ √𝜇)

2

+ 𝜇
2

]

1 + 𝛼
2
+ √𝜇 − 𝜇

= 0. (26)

Furthermore, one could obtain

𝜉opt ≅ √
𝜇

1 + 𝛼
2
+ √𝜇

. (27)

At this point, there still exists an adjustable parameter 𝛼
2

in the optimum natural frequency ratio and damping ratio.
It is clear that a negative 𝛼

2
will make the three fixed points

much lower; that means one can get a better vibration control
performance. According to the characteristic of negative
stiffness, it can be achieved if the negative stiffness material
is applied by preload.The preload will cause predisplacement
of the primary system, so that an approximation is adopted
which makes the predisplacement equal to the values of the
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three fixed points. That means the response value to zero-
frequency excitation is equal to that of the three fixed points;
that is,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
1

𝛿st

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=0

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
1

𝛿st

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃,𝑄,𝑅

. (28)

Accordingly,

√
(1 + 𝛼

2
)
2

(1 + 𝛼
2
+ 𝜇𝛼
2
/ (1 + 𝛼

2
+ √𝜇 − 𝜇))

2

= √
(1 + 𝛼

2
+ √𝜇 − 𝜇)

2

𝜇
.

(29)

Solving (29), one can get the negative stiffness ratio as

𝛼
2𝑎
= −1 − √𝜇,

𝛼
2𝑏
= −1 + √𝜇,

𝛼
2𝑐
= −1 − (1 + √2)√𝜇,

𝛼
2𝑑

= −1 + (−1 + √2)√𝜇,

𝛼
2𝑒
= −1 − √𝜇 + 𝜇.

(30)

When the possible values in (30) are taken into the
other optimization parameters and the normalized amplitude
amplification factor of the primary system, one could find
that only 𝛼

2𝑏
can ensure the system stability and the other

four possible values will cause the system to be unstable
or make optimum damping ratio negative. Obviously, these
four values are meaningless, so that only 𝛼

2𝑏
is taken as the

optimum negative stiffness ratio:

𝛼
2opt = 𝛼

2𝑏
= −1 + √𝜇. (31)

At this time, all the optimal parameters of DVA in this
paper are obtained as

𝜐opt = √
1

2√𝜇 − 𝜇
,

𝛼
1opt = 2√𝜇,

𝜉opt ≅ (
𝜇

4
)

1/4

.

(32)

As a comparison and summarization, the models by Den
Hartog et al. [5, 9, 11] are presented in Figure 4.All the optimal
parameters of the four models are summarized in Table 1.

Figure 5 shows the amplitude-frequency curve under the
optimum parameters above, which is denoted by the solid
line. It can be found that the optimization purposes are
basically achieved. In order to illustrate the correctness and
precision of the analytical solution, the numerical solution
is also presented. In the numerical investigation, the four-
order Runge-Kutta method is used to solve (3). Here, the

m2

k2 c

m1

k1

(a) The model by
Den Hartog

m2

k2

m1 c

k1

(b) The model by Ren

m2

k2

m1

c

k3

k1

(c) The model by
Asami

Figure 4: The models of DVAs.
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Figure 5:The amplitude-frequency curvewith the optimumparam-
eters as 𝜇 = 0.1, 𝜐 = 1.370, 𝛼

1
= 0.632, 𝛼

2
= −0.684, and 𝜉 = 0.398.

total computation time is 100 times of the excitation period,
and the maximum value of the later quarter of the time
response is considered as the steady-state amplitude. From
the observation, it can be concluded that the analytical and
the numerical solution agree very well with each other.

3. Comparison with Other DVAs

In order to illustrate the control performance of the presented
DVA with negative stiffness, the normalized amplitude-
frequency curves of other typical DVAs proposed by Den
Hartog et al. are also presented. Based on the same mass
ratio 𝜇 = 0.1, the other three curves are obtained based on
the optimum parameters they presented [5, 9, 11]. Table 2
shows the values of optimal parameters used in presented
comparison when 𝜇 = 0.1. The four curves are shown in
Figure 6 and denoted by dotted line, dash line, dash dot line,
and solid line, respectively.

From the comparison, it can be concluded that the DVA
in this paper can not only suppress the amplitude of the
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Table 1: The formulas of Den Hartog, Ren, and Asami realizations of DVAs.

Number Themodel of DVAs Optimum tuning Optimum damping Optimum negative stiffness

1 Den Hartog 𝜐opt =
1

1 + 𝜇
𝜉opt = √

3𝜇

8(1 + 𝜇)

2 Ren 𝜐opt = √
1

1 − 𝜇
𝜉opt = √

3𝜇

8(1 − 0.5𝜇)

3 Asami
𝜐opt = √

1

1 + 𝜇
(1 − √

𝜇

1 + 𝜇
)

𝛼
1opt = 2 [𝜇 + √𝜇 (1 + 𝜇)]

𝜉opt ≅
√
1 + 𝑟

𝑟
⋅
−𝑏 − √𝑏2 − 𝑎𝑐

𝑎

𝑎 = −2 − 2𝑟 + 5𝑟
2

+ 4𝑟
3

− 2𝑟
5

+ 𝑟
6

𝑏 = 2 − 3𝑟
2

− 𝑟
4

𝑐 = −2 + 2𝑟 + 𝑟
2

𝑟 = √(1 + 𝜇)/𝜇

4 The model in this
paper

𝜐opt = √
1

2√𝜇 − 𝜇

𝛼
1opt = 2√𝜇

𝜉opt ≅ (
𝜇

4
)

1/4

𝛼
2opt = −1 + √𝜇

Table 2: The values of parameters used in presented comparison when 𝜇 = 0.1.

Number The model of DVAs Optimum tuning Optimum damping Optimum negative stiffness
1 Den Hartog 𝜐opt = 0.909 𝜉opt = 0.185

2 Ren 𝜐opt = 1.054 𝜉opt = 0.199

3 Asami 𝜐opt = 0.797

𝛼
1opt = 0.863

𝜉opt = 0.282

4 The model in this
paper

𝜐opt = 1.370

𝛼
1opt = 0.632

𝜉opt = 0.398 𝛼
2opt = −0.684

The result by Den Hartog
The result by Ren

The result by Asami
Our result
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Figure 6: The comparison with other DVAs under 𝜇 = 0.1.

primary system in resonance region significantly but also
extend the efficient frequency range of vibration absorption.

4. The Response of the Primary System to
Random Excitation

The primary system is usually subject to random excitation
in practical engineering, so that it is very important and

meaningful to investigate the system response to random
excitation. When the primary system is subjected to random
excitation with zero mean and the power spectral density
as 𝑆(𝜔) = 𝑆

0
, the power spectral density functions of

the absolute displacement response of the negative stiffness
model and the other three typical DVAs model are

𝑆
𝑁
(𝜔) =

󵄨󵄨󵄨󵄨𝑋1𝑁
󵄨󵄨󵄨󵄨

2

𝑆
0
,

𝑆
𝑉
(𝜔) =

󵄨󵄨󵄨󵄨𝑋1𝑉
󵄨󵄨󵄨󵄨

2

𝑆
0
,

𝑆
𝑅
(𝜔) =

󵄨󵄨󵄨󵄨𝑋1𝑅
󵄨󵄨󵄨󵄨

2

𝑆
0
,

𝑆
𝐴
(𝜔) =

󵄨󵄨󵄨󵄨𝑋1𝐴
󵄨󵄨󵄨󵄨

2

𝑆
0
,

(33)

where the subscripts 𝑁, 𝑉, 𝑅, and 𝐴 represent the negative
stiffness model, the Voigt type DVA by Den Hartog, and the
model by Ren and Asami, respectively. Peng et al. [34] had
presented the mean square response of the primary system of
the Voigt type DVA and the DVA by Ren; namely,

𝜎
2

𝑉
= ∫

∞

−∞

𝑆
𝑉
(𝜔) 𝑑𝜔 = 𝑆

0
∫

∞

−∞

󵄨󵄨󵄨󵄨𝑋1𝑉
󵄨󵄨󵄨󵄨

2

𝑑𝜔 =
𝜋𝑆
0
𝑌
1

2𝜔
3

1
𝜇𝜉𝜐

,

𝜎
2

𝑅
= ∫

∞

−∞

𝑆
𝑅
(𝜔) 𝑑𝜔 = 𝑆

0
∫

∞

−∞

󵄨󵄨󵄨󵄨𝑋1𝑅
󵄨󵄨󵄨󵄨

2

𝑑𝜔 =
𝜋𝑆
0
𝑌
2

2𝜔
3

1
𝜇𝜉𝜐5

,

(34)
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where

𝑌
1
= 1 + 𝜐

4

(1 + 𝜇)
2

+ 𝜐
2

(4𝜇𝜉
2

+ 4𝜉
2

− 𝜇 − 2) ,

𝑌
2
= 1 + 𝜐

4

+ (𝜇 + 4𝜉
2

− 2) .

(35)

The mean square response of the primary system of the
DVA in this paper and the DVA by Asami can be deduced as

𝜎
2

𝑁
= ∫

∞

−∞

𝑆
𝑁
(𝜔) 𝑑𝜔 = 𝑆

0
∫

∞

−∞

󵄨󵄨󵄨󵄨𝑋1𝑁
󵄨󵄨󵄨󵄨

2

𝑑𝜔

=
𝜋𝑆
0
𝑌
3

2𝜔
3

1
𝜇𝜉𝜐7𝛼

2

1
(1 + 𝛼

2
+ 𝜇𝛼
2
𝜐2)

,

𝜎
2

𝐴
= ∫

∞

−∞

𝑆
𝐴
(𝜔) 𝑑𝜔 = 𝑆

0
∫

∞

−∞

󵄨󵄨󵄨󵄨𝑋1𝐴
󵄨󵄨󵄨󵄨

2

𝑑𝜔

=
𝜋𝑆
0
𝑌
4

2𝜔
3

1
𝜇𝜉𝑘2𝜐3

,

(36)

where

𝑌
3
= 4𝜉
2

(1 + 𝛼
2
+ 𝛼
2
𝜇𝜐
2

) {1 − 2 (1 + 𝛼
1
+ 𝛼
2
− 𝜇) 𝜐

2

+ [(1 + 𝛼
1
+ 𝛼
2
)
2

− (1 + 2𝛼
1
+ 2𝛼
2
) 𝜇 + 𝜇

2

] 𝜐
4

}

+ 𝛼
1

2

𝜐
2

{1 + 𝛼
2
+ [−2 (1 + 𝛼

2
)
2

+ 𝜇 + 2𝜇𝛼
2
] 𝜐
2

+ [(1 + 𝛼
2
)
3

− 2𝛼
2
(1 + 𝛼

2
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2
𝜇
2

] 𝜐
4

} ,

𝑌
4
= 𝑘
2

𝜐
2

[1 − (2 + 𝜇) 𝜐
2

+ (1 + 𝜇)
2

𝜐
4

] + 4𝜉
2

{1

+ (1 + 𝑘) 𝜐
2

[−2 + (1 + 𝑘) (1 + 𝜇) 𝜐
2

]} .

(37)

According toTable 2, themean square response of the pri-
mary system under the optimal parameters can be obtained,
respectively, when 𝜇 = 0.1:

𝜎
2

𝑁
=
3.091𝜋𝑆

0

𝜔
3

1

,

𝜎
2

𝑉
=
6.401𝜋𝑆

0

𝜔
3

1

,

𝜎
2

𝑅
=
5.780𝜋𝑆

0

𝜔
3

1

,

𝜎
2

𝐴
=
6.030𝜋𝑆

0

𝜔
3

1

.

(38)

The results show that the DVA with negative stiffness can
still present better performance than the other DVAs even
under the random excitation.

In order to get more realistic results, 50-second random
excitation is constructed, which is composed of 5000 nor-
malized random numbers with zero mean value and unit
variance, respectively. The time history of the random exci-
tation is shown in Figure 7. Here, we take the primary mass
𝑚
1
= 1 kg and stiffness of the primary system 𝑘

1
= 100N/m.

Then, the other parameters can be calculated according to

5 10 15 20 25 30 35 40 45 500
−4

−2

0

2

4

Figure 7: The time history of the random excitation.

5 10 15 20 25 30 35 40 45 500
−0.05

0

0.05

Figure 8: The time history of the primary system without DVA.

Table 3: The variances and decrease ratios of the displacement of
the primary system.

Model of DVA Variances Decrease ratios (%)
Without DVA 2.0083𝑒 − 04

DVA by Den Hartog 3.1235𝑒 − 05 84.45
DVA by Ren 2.6979𝑒 − 05 86.57
DVA by Asami 2.9025𝑒 − 05 85.55
Our result 1.2334𝑒 − 05 93.86

Table 1. And the parameters for the DVA proposed in this
paper can be calculated according to (31) and (32). Based on
the fourth-order Runge-Kutta method, the response of the
primary systemwithout DVA andwith different DVAs can be
obtained.The time history of these primary systems is shown
in Figures 8–12.The response variances and decrease ratios of
the primary system for the different systems are summarized
in Table 3.

5. Conclusions

A new type of dynamic vibration absorber with negative
stiffness is investigated. The study shows that there still exist
three fixed points on the amplitude-frequency curves. Based
on the fixed-point theory, the optimum tuning ratio, the
optimum stiffness ratio, and the optimum damping ratio are
obtained. The method to determine the optimum negative
stiffness ratio is proposed, and accordingly the optimum
negative stiffness ratio is determined. Then, the four-order
Runge-Kutta method is used to get the numerical solutions,
and the comparison with analytical solution is fulfilled. The
comparison results show that the analytical solutions are
satisfactorily precise. At last, the comparisons with other
traditional DVAs show that the DVA in this paper can largely
reduce the resonance amplitude and broaden vibration fre-
quency range; even it can make the amplitude of the primary
system remain small enough in the whole frequency range.
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Figure 9:The time history of the primary system with DVA by Den
Hartog.
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Figure 10:The time history of the primary systemwithDVAbyRen.
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Figure 11: The time history of the primary system with DVA by
Asami.

5 10 15 20 25 30 35 40 45 500

−0.01

0

0.01

Figure 12:The time history of the primary system with DVA in this
paper.

The results are useful to design more effective dynamic
vibration absorber.
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